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Abstract. To create tumor “habitats” from the “signatures” discovered from multimodality metabolic and physio-
logical images, we developed a framework of a processing pipeline. The processing pipeline consists of six
major steps: (1) creating superpixels as a spatial unit in a tumor volume; (2) forming a data matrix fDg containing
all multimodality image parameters at superpixels; (3) forming and clustering a covariance or correlation matrix
fCg of the image parameters to discover major image “signatures;” (4) clustering the superpixels and organizing
the parameter order of the fDg matrix according to the one found in step 3; (5) creating “habitats” in the image
space from the superpixels associated with the “signatures;” and (6) pooling and clustering a matrix consisting of
correlation coefficients of each pair of image parameters from all patients to discover subgroup patterns of the
tumors. The pipeline was applied to a dataset of multimodality images in glioblastoma (GBM) first, which con-
sisted of 10 image parameters. Three major image “signatures” were identified. The three major “habitats” plus
their overlaps were created. To test generalizability of the processing pipeline, a second image dataset from
GBM, acquired on the scanners different from the first one, was processed. Also, to demonstrate the clinical
association of image-defined “signatures” and “habitats,” the patterns of recurrence of the patients were ana-
lyzed together with image parameters acquired prechemoradiation therapy. An association of the recurrence
patterns with image-defined “signatures” and “habitats” was revealed. These image-defined “signatures” and
“habitats” can be used to guide stereotactic tissue biopsy for genetic and mutation status analysis and to analyze
for prediction of treatment outcomes, e.g., patterns of failure. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Tumor heterogeneity presents a great challenge for diagnosis,
staging, treatment, and therapeutic response assessment. As an
example, glioblastoma (GBM), an aggressive primary brain
tumor in adults, exhibits profound inter- and intratumoral
heterogeneity. Genomic analysis has classified GBM tumors
into molecular subtypes that have different outcomes following
standard chemoradiation therapy.1,2 In addition to having a dom-
inant genomic subtype, tumors have intratumoral heterogeneity,
such as having regions with distinct genomic subtypes. Imaging
is a noninvasive tool to assess tumor heterogeneity. Various
imaging techniques, from conventional magnetic resonance im-
aging (MRI), such as contrast-enhanced T1-weighted and T2-
weighted fluid attenuation inversion recovery (FLAIR) images,
to advanced metabolic and physiological imaging, e.g., proton
MR spectroscopy, cerebral blood volume (CBV), quantitative
vascular leakage measurement, conventional and high b-value
diffusion-weighted MRI (DW-MRI) and 11C-methionine (MET)
positron emission tomography (PET), have all shown value for
prognosis and prediction of failure following chemoradiation.3–13

However, abnormalities captured by these imaging modalities
vary spatially from region-to-region in a single tumor. For

example, the tumor subvolumes with elevated CBV (that is
an established imaging biomarker for prognosis) and with
hypercellularity (detected by high b-value diffusion images
and predicting progression and survival) are largely distinct.14

Other multiparametric images demonstrate spatial similarity
and parameter correlation in patients with GBM.

Currently, methods and tools are lacking to efficiently inte-
grate and analyze multimodality images to create tumor “signa-
tures” and then link them to tumor “habitats” at specific
locations. Tumor signatures have been discovered to character-
ize properties of the entire tumor in genomic and radiomic stud-
ies. For instance, in the genomic analysis, a hierarchical
clustering has been used to identify patterns from thousands
of gene expressions data of a tumor.15–18 In the radiomics analy-
sis that often creates hundreds of features, the clustering analysis
is used to identify imaging phenotype patterns and then to asso-
ciate them with prognostic data.19–21 However, considering that
imaging by nature provides spatial information, the image-
defined signatures of a tumor, after discovery, should be
decoded back to the spatial domain to create specific signa-
ture-defined regions as habitats. These image signature-defined
tumor habitats can be used to guide stereotactic biopsy to
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determine their associations with types and subtypes of genomic
and mutation status, and compare with locations of treatment
failure. Ultimately, the validated image-defined tumor habitats
with histopathology, gene expression, and mutation status
could help optimize treatment strategies for individual patients.

This study aimed to develop a framework of the processing
pipeline to create tumor habitats through the discovery of sig-
natures from multimodality imaging. This analysis includes four
levels. The first level of analysis is to discover the major asso-
ciative signatures of the multimodality images of a tumor. The
second level of analysis is to sort the superpixels (that are used
as a basic spatial unit) according to the major signatures found at
the previous step. The third level of analysis is to map and mark
the superpixels that have the same or overlapped signatures to
the image space to create the tumor habitats. The forth level of
analysis is to discover the subgroup patterns of the tumors. For a
proof-of-concept, we applied this framework of analysis to a set
of multimodality parametric images (including 10 parameters)
acquired in a group of patients treated on a prospective protocol
for newly diagnosed GBM to identify the signatures and hab-
itats. In addition, we applied the processing pipeline to the
image data from another group of patients, who had GBM to
test the generalizability of the pipeline and to demonstrate
the clinical association of the image-defined signatures and
habitats.

2 Method

2.1 Processing Pipeline

The framework of the processing pipeline to discover the image-
defined tumor signatures and create the habitats is shown in
Fig. 1. It includes six major steps. First, superpixels as basic

spatial units are created in a tumor volume to represent the
image parameters for the next image processing. Second, a
data matrix fDg per tumor is created to contain multimodality
image parameters defined on superpixels. Third, a covariance or
correlation coefficient (Pearson or Spearman) matrix fCg of the
image parameters is computed and analyzed by hierarchical
clustering to identify major tumor signatures. Fourth, the param-
eter matrix fDg is reorganized by hierarchical clustering of the
superpixels and reordering the parameters according to the
major clusters found in step 3. Fifth, habitats are created in
the image space from the superpixels associated with the
major signatures. Sixth, the covariances or correlation coeffi-
cients of each pair of image parameters are pooled together
from all patients and analyzed by a hierarchical analysis to iden-
tify subgroup patterns of the tumors. Finally, these image-
defined signatures and habitats can be analyzed for prediction
of treatment outcomes, e.g., comparing the habitats with pat-
terns of failure, and guidance for stereotactic tissue biopsy
for genetic and mutation status analysis. In the following para-
graphs, each step of the processing pipeline is described in
detail.

2.1.1 Superpixel creation

Superpixels are perceptually meaningful atomic segments in an
image and created as a basic unit to replace the rigid structure of
the pixel grid for image processing tasks.22 Superpixels are dis-
tributed regularly in the image but with desirable variations in
the size and the boundary corresponding to natural variations in
the image. Superpixels provide convenient primitives for image
feature extraction and reduce redundancy and uncertainty in the
image. The size and compactness of the superpixel can be tuned

Fig. 1 Flowchart of the processing pipeline for discovery of tumor image signatures and habitats.
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according to the uncertainty in geometric alignment of the multi-
ple images, the image-parameter variation of interest, and the
intrinsic spatial resolution of the images. Among many super-
pixel algorithms in the literature,22 we selected the simple linear
iterative clustering (SLIC) for its superior performance, simplic-
ity, and availability of its source code.23 SLIC adapts K-means
clustering to generate superpixels from intensity and coordinate
information of each pixel. It provides two parameters to adjust
the desired number of superpixels and their compactness, which
control the size and shape of the superpixel. Superpixels can be
created from one image parameter or a set (vector) of image
parameters and then applied to the same or other images to
extract image parameters for subsequent analysis. The extracted
image parameters from each tumor can be presented by a param-
eter matrix Dij, where i for superpixel i (i ¼ 1; : : : ; n) and j for
image parameter j (j ¼ 1; : : : ;M).

2.1.2 Discovery of the superpixel-parameter signatures

In general, there are hundreds to thousands of superpixels gen-
erated per tumor and approximately 10 or fewer image param-
eters. It is a challenging task to identify the parameter signatures
in a superpixel-parameter matrix that pools data from all tumors.
There are many possibilities for clustering and leaf ordering.
Thus, intermediate steps are added in our processing pipeline.
A covariance or correlation matrix of image parameters is cre-
ated from the parameter matrix fDg for each tumor. A hierar-
chical clustering with an optimal leaf ordering is applied to the
correlation matrix of each tumor to reveal the subgroups of
parameters that are correlated with each other.15,24 In this step
of the analysis, the parameter similarities are analyzed at the
tumor level but not at the superpixel level, which helps to iden-
tify the major patterns and the order of the parameters. For hier-
archical clustering and heatmap generation, “clustergram”25

function in MATLAB (MathWorks, Natick, Massachusetts) was
used. The function performs hierarchical clustering with the
optimal leaf ordering24 on the data and creates dendrograms and
heatmaps of the resulting clusters. At each step of the process,
the two clusters separated by the shortest Euclidean distance
based upon the complete-linkage criterion are combined. The
process is stopped until all data are combined into a single cluster.

In the next step of the tumor signature discovery, the super-
pixel-parameter matrix fDg is analyzed. First, the parameter
order in the matrix fDg is reorganized according to the
major signatures or the orders that are found in the covariance
or correlation matrix analysis. Then, the same hierarchical clus-
tering with the optimal leaf ordering is applied to the superpixels
in the matrix fDg. By this method, the major parameter signa-
tures in the superpixel-parameter matrix are retained. The result-
ing clusters of each tumor displayed in the heatmap, which is
called the clustergram thereafter, show clusters of superpixels
with similar, dissimilar, or overlapped parameters. Then, a hab-
itat is created in the image space from a cluster of superpixels
with similar parameter(s) and color-coded for visualization.

Finally, to discover subtypes of tumors, a matrix that contains
all pairs of correlation coefficients of image parameters arranged
by row and patients by column is created and clustered using the
clustergram function in MATLAB.

2.2 Materials

For a proof-of-concept, we applied this processing pipeline to 11
patients with newly diagnosed GBM, who were imaged by

conventional MRI, advanced MR sequences, and 11C-MET
PET prior to chemoradiation therapy. To test the generalization
of the processing pipeline and demonstrate the clinical associ-
ation of image-defined signatures and habitats, we applied the
process to another dataset that consisted of 10 patients with
GBM, who were scanned on different scanners and had recur-
rence data available for comparison.

2.2.1 Patients

The first dataset consisted of 11 patients, who were enrolled on
an IRB approved prospective phase II study for adult patients
with newly diagnosed GBM (NCT02805179) in which patients
were treated with dose-escalated chemoradiation (75 Gy simul-
taneous integrated boost) targeted against an identifiable area
of abnormality detected on high b-value DW-MRI. All patients
were enrolled after maximal safe resection confirming pathol-
ogy, and underwent postoperative, preradiotherapy (pre-RT),
multiparametric MRI as well as 11C-MET PET. Four patients
underwent gross total resection of all enhancing tumor as seen
on gadolinium (Gd) enhanced T1-weighted MRI. Three of the
10 patients with available O6-methylguanin-DNA-methyltrans-
ferase (MGMT) status had MGMT methylation.

The second dataset consisted of 10 patients, who were
enrolled on a different IRB approved prospective phase I/II radi-
ation dose-escalation clinical trial for adult patients with newly
diagnosed GBM.12,13 The trial was open in 2002, and the recruit-
ment was completed in 2007. The retrospective data analysis
was approved by the IRB. All patients underwent postoperative,
pre-RT conventional MRI and MET PET. Five patients had
gross total resection of all enhanced tumors. Two of the nine
patients with available MGMT status had MGMT methylation.
All 10 patients had tumor recurrence, determined by the multi-
disciplinary term according to the clinical protocol, and had
available recurrence tumor contours, defined on the post-Gd
T1-weighted images, to compare with image-defined signatures
and habitats pre-RT.

2.2.2 Image acquisition

All patients in the first dataset had pre-RT MRI scans per-
formed on a 3.0-T scanner (Skyra, Siemens). Conventional
clinical 2-D T2-weighted FLAIR images, and 3-D pre- and
post-Gd T1-weighted images were acquired. The 2-D diffu-
sion-weighted images were acquired using a readout seg-
mented (RESOLVE) echo planar sequence, which permits
the use of extremely short echo spacing to reduce the suscep-
tibility-caused geometric distortion, with a readout segmenta-
tion factor of 5, diffusion weighting in three orthogonal
directions, b-values of 0 and 3000 s∕mm2, resolution of
1.4 × 1.4 × 5.2 mm, TE∕TR ¼ 81∕7840 ms, and a parallel
factor of 2. An additional set of diffusion tensor images
(DTI) were acquired using single-shot EPI with diffusion
encoding in 30 directions, b-value of 1000 s∕mm2, TE/TR/
95/4600 ms, resolution of 1.7 × 1.7 × 3.9 mm, and a parallel
imaging factor of 2. The 3-D T1-weighted dynamic con-
trast-enhanced (DCE) image volumes after a single dose of
Gd-DTPAwere acquired using a gradient echo pulse sequence
with 60 dynamic phases, ∼3-s temporal resolution, and a voxel
size of 2 × 2 × 1.8 mm in the sagittal plane. Prior to contrast
injection, 3-D gradient echo images with multiflip angles of
3, 7, 12, and 16 deg, and TE∕TR ¼ 2.26∕5.34 ms were
acquired for quantification of T1.
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The 11 patients also received PET/CT imaging on a Siemens
Biograph TruePoint TrueV scanner. The average spatial resolu-
tion of the scanner is 4.4 mm FWHM.26 After intravenous injec-
tion of ∼440MBq of 11C-MET, a 30-min dynamic 3-D mode
acquisition was started. Images were reconstructed using an
iterative ordered-subset expectation maximization algorithm
(4 iterations, 21 subsets) with a 3-mm Gaussian filter utilizing
an ultra-low-dose CT (effective mAs 30, kV 130, pitch 1.0, slice
thickness 3.0 mm). Summed PET image data between 10 and
30 min were used for further evaluation.

The patients in the second dataset had pre-RT clinical MRI
on a 1.5T scanner (Signa, GE). Conventional post-Gd T1-
weighted images were acquired by a 2-D spin echo pulse
sequence with TE∕TR ¼ 14∕533 ms, in-plane resolution of
∼0.89 × 0.89 mm, 6 mm of slice thickness, and 1.5 mm of
slice gap. T2-FLAIR images were required by a 2-D spin
echo sequence with TE∕TR∕TI ¼ 105∕10;002∕2350 ms, in-
plane resolution of ∼0.82 × 0.82 mm, 6 mm of slice thickness,
and 1.5 mm of slice gap.

PET scans of the 10 patients were performed on a Siemens
ECAT EXACT HR+ whole body PET tomograph, which had an
axial resolution of 4.3 mm full-width at half-maximum
(FWHM) at the center of the field-of-view, which decreases
to 8.3 mm FWHM at a radial distance of 20 cm.27 Following
intravenous injection of ∼740 MBq of 11C-MET, a dynamic
30-min acquisition of the head was obtained in a 3-D mode.
Attenuation correction was based on a transmission scan
using three Ge-68 rod sources. The emission data were recon-
structed iteratively using an all-pass filter with four iterations
and 16 subsets.

2.2.3 Image parameter quantification

For the first dataset, the quantitative T1 maps (qT1) were esti-
mated from multiflip angle T1-weighted images for DCE quan-
tification. The fractional plasma volume and transfer constant

(Ktrans) maps were derived from T1-weighted DCE MRI
using the modified Tofts model implemented in-house.28 The
fractional plasma volume maps were converted to CBV
maps. Apparent diffusion coefficient (ADC) maps were derived
from RESOLVE diffusion weighted imaging (DWI) with b-val-
ues of 0 and 3000 s∕mm2. Fractional anisotropy (FA) images
were quantified from DTI with 30-direction diffusion encoding
and b-values of 0 and 1000 s∕mm2. MET images were recon-
structed using accumulated activity frames between 10 and
30 min after the agent injection.

To discover image signatures and habitats in GBM, we
included 10 image parameters: T2w-FLAIR, quantitative T1
(qT1), ADC, T2w (DWI with b ¼ 0), FA, DWI with
b ¼ 3000, CBV, Ktrans, MET PET, and post-Gd T1w images.
The post-Gd T1 images, after being reformatted to the axial
plane with a resolution of 1 × 1 × 2 mm, were used as the target
for registration of all images by rigid body transformation and
using in-house functional imaging analysis tools. The CT
acquired from PET/CT was utilized to drive image registration
of MET PET with MRI.29 Examples of 10 images are shown in
Fig. 2. Superpixels were created within the volume of the T2-
FLAIR abnormality on the post-Gd T1w images for each tumor
with a median volume of 69 mm3.

To test generalizability of the processing pipeline on the sec-
ond dataset, we used the low resolution (0.89 × 0.89 × 7.5 mm)
of post-Gd 2-D T1 images as the target for registration of pre-RT
T2w-FLAIR and MET images. The post-Gd T1-weighted
images acquired at recurrence was also registered to the pre-
RT images using the same method. Binary recurrence images
were created to have intensity of 100 at the voxels within the
recurrence tumor contour and 0 elsewhere. The pre-RT post-
Gd T1-weighted, T2w-FLAIR, and MET images, and the binary
recurrence images were pulled together for the analysis.
Superpixels were created similarly as what was done for the
first dataset.

Fig. 2 Ten parametric images of a patient. (a) From left, quantitative T1 (qT1), T2w-FLAIR, T2w, ADC,
and post-Gd T1w images; (b) from left, MET, K trans, CBV, DWI with b ¼ 3000 s∕mm2, and FA images.
Dark pink contours: FLAIR abnormality volume.
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3 Results
To discover the image signatures in the first dataset, the
Spearman’s correlation matrix of the 10 parameters was created
for each tumor and clustered according to step 3 of the process-
ing pipeline. Two examples of the resulting correlation matrices
are shown in Fig. 3. Nine parameters (except FA) had high inten-
sity for abnormality indication. Therefore, the positive correla-
tions between the parameters should be the signatures of
interest. The correlated parameters indicate that the parameters
are spatially overlapping in the image space. Three major clus-
ters with positive correlations were identified close to the diago-
nal line in the heatmaps (Fig. 3): the first one included T2-
FLAIR, qT1, T2w, and ADC (named as “T2_FLAIR” cluster),
the second one contained MET, CBV, and Ktrans (called as
“MET” cluster), and the third one consisted of DWI b ¼ 3000

and FA (“DWI b ¼ 3000” cluster). The post-Gd T1w was con-
sistently located between the “MET” and “DWI b ¼ 3000”
clusters but the correlations with the two clusters varied from
tumor-to-tumor. Note that the order of the 10 parameters in
the clustered matrix was not exactly the same from tumor-to-
tumor, depending upon the correlation coefficients; however,
the parameter members in each of the three major clusters
were consistently the same. FA that had low intensity for abnor-
mality indication showed a strong negative correlation with
ADC, qT1, T2w, and T2-FLAIR across the tumors (Fig. 3).
ADC showed a complex correlation pattern because both
high and low intensities indicated abnormalities (edema and
high cellularity, respectively). ADC was positively correlated
with qT1, T2w, and T2-FLAIR, and negatively with FA and
DWI b ¼ 3000 (see yellow boxes in Fig. 3). Ktrans showed
the borderline correlation with the parameter members in the
“T2-FLAIR” cluster. Note that in case (b), there were more pos-
itive correlations between the parameter members from different
clusters but less such positive correlations in case (a), suggesting
more spatial overlap between the parameters in the image space

in case (b) than case (a). Also, the location of the post-Gd T1w
in the clustergram of the correlation matrix was the same in
cases (a) and (b), but the post-Gd T1w was not correlated
with any parameters in case (a) but correlated with three param-
eters (FA, DWI b ¼ 3000, and MET) in case (b).

Next, we analyzed the superpixel-parameter matrix. The
multimodality images exhibited a wide range of intensities.
To pool multimodality image parameters and all superpixels
together, we needed to standardize the parameter values. We
scaled the intensities of each parameter to have zero mean
and one standard deviation. Then, the superpixel-parameter
matrix of each tumor was analyzed as following: (1) superpixels
were clustered using the hierarchical clustering, (2) the param-
eter order was sorted according to the order that was found in the
clustergram of the correlation matrix, and (3) the resulting
matrix was displayed in the heatmap: examples shown in
Fig. 4. This step of the analysis created the superpixel signatures
of each tumor. The superpixel-parameter signature maps
revealed three large categories of the superpixels: (1) the super-
pixels had high intensities distinctly within one major cluster;
(2) the superpixels had high intensities in more than one
major cluster, and (3) the superpixels had no high intensity
in any major clusters. In our test case, the situation is unique
for which 9 of the 10 parameters (except FA) had high intensities
for abnormality indication. Therefore, analysis of the high
intensity clusters was sufficient in our case. FA was strongly
negatively correlated with the parameter members in the “T2-
FLAIR” cluster and did not provide much additional informa-
tion, which was ignored for the time being. In the example case
shown in Fig. 4(a), the three major clusters found in the cluster-
gram of the correlation matrix were represented by largely dis-
tinct superpixels. There was a subgroup of superpixels that had
high intensities in “MET” but was modestly high in “DWI
b ¼ 3000” (yellow dashed box). In the case shown in Fig. 4(b),
the three major clusters were partially overlapped among the
superpixels. Also, although the parameters of DWI b ¼ 3000

Fig. 3 The clustergrams of the correlation matrices of the 10 image parameters of two patients are dis-
played in the heatmap. Three major clusters are revealed from the analysis. Even though the orders of
the 10 parameters are different in the two patients, the parameters in each of the clusters are the same
between patients.
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and FA had a modest correlation coefficient ∼0.4, the superpix-
els that had high intensity in “DWI b ¼ 3000” were not corre-
sponding to the ones that were high in FA.

The tumor habitats can be created from the superpixel-
parameter signatures by mapping and marking the superpixels
belonging to the first two categories in the image space. To cre-
ate major tumor habitats, a parent was chosen in each major
cluster based upon if the parameter had the strongest correlation
coefficients with all other members, was significantly related to
tumor progression, or was a commonly used parameter in the
clinic. T2-FLAIR was assigned to be the parent for cluster 1,
MET was assigned to be the parent in cluster 2, and DWI b ¼
3000 for cluster 3. A cutoff threshold of the normalized inten-
sities of “MET,” “DWI b ¼ 3000,” and “T2-FLAIR” >0.75 that
defined the major signatures in Fig. 4 were used to create hab-
itats. An example is shown Fig. 5. The tumor habitats mapped
from DWI b ¼ 3000 named as the “hypercellular” habitat (blue)
is adjacent and peripheral to the center habitat mapped by high
T2-FLAIR (green, necrotic core). The habitat mapped by both
“hypercelluar” and high “MET” (dark pink) is adjacent and
peripheral to the “hypercellular” habitat (blue), and is adjacent
to the habitat marked by high METonly (red that is more periph-
ery). The habitat by high “DWI b ¼ 3000” only (cyan) is
located in the periphery of the FLAIR abnormality volume.
The habitat mapped by high “T2-FLAIR” only (green) makes
up both the core of the tumor and the periphery. Comparing
the “MET” habitat created from this analysis to the subvolume
generated by a threshold of 1.5 based upon the ratio of MET

intensities of tumor regions to cerebellum used in a previous
study,12 we had a Dice coefficient of 78% between the two vol-
umes. Similarly, comparing the “hypercellular” habitat to the
subvolume generated by a threshold of the mean intensity

Fig. 4 The clustergrams of the superpixel-parameter matrices of the two GBMs in Fig. 3 displayed in the
heatmaps. In case (a), the three major signature clusters have little overlap among the superpixels (cyan
boxes). There was a subgroup of the superpixels having high intensity in the MET and modest-high
intensity in the DWI with b ¼ 3000 s∕mm2 (yellow boxes). In case (b), the three major signature clusters
had partial overlaps among the superpixels (cyan boxes). Few superpixels have high intensities in both
FA and DWI with b ¼ 3000, consisting with the modest correlation coefficient (∼0.4) in Fig. 3(b) (yellow
box).

Fig. 5 Tumor habitats color-coded and overlaid on post-Gd T1w
images for the case shown in Figs. 2, 3(b), and 4(b). Red color rep-
resents the superpixels having normalized intensities of MET > 0.75;
blue depicts the ones having normalized intensities of DWI with
b ¼ 3000 and T2-FLAIR >0.75; dark pink shows superpixels having
normalized intensities of MET and DWI with b ¼ 3000 > 0.75; cyan
denotes superpixels having DWI with b ¼ 3000 > 0.75, and green
presents superpixels having normalized intensities of T2-FLAIR
>0.75.
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plus two standard divisions in the contralateral normal tissue
region of the DWI with b ¼ 3000 s∕mm2 in a previous
study,11 we had a Dice coefficient of 72% between the two vol-
umes. Examples of slices of the case in Fig. 5 are shown in
Fig. 6. Note that the major discrepancies between the current
methods and previous methods seem to be due to the superpixel
size.

Finally, to discover the subtypes of GBM, which could be
associated with different progression or outcome patterns, all
image parameter pairs of the correlation coefficients from all
patients were pooled together and analyzed by hierarchical clus-
tering, see Fig. 7. The clustergram shows that the image signa-
tures vary from the patient at the top row to the one at the bottom
row. Note that there were redundant pairs of image parameters,
and pairs that were uniform across patients. For example, the
three pairs in first three right columns had uniform correlation
coefficients across patients. If the patients had different out-
comes or progression time and patterns, then the three pairs
could not differentiate progression patterns or outcomes.

To test the generalizability of the processing pipeline, the
superpixel-parameter matrix, including the recurrence binary
maps, was created for each case in the second dataset. We
did not find unexpected results from the second dataset due
to different acquisitions compared to the first one. Two exam-
ples are shown in Fig. 8. Note that there were distinct patterns of
Gd enhancement, MET uptake, and T2-FLAIR abnormality in
two cases. Both cases had MET uptake occurred in the super-
pixels without Gd enhancement. The clustergrams of the super-
pixel matrices also revealed the association or disassociation of
“MET signatures” and “Gd enhancement signatures”with recur-
rence. In the first case, there were ∼50% of recurrence occurred

Fig. 7 Clustergram of the matrix with the Spearman’s correlation coefficients of all parameter pairs from
all patients in a heatmap for discovery of the subtypes of GBM.

Fig. 6 The habitat volumes (blue color) of (a) “MET” and (b) “hyper-
cellularity” compared to the subvolumes (red color) defined by
previous methods. The major differences seem to be due to the
superpixels.
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in the superpixels with MET uptake and 50% with no spatial
coincidence of either Gd enhancement or MET uptake. In the
second case, there was a small portion of recurrence occurred
in the superpixels with MET uptake. There were ∼35% of recur-
rence occurred in the superpixels that had neither Gd enhance-
ment, nor MET uptake, suggesting other image-modality
parameters are needed to further characterize the heterogeneity
of GBM. Figure 9 shows the clustergram of Spearman’s corre-
lation coefficients of tested image parameters and recurrence
maps of the 10 patients from the second dataset. The clustergram
shows that in five patients, the superpixels that were coincident
with recurrent locations were correlated with the locations of
high MET uptake pretreatment but not in other five patients,
suggesting that the tool that was developed in the study can
be used to investigate the recurrent patters with imaging
habitats.

4 Discussion
We have developed a framework of a processing pipeline for
discovery of tumor image-defined signatures and habitats.
The framework consists of (1) assigning multi-image parameters
on superpixels, (2) discovering major image signatures in each
tumor, (3) clustering the superpixels based upon the major sig-
natures, and (4) creating the tumor habitats from the image sig-
natures. For a proof-of-concept, we applied the processing
pipeline to 11 patients with GBM. We discovered the three
major image signatures from 10 image parameters and created
five major habitats. We further tested the processing pipeline in

the second dataset for generalizability and the clinical associa-
tion. We show that the association of recurrence patterns with
image parameter-defined signatures can be revealed. The clini-
cal meanings of the GBM habitats, and whether one or two hab-
itats are strongly associated with clinical tumor progression and/
or “relapse” genomic profile need to be investigated further in
clinical trials and genomic sequencing of image-guided biopsy
tissue in future studies.

Our framework for discovery of the image-define signatures
and habitats can be further tailored to specific tumor types and a
set of images. Using superpixels reduces the redundancy in the
original pixels and improves the image processing efficiency.
Large size and compactness allow more parameter variations
within a single superpixel. The size of the superpixel should
be large enough to minimize the impact of potential spatial mis-
alignment of images but small enough to preserve image details
of interest. In addition, for a set of images that have different
intrinsic resolutions, e.g., PET versus MRI, how to choose
the basic superpixel size needs to be further investigated. The
superpixel can be defined on a single image or an image vector.
The trade-off between the two is that the latter can capture var-
iations in the image parameters of interest better but also may be
affected by noise and artifact. All these tradeoffs need to be
investigated in specific tumor types and image types.

Our signature discovery process in GBM as a proof-of-con-
cept seems to work well. Our strategy is to discover the
major signatures first in the covariance or correlation matrix of
the whole tumor. The process at this level neglects that there

Fig. 8 Clustergrams of the superpixel-parameter matrices of two patients with GBM from the second
dataset. In the first case (a), only ∼50% of the superpixels with MET uptake were Gd enhanced. In
the second case (b), the majority of the superpixels with MET uptake were not enhanced by Gd.
Cyan boxes mark the superpixels with MET uptake but not enhanced by Gd. Note that recurrence
occurred in the superpixels with (white box) and without (yellow box) MET uptake pre-RT.
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may be a subgroup of superpixels that have different signatures
from the ones discovered by analyzing the whole tumor. Such
subgroups of superpixels can be discovered in the clustergram of
the superpixel-parameter matrix and mapped to the image space
as “subhabitats” for further clinical studies. In this study, we
learned that the major signatures would be close to the diagonal
line in the covariance or correlation matrix if all abnormal image
parameters have high intensities. These types of the patterns are
more easily learned than a pattern of mixed positive and negative
correlations. Prior knowledge of the parameters could be used to
organize and transform all abnormal parameters to have high
intensity. For example, FA can be transformed to 1-FA that
shows positive correlations with qT1, T2w, T2-FLAIR, and
ADC. If there is no prior knowledge to indicate high or low
intensity for abnormality indication, a two-step analysis can
be used. The first step is to determine whether the abnormal
parameter of interest is negatively correlated with the parameters
with high intensity. After that, the parameter can be transformed

accordingly for clustering analysis. It is worthwhile to point out
that the signature discovery process can reveal the degree of
redundancy in the image parameters. The latter can be elimi-
nated from the analysis or even acquisition. In our analysis,
we also noted that the surgical cavity in the cases with gross
total resection can affect the correlation of T2-FLAIR with
other parameters. Excluding the surgical cavity leads to more
consistent clustergrams.

The methods that integrate all image parameters of the super-
pixels into a single matrix need to be further developed and
evaluated. In our superpixel-parameter matrix analysis, intensity
standardization was used to deal with the wide range of the val-
ues of the multimodality images and to transform the parameters
to the same range. We scaled all parameters to have the same
mean and standard deviation. Our data parameters are not per-
fectly normally distributed, which did not appear to affect the
results. How much deviation of a parameter distribution from
the normal distribution would affect the results needs to be

Fig. 9 Clustergram of the matrix of the Spearman’s correlation coefficients of image parameters and
recurrence maps of the 10 patients from the second dataset. Note that five patients had modest to
high correlation (>0.4) between recurrence and MET uptake (cyan box) and the other five patients
did not (white box). One patient had no positive correlations between recurrence and tested image
parameters.
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tested further. The histogram matching that does not require a
normal distribution of a parameter could be investigated for the
intensity standardization.30 However, image artifacts with large
intensities affect the results, which should be removed from the
analysis. To create tumor habitats, a cutoff threshold was used
to create the binary habitat in this study for a proof-of-concept.
The cutoff threshold was chosen empirically from the cluster-
grams in Fig. 4, which needs to be evaluated further. A prelimi-
nary evaluation shows the high similarity between the habitat
volumes and the subvolumes created using previous
methods.11,12 Further refining the superpixels could improve
the habitat definition. The robustness of the use of a single
threshold to define the habitats after standardizing the data
intensities needs to be further investigated. Histopathology is
the gold standard to evaluate and establish a cutoff threshold,
which is often not available. Clinical outcome data, e.g., pro-
gression location, could be also used to establish a practical cut-
off threshold for clinical usage. A recurrence probability map of
a habitat can also be created. All these need to be further inves-
tigated in future studies.

While testing two small datasets with MET PET, we found
only 30% to 50% of patients in whom the superpixels with MET
uptake in the FLAIR abnormality were strongly correlated with
the contrast enhancement, indicating that the contrast enhance-
ment is not sufficient to describe GBMs, and other imaging
modalities are needed. We also learn that although providing
additional metabolic information in GBM, MET uptake does
not define all habitats and is not correlated with recurrent
sites in all patients. Given the small number of patients, it is
premature to make any further clinical conclusions. However,
our tools can be a means to perform this kind of analysis to dis-
cover what image habitats are associated with recurrence.
Finally, our tools have an extent of tolerance on image acquis-
ition differences, which could, at least partially, attribute to the
use of superpixels.

In this study, we focused on imaging characteristics to create
clustergrams from all parameter pairs of correlation coefficients
and all patients. However, other data can be entered into the
matrix for the analysis, e.g., the size of certain habitats. Also,
molecular biomarkers—e.g., MGMT methylation and IDH
mutation status—and genomic data can be added into the matrix
for analysis.

In conclusion, we have developed a framework of the
processing pipeline to discover tumor image-defined signatures
and then create tumor habitats. Our approach aimed to link the
image signatures to habitats, which has not been done before.
Further development and validation will be conducted in a
cohort of patients with histopathology, genomic sequencing,
and clinical outcomes.
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