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Abstract
Use, overuse, and misuse of antimicrobials contributes to selection and
dissemination of bacterial resistance determinants that may be transferred to
humans and constitute a global public health concern. Because of the
continued emergence and expansion of antimicrobial resistance, combined
with the lack of novel antimicrobial agents, efforts are underway to preserve the
efficacy of current available life-saving antimicrobials in humans. As a result,
uses of medically important antimicrobials in food animal production have
generated debate and led to calls to reduce both antimicrobial use and the
need for use. This manuscript, commissioned by the World Health Organization
(WHO) to help inform the development of the WHO guidelines on the use of
medically important antimicrobials in food animals, includes three illustrations
of antimicrobial use in food animal production that has contributed to the
selection—and subsequent transfer—of resistance determinants from food
animals to humans. Herein, antimicrobial use and the epidemiology of bacterial
resistance are described for streptothricins, glycopeptides, and colistin. Taken
together, these historical and current narratives reinforce the need for actions
that will preserve the efficacy of antimicrobials.
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Context
Apart from a few molecules, many antimicrobial agents, such 
as antibiotics, either occur in nature or are derived from natural  
compounds. Likewise, their corresponding resistance determinants 
have occurred naturally for millennia. Mounting evidence, how-
ever, informs us that decades of global, anthropomorphic antimi-
crobial overuse has resulted—and is resulting—in the selection and 
spread of antimicrobial resistant bacteria and their determinants.  
Much of this antimicrobial use is occurring in food animal  
production; while some over-selection from this use does not 
extend to distinctly human pathogens, zoonotic bacteria that can 
be transmitted from food animals to humans through the food  
supply and environment may pose an increased risk to humans 
due to adverse consequences of antimicrobial resistance such as  
treatment failure. Human deaths attributed to all bacterial resist-
ance are currently estimated to be 700,000 annually1, and—unless 
action is taken—this estimate is projected by economists to exceed  
10 million by 2050, thereby surpassing cancer2.

Many organizations have begun to engage in efforts to reduce 
the potential public-health impact of bacterial resistance associ-
ated with the use of antimicrobials in food animals. In particu-
lar, the World Health Organization (WHO) has established an  
Advisory Group on Integrated Surveillance of Antimicrobial  
Resistance (AGISAR). This group has been key in producing 
guidelines on the use of antimicrobials in food-producing animals 
(hereafter, termed the “guidelines”), the integrated surveillance 
of antimicrobial resistance, regularly revised lists of critically  
important antimicrobials for human medicine (CIA List), and  
supporting capacity building and infrastructure development  
efforts in the developing world. This review was commissioned 
in the context of informing the development of the WHO guide-
lines on use of medically important antimicrobials used in food  
animals to be published in October, 2017. Therefore, our objec-
tive is to provide three specific examples that illustrate selection  
and subsequent transfer of resistant determinants from food  
animals to humans. These illustrative examples are streptothricins, 
glycopeptides, and colistin.

Limitations
Our general knowledge on antimicrobial resistance among  
bacteria is ever evolving; in particular, the story of colistin  
resistance is rapidly unfolding. This review was prepared for 
the WHO AGISAR meeting of October, 2016 (Raleigh, North  
Carolina, US) at which time the WHO guidelines was being 
drafted; therefore, the cited literature is considered up to date 
as of September 15, 2016. The scope of this review paper was  
centered on the evidence of antimicrobial use (and amount of 
use) in food animals and the epidemiology of common resistance  
mechanisms. Routes of antimicrobial administration were not  
evaluated or discussed within this report, but likely also play a  
role in antimicrobial resistance determinant selection. Further, 
dissemination of bacteria and resistance genes are frequently not 
unidirectional events. As such, we do not discount the impor-
tance of other directional routes of transfer (e.g. direct or indirect  
transfer from human to animal populations); however, the scope 
of this review was limited to transfer from food-producing ani-
mals to humans. The selection and dissemination of antimicrobial  

resistance is a complex, multifactorial phenomenon. Unfortu-
nately, there is no ‘perfect’ experiment or controlled environment to  
demonstrate selection, dissemination, and the subsequent risks 
imposed through the sharing of resistance determinants among  
bacterial and host populations, and we acknowledge up front  
that there remain data gaps.

Streptothricins
Streptothricins are a distinct group of antibiotic compounds  
isolated from the genus Streptomyces3,4. The first streptothricin 
compound (F) was described in 19425. Antibiotic agents of the 
streptothricin group are composed of varying combinations and 
proportions of the streptothricin compounds (A, B, C, D, E, F, 
and X)6. More than 70 mixtures of streptothricin compounds have 
been described and subsequently named, including: streptolin,  
racemomycin, geomycin, grisein, pleocidin, and nourseothricin; 
however, the amount of detail available regarding the chemical 
structure and antibacterial activity of each of the streptothricin  
antibiotic agents varies greatly. Nonetheless, the streptothricin  
antibiotic agents are known to be effective against pathogenic  
fungi and have both bacteriostatic and bactericidal effects on  
Gram-negative and Gram-positive bacteria through the inhibition  
of protein synthesis and misreading of genetic information7–9.

Usage
Nephrotoxicity associated with streptothricin antibiotic agents 
has prevented clinical use of these agents in human medicine10,11.  
As a result, use of the streptothricin antibiotic agents has been  
largely limited to plant production and animal husbandry in a 
select few countries, particularly China and the former German 
Democratic Republic (GDR; East Germany)12,13. The most detailed 
accounts of streptothricin use and the apparent subsequent dis-
semination of resistance are available from the GDR. Between 
1981 and 1989, nourseothricin—a mixture of streptothricin D and  
F—was used in the GDR for in-feed growth promotion in the 
swine industry5,14. No data are available about the amounts of  
streptothricins or nourseothricin produced, distributed, or used 
in the swine industry during this time. Nourseothricin was not  
used in animals in the GDR prior to the introduction of its use in 
swine, and nourseothricin use in the GDR was limited to the swine 
industry15. Furthermore, no use of other streptothricin antibiotic 
agents in animals or humans has ever been reported in the GDR.

Resistance
It has been reported that, prior to utilization in the GDR swine 
industry in 1981, acquired nourseothricin resistance in Entero-
bacteriaceae among animal and human isolates was rare and  
believed to be solely associated with chromosomal mutations12,16,17. 
Furthermore, when phenotypic resistance was reported, it was 
never found to be a mobilizable resistance, although the extent of  
antimicrobial surveillance or screening is not cited and is unknown 
for that period of time. In 1981, less than one year after the  
initial use of nourseothricin in the swine industry, a streptothricin-
streptomycin-spectinomycin resistance phenotype was observed 
in Escherichia coli isolated from rectal swabs from pigs on  
multiple farms, “sewage”, and from the feces of those in direct  
contact with the pigs (i.e. farm personnel)17. This resistance was 
found to be mediated by streptothricin-acetyltransferase (sat) genes 
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coding for a nourseothricin-inactivating enzyme, which is carried 
on a transposon, designated Tn182517.

Evidence for transmission
From 1981 to 1983, plasmid-mediated streptothricin resistance 
was documented in E. coli isolated from rectal swabs of pigs  
being treated with nourseothricin and slurry from their farms 
in multiple geographical locations within the GDR14. Hummel 
and colleagues also identified streptothricin-resistant E. coli in  
piglets being treated with nourseothricin, the gut flora of persons 
with direct contact with the pigs (i.e. farm personnel), the gut flora 
of persons with in-direct contact with the pigs, who had no other 
connection to the livestock industry (i.e. farm personnel’s family 
members), and among the gut flora of outpatients living in the same 
region that had no apparent contact with pigs17,18. Remarkably, 
the authors did not observe streptothricin resistance in samples  
from piglets or humans in regions where nourseothricin was not 
being used. Further, the prevalence of streptothricin resistance 
was highest in E. coli isolated from piglets (33% of 306) and  
declined in the following order: isolates from farm personnel  
(18% of 377), isolates from farm personnel’s family members  
(17% of 334), isolates from outpatients in the region (16% of  
266) and isolates from urinary tract infections in outpatients in  
the region (1% of 28).

Despite discontinuation of nourseothricin use in the GDR 
swine in 1988, the identification of streptothricin resistance and  
associated resistance determinants continued and broadened. 
Streptothricin resistance has now been associated with the sat, 
stat, and nat genes19. In 1992, the first report of streptothricin- 
resistance Campylobacter isolated from pig slurry was  
published20,21. Integrons harboring the gene sequence of these 
resistance determinants have also been observed in other bacteria 
(clinical isolates, animal environments, and food-producing ani-
mals), including Salmonella enterica, Enterococcus faecium, Aci-
netobacter baumannii, Burkholderia cenocepacia, Vibrio cholerae, 
Shigella sonnei, and S. flexneri12,22–27.

Interestingly, the spread of the streptothricin resistance gene 
to these other ecological niches and bacterial populations has  
occurred without direct selection pressure (i.e. use of streptothricins 
in animals or human medicine)12. Importantly, the streptothricin 
resistance genes are often harbored in integrons with resist-
ance determinants present to other antimicrobial agents, namely  
determinants coding for resistance to streptomycin, spectino-
mycin, trimethoprim, or kanamycin22–25. It is possible that such  
co-resistance may have contributed to the early dissemination of 
streptothricin resistance, but the early epidemiological studies 
did not report information on use of other antimicrobial agents.  
Little to no information is provided about the animals and humans 
from which the isolates were collected. Furthermore, because 
there were few studies that searched for streptothricin resistance  
prior to the 1980s, it is not known if streptothricin resistance  
determinants were present in bacteria before this time. None-
theless, this illustrative example outlines the published account  
of the likely emergence and dissemination of plasmid-borne  
resistance from swine to humans.

Summary
Nourseothricin, a streptothricin antimicrobial agent, was widely 
used as a growth promoter in the swine industry in the former  
German Democratic Republic from 1981–1988. In contrast, 
toxicity prevented use of streptothricin antimicrobial agents in  
humans. Less than one year after the introduction of nourseothricin 
in swine, a plasmid-borne streptothricin resistance (sat) seem-
ingly emerged in E. coli isolated from swine administered nourse-
othricin. Subsequently, plasmid-borne streptothricin resistance 
was detected in the gut flora of humans with direct, indirect, and 
no contact to pig farms, but living in the same regions. Follow-
ing reports of the plasmid-mediated streptothricin resistance dem-
onstrates an illustrative example of the detection—and apparent  
emergence—of streptothricin-resistant bacteria in swine as a  
result of antimicrobial use, and the dissemination of the resist-
ant bacteria and mobile genetic elements conferring resistance  
to humans.

Glycopeptides
Glycopeptides are a broad-spectrum antimicrobial class,  
including vancomycin, and its derivatives teicoplanin, telavancin, 
dalbavancin, oritavancin, and avoparcin28. Glycopeptides block 
cell wall assembly in Gram-positive bacteria by inhibiting pep-
tidoglycan synthesis28. Therefore, the clinical importance of the  
glycopeptide class has been the treatment of infections caused  
by Gram-positive pathogens. For a large part of the 1980s and  
1990s glycopeptides were the drugs of last-resort for multidrug-
resistant Gram-positive infections in humans29.

Usage
Vancomycin, the first antibiotic of the glycopeptide class, was  
first described in 1955 and was subsequently approved for  
human use by the United States (US) Food and Drug Admin-
istration (FDA) in 195829–31. The dates of approval and begin-
nings of human use in European countries are unknown. Renal 
toxicity and ototoxicity (largely due to impurities in the drug) 
limited vancomycin use in humans until the early 1980s when  
multidrug-resistant Gram-positive bacteria began to emerge and 
purified formulations of vancomycin became available32,33. Annual 
vancomycin usage in humans in the US climbed from 2,000 kg 
in 1984 to 11,460 kg in 199433. In Europe and Australia, human 
vancomycin use was more limited33; for example, in Australia, an 
average of 193 kg of vancomycin was used in humans annually 
between 1991 and 199334,35. France reported 200 kg of vancomycin 
was used in humans in 1984, increasing to only 1,151 kg in 199433. 
Annual vancomycin usage in humans in Germany, Italy, United  
Kingdom (UK), the Netherlands, and Denmark each ranged 
between 24 to 408 kg in 199433,36. Human use of vancomycin  
began to decline after 1994 following efforts to promote van-
comycin conservation, an attempted to limit dissemination of  
glycopeptide-resistant bacteria.

Although vancomycin use in humans in Europe was very limited 
in the 1990s, avoparcin, a glycopeptide antimicrobial, was heavily 
used in many European countries and Australia as an antimicro-
bial growth promoter in livestock34. Avoparcin use for growth  
promotion is documented in Europe as early as 1975 and  
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products containing avoparcin have been registered in Australia 
since 197837–39; while data supporting heavy use of avoparcin in 
many European countries are limited, data from Denmark indi-
cate 24,000 kg of active avoparcin were used in swine and broilers 
in 199436. Austria reported an average of 62,642 kg of avoparcin 
for animal production use were imported per year from 1992  
to 199640. Australia used an annual average of 125,000 kg of 
avoparcin between 1991 and 199334,35. Avoparcin has never been 
licensed for use in animals in the US41. Following the isolation 
of glycopeptide-resistant bacteria from food animal products at 
the retail level, attempts to mitigate the risk of human exposure 
to glycopeptide-resistant enterococci (GRE) through the food 
chain led to the ban of avoparcin for growth promotion use in  
Denmark and Norway in 1995, Germany in 1996, followed by  
the remaining European Union member states in 1997, and with-
draw of avoparcin from the Australian market in 200020,38,39,42–46.

Resistance
Transferable glycopeptide resistance in enterococci was first 
reported in human patients in both France and the UK in 1986, 
and then in the US in 198747–49. However, it wasn’t until the 1990s 
that considerable attention turned to the evaluation of glycopep-
tide use and resistance due to differing epidemiological trends  
between GRE in the US and Europe. In the US in the 1990s, 
GRE emerged as a significant cause of healthcare-associated  
infection and colonization in many hospitals—frequently asso-
ciated with the high use of vancomycin in those hospitals50–52.  
Hospital-associated GRE infections rose at an endemic rate; 
with the proportion of vancomycin resistant enterococcal blood  
isolates climbing from little to no resistance in 1989 to 25.9% 
in 200039,53. In the 1990s in Europe, prevalence rates of GRE in  
hospitals remained low; however there were reports of GRE in 
healthy human carriers in the community (e.g. people with no  
association to a hospital) and sporadic hospital outbreaks54–56.

Monitoring of antimicrobial resistance to growth promoters was 
not common practice prior to the mid-1990s57. Perhaps as a result,  
the first detection of GRE isolated from sewage, animals, and 
healthy humans in the community (i.e. outside of hospitals) were 
reported in the mid-1990s39,42,45,56,58–66. Notably, an association was 
made between use of avoparcin and the occurrence of GRE in 
livestock and their environments in Belgium, Denmark, Finland, 
France, Germany, UK, and the Netherlands—directing a spotlight 
to food animal production42,50,51,57,60,61,65,67–74.

The differing epidemiological trends in GRE between the US 
and Europe led to considerable interest to compare GRE from  
European farm animals fed avoparcin, hospitalized humans, and 
non-human sources using various molecular methods32. Such  
investigations provided a great deal of insight about the epide-
miology of acquired resistance genotypes associated with glyco-
peptide resistance, particularly the most globally widespread and  
prevalent glycopeptide resistance in enterococci, vanA resistance. 
vanA is an inducible resistance to vancomycin and often teico-
planin mediated by a complex cluster of resistance genes (ORF1,  
ORF2, vanR, vanS, vanH, vanA, vanX, vanY, and vanZ) often  
carried on a 10,851 bp transposon designated Tn154667,75–77.

Evidence for transmission
Analysis of GRE with vanA resistance revealed a certain level 
of host-association51,78–80. Reports using deoxyribonucleic acid 
(DNA) sequence typing and phylogenetic analysis for genotyping  
clustered vanA Enterococcus faecium isolates from varying  
ecological backgrounds into distinct genogroups. Strains collected 
from pigs and healthy people often clustered together forming a 
single genotype or cluster. In contrast, isolates collected from  
poultry and their farmers, veal calves and their farmers, and  
hospitalized patients from epidemics worldwide each form geneti-
cally distinct clusters78–80. One of the first insights of genetic relat-
edness was the observation of a single base change (G8234T) 
in the vanX of Tn1546, which was first described by Jensen 
et al.50,51 The G-variant was associated with isolates collected 
from poultry and poultry farmers in multiple countries51,57,68,81.  
The T-variant, on the other hand, was predominantly observed  
in swine isolates from differing countries51,80. Interestingly, both  
G- and T-variants were associated with isolates likely of human  
origin51. In fact, it was observed that all human samples from a  
Muslim country—a population that likely eats little or no pork—
belong to the G-variant associated with poultry, thus further  
suggesting GRE transmission may occur between food animals  
and humans51.

Further investigation of vanA mechanism by Willems et al.80, 
revealed amplified fragment length polymorphism (ALFP) geno-
typing clustered a bank of 255 E. faecium isolates from various 
ecological niches and geographic locations into four genogroups 
(designated A–D). All isolates collected from pigs and 76% of  
isolates collected from healthy people clustered to form Geno-
group A. Almost all isolates collected from poultry (95%) and  
50% of isolates from poultry farmers clustered to form Genogroup 
B, and Genogroup D contained 70% of isolates collected from 
veal calves and their farmers. Further, 84% of isolates collected 
from hospitalized patients from epidemics in the UK, US, and  
Australia formed a genetically distinct cluster from the healthy 
humans and animal genogroups, which the authors designated 
Genogroup C80. Similar findings have been demonstrated using 
various other genotypic methods39,72,78,79,82–84.

The VanA gene cluster is now one of many described geno-
typic determinants encoding glycopeptide resistance, and the 
early genotypic studies described herein only evidence the likely  
dissemination of a single glycopeptide resistance determinant 
from animals to healthy people. Further, the differing epidemio-
logical trends between the US and Europe detail two situations  
that consequently led to the selection of glycopeptide resist-
ance determinants in distinct ecological niches—one in hospi-
talized patients and the other in healthy humans and animals.  
Nonetheless, the genetic characterization of the VanA gene  
cluster provides an illustrative example of the dissemination 
of glycopeptide resistance from animals to humans following  
selection, due to use of avoparcin for growth promotion.

Summary
Avoparcin appears to have been widely used in food animals,  
particularly in chickens and pigs, in parts of Europe, since before 
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the mid 1970s. Vancomycin use in humans, in contrast, was very 
limited in Europe until the late 1990s. It appears likely that the  
use of avoparcin in food animals selected for the emergence and 
dissemination of a resistance gene cluster (VanA), which was  
increasingly identified in animals and healthy people. Molecu-
lar subtyping of the VanA gene cluster has identified variants that 
are more likely to be associated with certain food animal species.  
Subsequently, GRE were transmitted and found to colonize  
healthy humans, presumably via the food chain. Therefore,  
evaluation of the VanA gene cluster variants provides an illustra-
tive example of the emergence and selection of a genetic resist-
ance determinant as a consequence of antimicrobial use in food  
animals, and subsequent dissemination of the resistant bacteria  
to humans.

Colistin
Polymyxin E (herein simply referred to as colistin) is a cationic, 
multicomponent lipopeptide antimicrobial agent of the poly-
myxin family that was first discovered in 1949 and isolated in  
195085. Polymyxins are effective against Gram-negative bacilli 
through their affinity to bind to the negatively charged lipopoly-
saccharide (LPS) of the cell outer membrane86. This bind-
ing, more specifically to the anionic lipid A of the LPS, leads to  
disruption of the cell membrane integrity, ultimately leading to 
leakage induced cell death86–88. Two forms of the colistin com-
pound are available for clinical use: colistin sulfate (colistin S) and 
the pro-drug, colistimethate sodium (colistin methanesulfonate  
sodium, colistin sulfomethate sodium, colistin M).

Usage
The US FDA first approved colistin for human use in 1962—in  
the form of colistin sulfate; this first approval was for ear drops89. 
The FDA subsequently approved a product for injection— 
in the form of colistimethate sodium—for human use in 197090. 
No US data are available on the quantities of colistin used in 
humans, although use in the US is thought to have been very low 
as parenteral use in human medicine quickly fell out of favor 
due to initial reports of nephro- and neurotoxicity90–96. More 
recently, colistin has reemerged as an antimicrobial of interest as a  
last-resort treatment option for life threatening human infec-
tions of multidrug-resistant Gram-negative bacteria, particularly  
Pseudomonas aeruginosa, Acinetobacter baumannii strains, and 
carbapenem-resistant Enterobacteriaceae97–102. Approval dates for 
human use of colistin products in member states of the EU are not 
clear; however, it is believed that human use began in the 1960s. 
More recent estimates of polymyxin consumption in humans 
are available in the EU/European Economic Area103. A sum of  
0.8 tonnes of active polymyxin ingredients—including colistin 
and polymyxin B—were consumed by humans in 22 European  
countries in 2012104. In 2014, polymyxin consumption in humans 
in Europe was 0.012 defined daily doses (DDD) per 1,000  
inhabitants—a 50% increase since the 0.008 DDD per 1,000  
inhabitants was reported in 2010105. Countries reporting highest 
use of polymyxin in humans include Greece, Italy, and Slovakia  
(0.095, 0.025, and 0.025 defined daily doses per 1,000 inhabit-
ants, respectively)105.

In animals, the extent of colistin sales and use is largely unknown 
outside of the EU106–109. In the US, one colistin product, in the 
form of an injectable colistimethate sodium, was approved for use 
in chickens in 1998110; however its marketing status is unclear. 
In Canada, colistin is not approved for veterinary medicine;  
however, a loophole in regulation leaves opportunity for “own-
use importation,” meaning farmers may import—and use— 
unlicensed, non-prescription antimicrobials in their animals111. 
As such, use in swine production has been explored under the  
veterinarian’s liability (dose, withdrawal period)112,113. In the EU, 
colistin-containing products for use in animals are authorized114, 
though marketing authorization is on a national level and little 
historical information is available. It is believed that colistin  
has been used in food animals in the EU since the 1950s103.  
Colistin is chiefly administered as an oral group treatment in  
food-producing species to alleviate and prevent Gram-negative 
infections of the gastrointestinal tract107. Such use is predomi-
nantly reported in pigs, poultry, cattle, sheep, goats, and rabbits; 
however, colistin is also used in laying hens and milk-producing 
cattle, sheep, and goats106,107. To date, no data are available that 
would allow comparison among uses in differing animal species on 
a European level.

Colistin is also reported to be used in food animal produc-
tion in Asia, although publically available data are scarce. In  
China, approximately 90% of the 17.5 million tonnes of colis-
tin produced in 2014 were reportedly consumed by the domestic  
agriculture industry108. If so, China likely represents the largest 
colistin producer and consumer in the world. In comparison, a  
sum of 545.2 tonnes of active polymyxin ingredients—including 
colistin and polymyxin B—were consumed by food-producing  
animals, primarily in poultry and swine, in 22 European  
countries in 2012104. In 2013, polymyxins were estimated to be 
the fifth most commonly sold antimicrobial class (7%) for food- 
producing animals across the EU107. Reported consumption of 
colistin in animals varied greatly, ranging from <0.2 tonnes in  
Slovenia, Sweden, Ireland, and Luxembourg to >100 tonnes in 
Germany, Italy, and Spain104. In another report, annual colistin use 
in animals in Europe ranged between 0 mg (Finland, Iceland, and 
Norway) to more than 20 mg (Italy and Spain) per kg of animal 
biomass115.

Use of colistin for growth promotion in China was banned  
effective November 1, 2016—which was expected to decrease 
colistin use in food animal production in China by an estimated 
8,000 tonnes116. In March 2015, the European Commission 
adopted a Decision restricting indications, target species, duration 
of treatment, and added prudent use warnings to products admin-
istered orally to animals that contain colistin as the sole active  
ingredient117. Evidently, such conversations have continued, as 
the European Commission recently implemented a Directive to  
withdraw marketing authorizations for all veterinary medicinal 
products containing colistin in combination with other antimi-
crobial substances to be administered orally118. The European  
Medicines Agency issued a recommendation advising colistin to  
be used solely as a second line treatment in animals and for  
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sales to be minimized EU-wide103. In Canada, the “own-use  
importation” loophole has been acknowledged and regulation 
changes have been proposed that would prohibit such practices119.

Resistance
Despite widespread and continuous veterinary use, data gaps  
persist around colistin resistance. Lack of agreement on stand-
ardized in vitro screening methods and interpretation criteria has  
complicated and hindered phenotypic surveillance efforts86,120–123. 
This dilemma is largely a consequence of two important colis-
tin characteristics: a large molecule size—which reduces its rate  
of diffusion into media—and its affinity to adhere to plastics—which 
are commonly used in phenotypic methods86,123. Until recently,  
colistin resistance was believed to be extremely rare; how-
ever, surveillance efforts were minimal. In fact, mandatory EU  
monitoring for colistin resistance in Salmonella and E. coli only 
began in 2014124,125. Even so, many member states have reported 
technical difficulties in using the only recommended screening 
method (i.e., broth dilution)103.

Before November 2015, described phenotypic colistin resist-
ance was associated with chromosomal mutations, which, at least  
in theory, would be limited to vertical (clonal) dissemination86,126. 
However, this previous belief was proven too narrow by the  
description of a novel, conjugable plasmid-mediated gene  
conferring colistin resistance108. The gene, designated mobile  
colistin resistance, or mcr-1, was described in E. coli and  
Klebsiella pneumoniae isolated from human clinical isolates,  
retail meat, and food animals in China, between 2011 and 2014108. 
The discovery prompted an immediate worldwide response  
with screening via genomic data mining exercises or else a  
combination of phenotypic and polymerase chain reaction  
(PCR)-based methods127–133. It has now been retrospectively 
identified with 100% homology in other members of the Entero-
bacteriaceae family isolated from human, animal, food, and  
environmental samples and from multiple continents133–140.

Evidence for transmission
In humans, the earliest identified mcr-1 was found in a Shigella  
sonnei isolate arising from a hospitalized child with diarrhea in  
Vietnam in 2008141. Bacteria harboring mcr-1 have also been 
reported in isolates from humans (both infected patients and 
asymptomatic human carriers) in Canada142,143, China108,136,144–154, 
Denmark106,140, Ecuador155, Egypt156, France130,157, Germany137,158,159, 
Hong Kong159,160, India161,162, Italy159,163–165, Laos130, Malaysia159,166, 
Netherlands131,167–170, Norway171, Poland159,172, Portugal173, Russia159, 
Saudi Arabia174, Singapore175,176, South Africa177,178, Spain159,179,  
Sweden180,181, Switzerland182–185, Taiwan186, Thailand130,187, United 
Arab Emirates174, UK188, US159,189–191, Venezuela192, and Vietnam141,193. 
Bacteria harboring the mcr-1 gene sequence have like-
wise been documented from food samples on multiple  
continents108,129,136,138,140,142,168,173,185,186,188,194–199, suggesting this may 
be an important route of dissemination from animals to humans.

To date, the earliest identified mcr-1-positive isolates are three 
E. coli isolates collected from chickens in China during the  
1980s200. Interestingly, mcr-1 has not been detected in isolates 

arising during the two subsequent decades; however, the reported 
proportion of mcr-1-positive isolates in China begins increas-
ing in 2009200. Furthermore, in Europe the earliest mcr-1-positive 
isolate was identified as an E. coli originating from a diarrheic 
veal calf in France in 2005132. Observations of mcr-1 in bacteria 
isolated from food-producing animals, their products, or environ-
ments now includes: pigs (Belgium128,201, Brazil202, China203,204,  
France127, Germany137,205,206, Japan133,207, Laos130, Malaysia136,138,166, 
Spain208, Taiwan186, Venezuela192, Vietnam209,210, UK211, US212),  
poultry (Algeria130,213, Brazil202,214,215, China216–218, Denmark199, 
Egypt218, France127, Germany205, Italy106,219, Malaysia136,138,166, 
Netherlands169, South Africa220,221, Spain208, Taiwan186, Tunisia185, 
Vietnam193,209), and cattle (Belgium128, Denmark199, Egypt222, 
France127,132,223, Germany205, Japan133, Netherlands169).

Widespread reports of mcr-1 shortly after its initial charac-
terization indicate the gene was likely being disseminated in an  
uncharacterized state, and thereby undetected rather than not  
being present, for a long period of time. The gene has evidently 
been widely disseminated geographically, as well as across  
multiple bacterial species of differing origins. Thus far,  
mcr-1 has mostly been reported in E. coli, although mcr-1- 
positive Citrobacter224,225, Klebsiella108,157,175,224, Shigella141,  
Enterobacter144,160,176,224, and Salmonella129,135,136,173,188,195,208,211,217  
spp. have also been documented. Furthermore, mcr-1 has been 
observed in bacteria from wild animals and water samples,  
indicating the resistance determinant has also disseminated into  
the environment194,224,226–230.

Retrospective screening for colistin-resistant bacteria may be  
limited by the availability of historical isolates and their genomic 
data. Further, lack of standardized phenotypic screening meth-
ods and the delay in genotypic description have likely lead to the  
underestimation of colistin resistance; nonetheless, the iden-
tification and description of the gene has opened the door for 
screening via genotypic methods. Nevertheless, resistance is still 
believed to be rare, particularly in humans and in some regions of  
the world. The initial paper reported the mcr-1 gene sequence 
in 1.4% of 902 E. coli and 0.7% of 420 Klebsiella pneumoniae  
clinical isolates in China; however, prevalence among E. coli  
isolates originating from pigs and retail meats in China were  
surprisingly higher: 20.6% of 804 isolates from pigs at slaugh-
ter collected between 2012–14 and 14.9% of 523 isolates from 
retail meats (chicken and pork) collected between 2011–2014108. 
Still, in the US the mcr-1 gene sequence is rare. It was detected 
in one E. coli isolate out of 949 animal intestine samples screened 
and was not detected in more than 44,000 Salmonella and 9,000  
E. coli and Shigella isolates from the National Antimicrobial 
Resistance Monitoring System (NARMS) and National Center 
for Biotechnology Information (NCBI) genomic database212.  
In many reports to date, phenotypic screening is frequently  
performed prior to genotypic screening. For example, in France, 
Perrin-Guyomard and colleagues report mcr-1 in 0.3% of 590 
isolates from healthy pigs in 2011–13, 1.8% of 227 isolates from 
broilers in 2014, and 5.9% of 239 isolates from turkeys in 2014127; 
importantly, screening for mcr-1 was performed only on isolates 
with a colistin minimum inhibitory concentration > 2 mg/L. Some 
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limitations are inevitable with this approach, as it implies a level 
of dependency on the much-debated breakpoints and phenotypic 
methods.

The technological response afforded by genomics-based methods 
is also not without limitations, especially by not detecting vari-
ants of mcr-1. In fact, on July 7, 2016, the first account of mcr-2,  
a seemingly distinct gene also conferring colistin resistance was 
described in E. coli isolated from calves and piglets in Belgium231. 
This mcr-2 appeared to be more prevalent than mcr-1 among  
colistin-resistant E. coli of porcine origin231. Then, on July 11, 
2016, the first functional variant of mcr-1, designated mcr-1.2, 
was reported in K. pneumoniae isolated from a surveillance rectal  
swab of a child in Italy232. Since this report was prepared, a  
number of other mcr variants have been reported, some of 
which also appear to have been disseminating globally prior 
to characterization233–235. While some of these genes may also 
contribute towards evidencing selection—and subsequent dis-
semination—of the colistin resistance determinant from food 
animals to humans, the focus of this report was the initial epi-
demiology of colistin resistance (i.e. mcr-1). Very likely, there 
remain additional yet-to-be-characterized mechanisms of col-
istin resistance. Much more work is needed to explore other  
mechanisms of resistance and to fully comprehend the overall  
prevalence of colistin resistance determinants and their pheno-
typic characteristics.

Summary
Colistin has been widely used in food animals—particularly  
poultry and swine—in areas of Europe and Asia for decades, 
perhaps since the early 1980s or earlier. In contrast, colistin use 
in humans has been extremely limited, at least until recently. It 
appears highly probable that the use of colistin in food animals 
has selected for a novel resistance gene (mcr-1), identified as far 
back as the mid-1980s in chickens in China, which has become  
increasingly identified in isolates from food animals in many 
regions of the world since its discovery in 2015. This novel  
resistance gene has more recently been identified among  
isolates from humans; however, to date mcr-1 has been more fre-
quently associated with food animal and meat isolates compared 
to human isolates. Prevalence of mcr-1 in animal samples—and 
to some degree in human samples—appears to be proportional to 
its use in animals. These chains of events, despite the data gaps, 
provide an illustrative example of the emergence, selection, and 
widespread dissemination of a resistance gene as a consequence of  

antimicrobial use in food animals, and subsequent transfer of  
bacteria harboring that resistant gene to humans.

Conclusions
In this review, we have focused on three illustrative examples  
(i.e. streptothricins, glycopeptides, and colistin) of selection— 
and subsequent transfer of antimicrobial resistance determinants 
from food animals to humans. The use of antimicrobials in food 
animal production contributes to the selection and dissemination 
of antimicrobial resistance determinants that may reach human  
populations. However, this review is only part of the picture if 
taken in a One Health perspective. Its objectives do not encompass 
the impact of other industries (i.e. environment, human, compan-
ion animals, etc.) that also contribute to selection of antimicro-
bial resistance and it’s consequences on each health sector. To 
tackle the problem of selection and dissemination of antimicrobial  
resistance in a true One Health perspective, there is need to 
fully investigate the role of each of those industries. Neverthe-
less, the three examples we have described serve to illustrate that 
use of antimicrobials in food animals can result in antimicrobial  
resistance that can be transmitted to humans. Therefore, these  
illustrative examples support the need for actions, such as the 
proposed WHO Guidelines on use of medically important anti-
microbials in food animals, to mitigate the risk of adverse human 
health consequences resulting from the use of antimicrobial  
agents in food animals.
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 Wolfgang Witte
Robert Koch-Institut (RKI), Wernigerode, Germany

Manuscript “Illustrative examples of probable transfer of resistance determinants from food animals to
humans: Streptothricins, glycopeptides, and colistin” describes evidence for antibiotic resistance gene
transfer from bacteria colonizing / infecting livestock to bacteria colonizing / infecting humans by means of
three examples: streptothricine-resistance and glycopeptide resistance as historical examples, and mcr
mediated resistance to colistin as an important recent example. Altogether this review is well written and
based on a very careful literature research together with a balanced selection of the really relevant
publications. Above all the comprehensive and condensed presentation of studies on colistin resistance is
impressing.

A few points will need attention:
A short discussion on the consequences of the ban of avoparcin as growth promoter would be of
interest (e.g. significant reduction of gastrointestinal colonization of healthy humans in the
community, Klare et al., 1999). It should also be mentioned that despite this ban several European
countries faced an increase of VRE among isolates from blood cultures (EARSnet) since 2004.
The question whether the ban was of little significance for the VRE situation in human medicine or
whether it could have come much more worse in case of a continuing existing van gene pool in the
community cannot be answered in retrospect.
 
For the chapter on colistin resistance I suggest to mention that the extent to which mcr
contributes to colistin resistance in clinical isolates cannot exactly be assessed so far, and that
there are cases of acquisition of  by carbapenemase producing  (Newton-Food mcr K.pneumoniae 
et al., 2017). Furthermore, the emergence of   harbouring  -1 and  afterE.coli mcr bla
meropenem and colistin therapy is of interest (Tacao et al., 2017).

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes
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