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Computational techniques are required for narrowing
down the vast space of possibilities to plausible
prebiotic scenarios, because precise information on
the molecular composition, the dominant reaction
chemistry and the conditions for that era are
scarce. The exploration of large chemical reaction
networks is a central aspect in this endeavour. While
quantum chemical methods can accurately predict
the structures and reactivities of small molecules,
they are not efficient enough to cope with large-
scale reaction systems. The formalization of chemical
reactions as graph grammars provides a generative
system, well grounded in category theory, at the
right level of abstraction for the analysis of large and
complex reaction networks. An extension of the basic
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formalism into the realm of integer hyperflows allows for the identification of complex reaction
patterns, such as autocatalysis, in large reaction networks using optimization techniques.

This article is part of the themed issue ‘Re-conceptualizing the origins of life’.

1. Introduction
From a fundamental physics point of view, chemical systems, or more precisely molecules and
their reactions, are just time-dependent multi-particle quantum systems, completely described
by the fundamental principles of quantum field theory (QFT) [1]. At this level of description
almost all questions of interest to a chemist are not tractable in practice, however. A hierarchy
of approximations and simplifications is employed therefore to reach models of more practical
value. These are guided at least in part by conceptual notions that distinguish chemistry from
other quantum systems. Among these are constraints such as the immutability of atomic nuclei
and the idea that chemical reactions comprise only a redistribution of electrons. On the formal
side, the Born–Oppenheimer approximation [2] stipulates a complete separation of the wave
function of nuclei and electrons and leads to the concept of the potential energy surface (PES) that
explains molecular geometries and provides a consistent—if not completely accurate—view of
chemical reactions as classical paths of nuclear coordinates on the PES. The PES itself is the result
of solving the Schrödinger equation with nuclear coordinates and charges as parameters [3,4].
Quantum chemistry (QC) has developed a plethora of computational schemes for this purpose,
typically trading off accuracy for computational resource consumption. Among them in particular
are the so-called semi-empirical methods that use the fact that the chemical bonds are usually
formed by pairs of electrons to decompose the electronic wave function into contributions of
electron pairs.

Molecular modelling (MM) and molecular dynamics (MD) [5,6] abandon quantum mechanics
altogether and instead treat chemical bonds akin to classical springs. Sacrificing accuracy, MM
and MD can treat macromolecules and supramolecular complexes that are well outside the reach
of exact and even semi-empirical quantum-chemical methods. For special classes of molecules,
even coarser approximations have been developed. Many properties of aromatic ring systems, for
instance, can be explained in terms of graph-theoretical models known as Hückel theory [7,8]. For
nucleic acids, on the other hand, models have been developed that aggregate molecular building
blocks (nucleotides) into elementary objects so that Watson–Crick base pairs become edges in the
graph representation [9].

A common theme in the construction of coarser approximations is that more and more external
information needs to be supplied to the model. While QFT does not require more than a few
fundamental constants, nuclear masses and charges are given in practical QC computations.
Semi-empirical methods, in addition, require empirically determined parameters for electron
correlation effects. MM and MD models use extensive tables of parameters that specify properties
of localized bonds as a function of bond type and incident atoms. Similarly, RNA folding depends
on a plethora of empirically determined energy contributions for base pair stacking and loop
regions [10]. A second feature of coarse-grained methods is that they are specialized to answer
different types of questions, or that different classes of systems resort to different, mutually
incompatible approximations.

This well-established hierarchy of internally consistent models of molecular structures is
in stark contrast to our present capability to model chemical reactions. While transition state
theory [11] does provide a means to infer reaction rate constants from PES, it requires the prior
knowledge of the educt and product states.

A systematic investigation of large chemical reaction systems requires the development of a
theoretical framework that is sufficiently coarse-grained to be computationally tractable. Any
such model must satisfy consistency conditions that are inherited from the underlying physics
(figure 1). A study [12] on complex chemical reaction networks supports this view and concludes
that, on the structure and reactivity level of small molecules, efficient quantum mechanics-based
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Figure 1. Levels of abstraction for computational approaches in chemistry. Shown is the hierarchy of approximations from
quantummechanics at the top to graph grammars at the bottom. The coarse-graining via the introduction of constraints (such
as the Born–Oppenheimer approximation, or reducing coordinates of spatial objects to neighbourhood relations on graphs) is
accompanied by a dramatic speed-up in computation time.

computational approaches exist, but on the large-scale network level heuristic approaches are
indispensable. Here, we argue that chemistry offers a coarse-grained level of description that
allows the construction of mathematically sound and consistent formal models that, nevertheless,
are conceptually and structurally different from the formalism of QC. Much of chemistry is
taught in terms of abstracted molecular structures and rules (named reactions) that transform
molecular graphs into each other. In the following section, we show how this level of modelling
can indeed be made mathematically precise and how it can accommodate key concepts of
chemistry such as transition state theory and fundamental conservation laws inherited from the
underlying physics.

2. Graph grammar chemistry
The starting point of an inherently discrete model of chemistry is a simplified, graphical
representation of molecules. This coarse-graining maps the atoms and bonds of a molecule to
vertices and edges of the corresponding graph. All type information (atom types C, H, N, O,
etc. and bond multiplicity single, double, triple bond) are mapped to labels on the respective
vertices or edges of the graph. In this setting all information on properties which are tied to the
three-dimensional space, such as chirality and cis/trans isomerism of double bonds, is neglected.

It is possible, however, to extend the model to retain the local geometric information and thus
capture the part of stereochemistry which is tied to stereogenic centres. Helicity, for instance,
cannot be expressed by the extended model because this property is generated by an extended
spatial arrangement around an axis and not a single point or centre. The basis for the extended
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Figure 2. Double-pushout (DPO) representation of the application of a graph transformation rule. The actual reaction (the top
span L← K→ R) is the Meisenheimer rearrangement which transforms educt graph G into product graph H. All arrows in
the diagram aremorphisms, i.e. functions whichmap vertices/edges from the graph on the arrow tail to the graph at the arrow
head. To be a valid transformation, the two squares of the diagrammust form so-called pushouts.

model is the valence-shell electron-pair repulsion (VSEPR) model, which, despite comprising a
set of simple rules, has a firm grounding in quantum chemical modelling [13]. VSEPR theory
determines approximate bond angles around an atom depending on the incident bond types,
i.e. in terms of information conveyed by the labelled graph representation. Stereochemical
information involving chiral centres as well as cis/trans isomerism thus can be encoded simply in
the order in which bonds are listed, and augmenting the labelled graph with a permutation group
on each vertex to describe geometric symmetries.

Nevertheless certain aspects of chemistry cannot be described in this form. For instance, the
concept of bonds as edges fails in multi-centre bonds because three or more atoms share a pair of
bonding electrons. These are frequently observed in boranes or organometallic compounds such
as ferrocenes. Non-local chirality, found for instance in helical molecules, does not rely on local,
atom-centred symmetries and thus is not captured by local orientation information.

With molecules represented as graphs, the mechanism of a chemical reaction is naturally
expressed as a graph transformation rule. Graph transformation thus retains the semantics
familiar from organic chemistry textbooks. As a research discipline in computer science, graph
transformation dates back to the 1970s. Graph transformation has been studied extensively in the
context of formal language theory, pattern recognition, software engineering, concurrency theory,
compiler construction and verification among other fields in computer science [14]. Several
formalisms have been developed in order to formalize and implement the process of transforming
graphs. Algebraic approaches are of particular interest for modelling chemistry, where multiple
variations based on category theory exist. For example, different semantics can be expressed using
the single pushout approach, the more restrictive double pushout (DPO) approach or the recently
developed sesqui-pushout approach [15].

In the context of chemical reactions, DPO graph transformation is the formalism of choice
because it facilitates the construction of transformation rules that are chemical in nature. DPO
guarantees that all chemical reactions are reversible [16]. The conservation of atoms translates to
a simple formal condition (formally, the graph morphisms relating the context to the left-hand
and right-hand side of a rule must be bijections for vertices). In turn, this requirement guarantees
the existence of well-defined atom maps.

Figure 2 illustrates how the Meisenheimer rearrangement [17], a temperature-induced
rearrangement of aliphatic amine oxides into N-alkoxylamines, translates to the DPO formalism.
The reaction transforms educt graph G (amine oxide) into product graph H (N-alkoxylamine).
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Figure 3. Automatic inference of an overall rule by subsequent composition of graph transformation rules. The example is
based on a sequence of reactions from [30], in which Eschenmoser describes how aldehydes act as catalysts for the hydrolysis
of CN groups of the HCN tetramer. The left column depicts the mechanism as presented in [30]. An automated approach will,
based on graph transformation rules, first generate a (potentially very large) chemical space (not depicted here). The depicted
mechanism is then found as one of the solutions for the general question of enumerating hydrolysis pathways of HCN polymers
that use glyoxylate (GLX: glyoxylate, CID 760) as a catalyst. In the depicted pathway, the tetramer of HCN (DAMN: tetramer of
HCN, CID 2723951) is hydrolysed. Themiddle column depicts the left and right graph of each transformation rule p1, . . . , p5 that
models the generalized reactions. The subsequently inferred rules p1 (top), p1 • p2, . . ., and the overall rule p1 • p2 • · · · • p5
(bottom) are depicted in the right column. Note that, in general, these can be several composed overall rules, each expressing
different atom traces. In this example there is only a single one.
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All arrows in the diagram are morphisms. The reaction centre, i.e. the subset of atoms and
bonds of the reactant molecules directly involved in the bond-breaking/-forming steps of the
chemical reaction, is expressed as a graph transformation rule. The information of how to change
the connectivity and the charges of the atoms is specified by three graphs (L, K, R). The left graph
L (respectively, right graph R) expresses the local state of molecules before (respectively, after)
applying the reaction rule. The context graph K encodes the invariant part of the reaction centre
and mathematically relates L and R to each other. The left graph L is thus the precondition for
application of the rule (i.e. it can only be applied if there exists a subgraph match m that embeds
L in the host graph G; see the red and blue highlighted part of graph G in figure 2). In this case,
L can be replaced by the right graph R (see the green and blue highlighted part of graph H in
figure 2), which transforms the educt graph G into the product graph H.

A computationally very demanding step when performing graph transformation (e.g. for
generating large chemical spaces) is the enumeration of subgraph matches. Deciding if a single
subgraph match exists in a host graph is known to be an NP-complete problem [18,19]. Better
theoretical results exist for certain classes of graphs, e.g. for the so-called partial k-trees of bounded
degree (to which almost all molecule graphs belong [20–22]) where the subgraph matching
problem can be solved in polynomial time [23,24]. In practice, it is however faster to use simpler
algorithms, e.g. VF2 [25,26].

Chemical reactions are often compositions of elementary reactions. In the latter, the reaction
centre can always be expressed as a cycle [27,28], with an even number of vertices for homovalent
reactions and an odd number from ambivalent reactions, better known as redox reactions. Graph
transformations have a natural mechanism for rule composition that allows the expression of
multi-step reactions (e.g. enzyme-mediated reactions or even complete metabolic pathways) as
compositions of elementary transformation rules. The properties of elementary rules in terms
of mass conservation or atom-to-atom mapping nicely carry over to the composed ‘overall
transformation rules’. As the action of chemical reactions is to redistribute atoms along complex
reaction sequences, rule composition can be used to study the trace of individual atoms
along these reaction sequences in a chemically as well as mathematically correct fashion. Rule
composition can be completely automated and thus opens the possibility for model reduction
(see [29] for further details). We illustrate rule composition in the context of prebiotic chemistry
in figure 3.

3. Network view of chemistry
Classical synthetic chemistry traditionally has been concerned with the stepwise application of
chemical reactions in carefully crafted synthesis plans. In living organisms, by contrast, complex
networks of intertwined reactions are active concurrently. These intricate reaction webs harbour
complex reaction patterns such as branch points, autocatalytic cycles and interferences between
reaction sequences. The emerging field of systems chemistry has set out to leverage the systemic,
network-centred view as a framework also for synthetic chemistry. Consequently, large-scale
chemical networks are no longer just a subject of analysis in the context of understanding the
working of a living cell’s metabolism, but are becoming a prerequisite to understanding the
possibilities within chemical spaces, i.e. the universe of chemical compounds and the possible
chemical reactions connecting them. The formulation of a predictive theory of chemical space
requires it to be rooted in a strict mathematical formalization and abstraction of the overwhelming
amount of anecdotal knowledge, which has been collected on the single reaction and functional
subnetwork level, into generalizing principles.

Graph transformation systems, as discussed earlier, provide the basis for such a formalism
that allows for a systematic and stepwise construction of arbitrary chemical spaces. A chemical
system is then specified as a formal graph grammar that encapsulates a set of transformation
rules, encoding the reaction chemistry, together with a set of molecules which provide the starting
points for rule application. The iteration of the graph grammar yields reaction networks in the
form of directed hypergraphs as explicit instantiations of the chemical space. Usually a simple
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iterative expansion of the chemical space leads to a combinatorial explosion in the number of
novel molecules. Therefore, a sophisticated strategy framework for the targeted exploration of the
parts of interest of the chemical space has been developed [31]. Such strategies are indispensable
if, for example, polymerization/cyclization spaces are the subject of investigation. These types
of spaces are, for example, found in the important natural product classes of polyketides and
terpenes, and in prebiotic HCN chemistry [32]. The strategy framework allows the guidance
of chemical space exploration not only using physico-chemical properties of the generated
molecules, but also using experimental data such as mass spectra. Importantly, the hypergraphs
(reaction networks) are generated automatically annotated with atom-to-atom maps, as defined
implicitly in the underlying graph grammar. For large and complex reaction networks it is thus
possible to construct atom flow networks in an automated fashion, even including corrections
for molecule and subnetwork symmetries, as required for the interpretation of isotope labelling
experiments [33].

The origin of life can be viewed as an intricate process which has been shaped by
external constraints provided by early Earth’s environment and intrinsic constraints stemming
from reaction chemistry itself. Higher-order chemical transformation motifs, such as network
autocatalysis, are believed to have played a key role in the amplification of the building blocks
of life [34–36]. A combination of the constructive graph grammar approach with techniques from
combinatorial optimization sets the proper formal stage for attacking some of these origin of life
related questions. The key idea here is to rephrase the topological requirements for a particular
chemical behaviour, e.g. network autocatalysis, as an optimization problem on the underlying
reaction network (hypergraph). An example of this is the enumeration of pathways with specific
properties, which can be formally modelled as a constrained hyperflow problem. Many of these
problems are theoretically computationally hard [37], though in practice methods such as integer
linear programming can be successfully used to identify such transformation motifs in arbitrary
chemical spaces. The enumeration of transformation motifs is the first step in computer-assisted
large-scale analysis of reaction networks. Other mathematical formalisms, such as Petri nets,
and in general concurrency theory, can subsequently be used to model properties of chemical
systems on an even higher level. Complicated chemical spaces, such as the one formed by the
formose process [38], can thus be dismantled into coupled functional modules, advancing the
understanding of how a particular reaction chemistry induces specified behaviour on the reaction
network level. More generally speaking and emphasizing the need for new approaches, it is
quite foreseeable that the future of chemistry is strongly bundled with a deeper understanding of
complex chemical systems [39,40], and the necessary skills to analyse such systems will become
more and more important.

4. Discussion and concluding remarks
Narrowing down potential pathways for prebiotic scenarios indispensably requires novel
systemic approaches that allow for the investigation of large chemical reaction systems. While
the development of mathematically well-grounded methods for abstraction and coarse-graining
of (concurrent) systems is a very active research area in computer science, the interdisciplinary
endeavour to integrate these approaches with chemistry is more often treated as a conceptual
possibility rather than as a predictive approach. Many of the problems to be solved in this
process are computationally hard (i.e. NP-hard) but still allow for practical in silico solutions. This
discrepancy led to a relatively new and successful subfield in computer science called algorithmic
engineering [41], in which one of the goals is to bridge the gap between theoretical results and
practical solutions to hard problems. Clearly, results from that field should be taken into account
when large chemical systems with a plethora of underlying hard problems have to be solved.

As an illustration of the integrative potential we sketch an example in figure 3 (see
http://mod.imada.sdu.dk for further examples). It shows how graph transformation-based
chemical space exploration (rooted in graph theory, category theory and concurrency theory)
with subsequent solution enumeration (using diverse optimization techniques) can be applied

http://mod.imada.sdu.dk


8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160354

.........................................................

to a reaction schema presented in [30], in which Eschenmoser describes how aldehydes act
as catalysts for the hydrolysis of CN groups of the HCN tetramer. Given a set of chemical
reactions p1, . . . , p5 (encoded as graph grammar rules) and a set of initial molecules, the iterative
application of these rules (potentially with an underlying strategy for the space expansion)
leads to a chemical space encoded as a hypergraph. This hypergraph is the source for solving
the subsequent problem of inferring and enumerating declaratively defined reaction motifs or
pathways. In figure 3, we do not illustrate the expansion step; the depicted mechanism (left
column) is however found automatically as one of the potentially many solutions for the general
question of enumerating hydrolysis pathways of HCN polymers that use glyoxylate (GLX:
glyoxylate, CID 760) as a catalyst. Formally, such a solution is encoded as an integer hyperflow
within the underlying hypergraph. Given the depicted reaction sequence, the possibility for
transformation rule composition is utilized. The overall (more coarse-grained) rule p1 • p2 • · · · •
p5 is thus automatically inferred by consecutive composition of the (simpler) transformation
rules p1, . . . , p5. All intermediate steps are depicted in the right column of figure 3. Note that
the automated coarse-graining implemented by rule composition allows for keeping track of
the possibilities of different atom traces, expressed as the atom-to-atom mapping from educt to
product in composed rules. An obvious reachable next step is therefore the analysis as well as the
design of isotope labelling experimentation based on the in silico generative chemistry approach
with subsequent trace analysis.

Clearly, the illustration in figure 3 serves only as an example. The modelling of essential
chemical parameters including kinetic components and thermodynamics is still missing.
Nevertheless, the approach is already highly automated, and will bring wetlab and in silico
experiments closer together. We argue that the intermediate-level theory outlined here holds
promise in many fields of chemistry. In particular, we suggest that it is a plausible substrate for a
predictive theory of prebiotic chemistry.
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