Skip to main content
. 2017 Oct 31;5(4):e42. doi: 10.2196/medinform.8531

Table 2.

Performance of different ADS-sdsa systems implemented by using all types of features or by dropping each individual type of feature, under 4 conditions using 100, 200, 500, and 1000 target-domain training examplesb.

ADS-sds system AUC-ROCc Average precision

100 200 500 1000 100 200 500 1000
ADS-sds-ALLd 0.751 0.759 0.775 0.786 0.819 0.826 0.838 0.847
ADS-sds-woWEe 0.711 0.718 0.726 0.733 0.780 0.785 0.793 0.799
ADS-sds-woWE vs ADS-sds-ALL

t99 30.37 32.74 59.92 112.25 36.61 39.63 81.04 124.15

P value <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001
ADS-sds-woSemf 0.753 0.760 0.772 0.782 0.823 0.829 0.838 0.845
ADS-sds-woSem vs ADS-sds-ALL

t99

4.63 12.28 3.18 4.00
4.55

P value

<.001 <.001 .002 <.001
<.001
ADS-sds-woATRg 0.751 0.759 0.774 0.786 0.819 0.826 0.838 0.847
ADS-sds-woGTFh 0.740 0.749 0.765 0.777 0.813 0.821 0.833 0.842
ADS-sds-woGTF vs ADS-sds-ALL

t99 13.04 9.50 14.85 22.55 8.12 6.49 11.52 23.07

P value <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001
ADS-sds-woTLi 0.741 0.751 0.767 0.778 0.807 0.815 0.829 0.838
ADS-sds-woTL vs ADS-sds-ALL

t99 11.21 10.81 19.78 25.58 16.43 17.15 34.50 41.72

P value <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

aADS-sds: adapted distant supervision-supervised distant supervision.

bWe report the P values (if the P value ≤.05) and the corresponding t99 values for differences between each implementation and ADS-sds-ALL.

cAUC-ROC: area under the receiver operating characteristic curve.

dADS-sds-ALL: ADS-sds with all types of features.

eADS-sds-woWE: ADS-sds without word embedding.

fADS-sds-woSem: ADS-sds without semantic features.

gADS-sds-woATR: ADS-sds without features derived from automatic term recognition.

hADS-sds-woGTF: ADS-sds without general-domain term frequency.

iADS-sds-woTL: ADS-sds without term length.