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ABSTRACT Multiple mechanisms of epigenetic control that include DNA methyl-
ation, histone modification, noncoding RNAs, and mitotic gene bookmarking play piv-
otal roles in stringent gene regulation during lineage commitment and maintenance.
Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions
that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone mod-
ifications, are a key property of pluripotent stem cells. Bivalency of developmental
genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate
decisions. Recently, some cancer types have been shown to exhibit partial recapitu-
lation of bivalent chromatin modifications that are lost along with pluripotency, sug-
gesting a mechanism by which cancer cells reacquire properties that are characteris-
tic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal
gene expression in cancer cells may offer novel insights into the onset and progres-
sion of cancer and may provide specific and selective options for diagnosis as well
as for therapeutic intervention.
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Epigenetic control of gene expression plays a pivotal role in physiological respon-
siveness and is often compromised during onset and progression of cancer. Epi-

genetic changes are heritable but do not involve changes in DNA sequences. Within a
given cell, there are many distinct carriers of epigenetic information that are relayed to
progeny upon cell division. Epigenetic mechanisms include methylation of CpG resi-
dues, modifications of nucleosomal histone proteins, regulation of gene transcription
and protein translation by noncoding RNA molecules, and mitotic retention of tran-
scription factors (1–8). From an architectural perspective, epigenetic control is engaged
at multiple levels of nuclear organization from sequence-specific regulatory elements
to chromatin remodeling at the nucleosomal level to large-scale inter- and intrachro-
mosomal interactions (9–14). These epigenetic mechanisms function in a complex but
coordinated manner to orchestrate cellular responses to extracellular signals.

The cellular epigenetic landscape is dynamically modified by a number of posttrans-
lational modifications of nucleosomal histones (1, 3, 15, 16). These modifications
function in concert—a phenomenon described as the histone code—to establish
context-dependent chromatin landscapes that control access of transcription factors to
gene regulatory regions (1, 3, 15, 16). This review focuses on the bivalent chromatin
landscape defined by addition of three methyl moieties to lysine 4 and lysine 27
residues of histone H3 (referred to as histone 3 lysine 4 me3 [H3K4me3] and H3K27me3
throughout this article). Chromatin bivalency, i.e., the presence of both activating
H3K4me3 and repressive H3K27me3 modifications at gene promoters, was first ob-
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served in pluripotent stem cells (17–19). Emerging evidence indicates that bivalency
poises genes for expression and is likely a key regulatory mechanism in trans-
differentiation during lineage commitment as well as in dedifferentiation during onset
and progression of cancer (Fig. 1) (20–24). We propose that partial recapitulation of the
bivalent chromatin landscape of pluripotent cells in some cancer types—termed
“oncofetal epigenetic control” in this review— can offer novel avenues for the devel-
opment of specific and selective diagnostic and therapeutic approaches.

BIVALENT EPIGENETIC LANDSCAPE
Histone posttranslational modifications as indicators and regulators of gene

transcription. A fundamental feature of any cell that undergoes significant phenotypic
change is a permissive epigenetic environment that supports rapid changes in tran-
scriptional output, which in turn contribute to diverse processes, including asymmetric
cell division, cell fate/lineage commitment decisions, and developmentally regulated
tissue formation (2, 25–27).

All four histone core proteins, histone 2A (H2A), H2B, H3, and H4, are subject to
widespread covalent posttranslational modifications that include methylation, acetylation,
phosphorylation, ribosylation, deimination, crotonylation, butyrylation, N-formylation, and
proline isomerization (28–30). These modifications generally occur on lysine, arginine,
serine, and threonine residues located at N-terminal “tails” of histone proteins, although
several sites of modification in globular histone domains within the nucleosome core
have also been identified (31). In general, the N-terminal regions of histone proteins
contribute minimally to the overall structural integrity of the nucleosome (31, 32).
Instead, these regions exert their regulatory activity through (i) regulation of higher-
order chromatin structure by controlling interactions between nucleosomes, as well as
between nucleosomes and DNA, and (ii) recruitment of regulatory proteins and com-
plexes to specific genomic positions and combinations of posttranslational histone
modifications.

Methylation of histone 3 lysine 4 (H3K4) is a highly evolutionarily conserved mod-
ification that has been linked to a number of biological processes, including DNA repair,
meiotic recombination (33), heritability of transcriptional states through cell divisions
(34), and, most notably, marking of transcriptionally active genes near the transcription
start site (TSS) (35–38). In addition to the specific role of trimethylated H3K4 (H3K4me3)
within promoter regions, other H3K4 modifications are more widespread; monometh-

FIG 1 Emerging role of bivalent chromatin in establishing pluripotent or cancer state of cells. The
schematic shows the capacity of pluripotent stem cells to give rise to various tissue types during
development. Bivalency appears to contribute to cell fate decisions during the pluripotent stem cell
cycle. Studies are needed to establish how much of the bivalent chromatin landscape is recapitulated in
induced pluripotent cells. It is increasingly evident that a subpopulation of cancer cells exhibits partial
recapitulation of bivalent chromatin domains. This oncofetal epigenetic control of gene expression may
be a key determinant for cancer onset and progression.
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ylation (H3K4me1), dimethylation (H3K4me2), and H3K4 acetylation signals outside
promoter regions have been identified as markers of functional regulatory elements,
such as enhancers (37–39). The enzyme complexes that methylate H3K4 are highly
conserved among eukaryotes, and mammals have six nonredundant complexes that
regulate H3K4 methylation [Su(var)3 to Su(var)9, enhancer of zeste, Trithorax 1A
(SET1A) and SET1B, and mixed-lineage leukemia 1 (MLL1) to MLL4] (40). Deletion(s) or
disruption(s) of SET family genes through translocations (and subsequent loss of H3K4
methylation) leads to cancer in vertebrates (40) and life span changes in invertebrate
models (41) (see “Formation and Regulation of Bivalent Chromatin Domains” below for
a detailed discussion of these enzymes).

Although there is strong evidence that the presence of H3K4me3 is indicative of
active gene expression, it is clear that the H3K4me3 modification on its own is not
sufficient to regulate gene activation (42). Alteration of endogenous Drosophila histone
H3.2 genes to carry a nonmethylatable residue in place of Lys4 (H3.2K4A) resulted in
only minor effects on global transcriptional activity (43). Similarly, deletion of histone-
lysine N-methyltransferase 2F (KMT2F) and KMT2G cofactor CFP1 (CXXC finger protein
1) resulted in minimal changes in transcript levels (44, 45), and deletion of SET1 in
Saccharomyces cerevisiae had little impact on global transcription patterns (46) and, in
some cases, resulted in a net upregulation of genes (47, 48). In addition, induced
deposition of CFP1-dependent H3K4me3 at engineered, nonmethylated CpG islands
was not sufficient to drive transcription in mouse fibroblasts (49). Taken together, these
points suggest that the majority of H3K4me3 modified regulatory sites are not required
for gene activation and that additional contextual cues are needed to regulate the
initiation and maintenance of transcription (50).

Two marks are better than one: epigenetic bivalent domains provide transcrip-
tional plasticity. Trimethylated H3K27 (H3K27me3) is normally associated with regions
of the genome that are transcriptionally repressed by polycomb repressor complex 2
(PRC2). In embryonic stem cells (ESCs), H3K27me3 colocalizes with H3K4me3 modifi-
cations primarily near the TSS of developmentally regulated genes (17, 51) to form
distinct bivalent domains. These bivalent domains act to restrict the expression of
developmental genes during self-renewal and poise developmentally important, lineage-
specific transcriptional regulators for expression in response to differentiation cues (25,
52). One of the hallmarks of bivalent domains is that they are frequently associated with
CpG islands (52). Several studies have shown that CpG domains, whether methylated or
unmethylated, may be sufficient to recruit PRC2 to methylate H3K27 (24, 53, 54). The
association of H3K27me3 with CpG islands would indicate a role for H3K27me3 as a
marker for DNA methylation. Although embryonic stem cell DNA is largely devoid of
methylation, DNA in promoters marked with H3K27me3 was more likely to become
methylated during differentiation than that in promoters lacking H3K27me3 (55).
However, some PRC2-mediated, tissue-specific bivalency was observed independently
of CpG islands (26). Disruption of H3K27 methylation by replacement of wild-type (WT)
nucleosomes with methylation-deficient H3K27R mutant nucleosomes resulted in de-
velopmental aberrations due to a loss of Hox gene repression, similarly to the effects
observed with PRC2 loss of function or deletion of the functional catalytic subunit of
PRC2: enhancer of zeste homolog 2 (EZH2) (56–58). It has been suggested that silencing
of lineage-specific genes is mediated by PRC2 complexes and H3K27me3 in early
development and is maintained by the recruitment of DNMT1 and DNA methylation at
bivalent sites to compensate for the reduced expression of PRC2 components that is
common in differentiated tissues (59, 60) (see “Formation and Regulation of Bivalent
Chromatin Domains” below for a detailed discussion of how the PRC2 complex deposits
H3K27me3).

Given the important role for bivalently marked promoters in stem cells, it has been
suggested that these bivalent domains are linked to oncogenesis. Cancer cell lines have
fewer bivalent domains than normal cells, with higher variation and lower stability of
the cell lines (20). Although there is a reduction in the number of bivalent sites in cancer
through loss of H3K27me3, DNA at bivalent promoters was observed to be hyper-
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methylated (20, 61, 62), whereas in normal cells, those promoters tend to have lower
levels of methylation, which is accompanied by increased gene expression (63, 64). In
the context of cancer, bivalency seems to be crucial for keeping cells in a differentiated
state as loss of bivalent control at the developmentally regulated HOX genes plays an
important role in both oncogenesis and tumor suppression (22, 65).

The role of acetylation in promoting bivalent chromatin has been largely under-
studied. Dysregulation or aberrant deposition of histone acetylation is a common trait
of several malignant tumors and has been a successful target for therapeutic interven-
tion (66, 67). Many of the histone residues that are methylated (e.g., H3K4, H3K9, and
H3K27) can alternatively be modified by acetylation, generally promoting gene activa-
tion and antagonizing gene repression (68–74). Specifically, H3K4 acetylation may play
a role in establishing or maintaining bivalent domains in certain cell types. It has been
demonstrated that deacetylation of H3K4ac by histone deacetylase 3 (HDAC3) is an
important regulator of marker gene expression in hypoxia-induced epithelium-to-
mesenchyme transition (EMT) (75). In breast cancer subtypes, H3K4ac was associated
with estrogen-responsive and cancer-related genes at promoters that were also marked
with H3K4me3 and H3K27me3 (76), suggesting that H3K4ac may be able to functionally
replace H3K4me3 at certain promoters.

In search of true bivalency. Despite the emerging body of literature suggesting a
fundamental role(s) of bivalency in gene regulation, key questions remain. For example,
a significant amount of effort has gone into identifying chromatin regions that are truly
bivalent; however, technological limitations present challenges for definitively estab-
lishing bivalency. Each nucleosome contains two copies of the core histone proteins
H2A, H2B, H3, and H4; thus, there could be comodification (H3K4me3/H3K27me3) of
one or both histone copies in the nucleosome. Several studies have shown, however,
that the majority of nucleosomes demonstrate asymmetric modification, with a
H3K4me3 mark on one H3 tail and a H3K27me3 on the other (“sister”) tail (29, 77, 78).
Although symmetric modification of H3K4me3 and H3K27me3 on the same histone tail
is rarely observed, other modifications have been shown to be symmetrically distrib-
uted (79, 80). Further complicating the issue of identifying bivalent chromatin domains,
traditional chromatin immunoprecipitation sequencing (ChIP-seq)-based techniques
are limited by the contribution of mosaic signals from a mixed population of cells (such
as tumors) and of allelic differences within the same cell.

However, recent studies using sequential or combinatorial ChIP strategies have
identified chromatin regions that are occupied by H3K4me3/H3K27me3 as well as other
combinations of posttranslational modifications on the same nucleosome (81, 82).
Currently, these studies are limited in scope because sequential combinatorial ChIP
requires much more material (and is thus not always possible to carry out in human
tumor samples), as well as technical understanding and the ability to analyze the
resulting data sets (thus restricting these approaches to use by a few highly experi-
enced researchers). Recently, there has been a significant technological advance in the
ability to examine bivalency at the single-molecule/single-nucleosome level. Shema et
al. showed definitively bivalent nucleosomes purified from pluripotent stem cells (77).
Although outside the native context of the cell nucleus, a combination of this approach
with fluorescence-activated cell sorter analysis to purify various subpopulations of
tumors should establish the extent to which bivalency is truly recapitulated in cancer.

FORMATION AND REGULATION OF BIVALENT CHROMATIN DOMAINS

The H3K4me3 and H3K27me3 modifications are catalyzed by different histone lysine
methyltransferases (KMTs) that are individually associated with the Trithorax group
(TrxG) and polycomb group (PcG) complexes, respectively. While the precise mecha-
nism(s) that targets these complexes to specific chromatin elements for deposition of
bivalent marks is not clear, much progress has been made in understanding the
regulation of the methytransferases that mediate bivalent epigenetic modifications.
Here, we briefly review the proteins that catalyze the deposition of bivalent chromatin
with a focus on the factors that regulate these modifications.

Minireview Molecular and Cellular Biology

December 2017 Volume 37 Issue 23 e00352-17 mcb.asm.org 4

http://mcb.asm.org


Forming the “active” component of bivalency: H3K4 methylation and KMT2
histone lysine methyltransferases. In mammals, methylation of histone H3 at lysine
4 is catalyzed by members of the histone-lysine N-methyltransferase 2 family (KMT2;
also known as mixed-lineage leukemia [MLL]). The KMT2 enzymes are highly specific
and catalyze the methyl transfer from S-adenosyl-L-methionine (SAM) to the �-amino
group of lysine 4 of histone H3, creating mono-, di-, and trimethylated H3K4me1/2/3
modifications. There are seven different KMT2 family members, six of which have been
demonstrated to catalyze H3K4 methylation (KMT2A-2D and 2F-2G). Each KMT2 mem-
ber has a characteristic catalytic SET domain (83–86). KMT2 enzymes form large
multisubunit complexes that associate with distinctive sets of interacting proteins
(87–92). Catalytic KMT2 complexes share a SET domain-mediated interaction with a
group of proteins called the WRAD complex, which is composed of the following: WD
repeat protein 5 (WDR5); retinoblastoma binding protein 5 (RBBP5); absent, small,
homeotic discs 2-Like (ASH2L); and DumPY: shorter than wild-type 30 (DPY30) (93, 94).
Depletion of individual WRAD subunits reduces KMT2 methyltransferase activity, indi-
cating that the SET domain requires WRAD for methyltransferase activity (95–97).
Interaction of KMT2 enzymes with WRAD is mediated via a WIN (WDR5 interacting)
motif adjacent to the SET domain (98–102).

While different KMT2 members are important in regulating ESC pluripotency and early
ESC differentiation, recent studies have clarified nonredundant functional roles of individual
KMT2 proteins in mediating bivalent chromatin. Studies show that KMT2F and KMT2G
(SETD1A and SETD1B, respectively) are likely responsible for H3K4me3 deposition globally
at active promoters in ESCs (45). In contrast, KMT2B (MLL2) has been shown to serve as the
principal H3K4 methyltransferase that marks bivalent promoters with H3K4me3 in mouse
ESCs (103, 104). However, identification of the molecular mechanism(s) that guides meth-
ylation selectivity by the KMT2 enzymes remains elusive.

As discussed in the previous section, bivalent domains are frequently associated with
CpG islands (105, 106). This observation may, in part, be explained by the finding that KMT2
proteins contain a DNA binding domain comprised of CXXC or zinc finger CXXC (ZF-CXXC)
motifs that recognize hypomethylated CpGs and may play a role in targeting the DNA
methylation complex(es) to bivalent domains (107). Furthermore, KMT2F and KMT2G are
present in a complex with a CFP1 subunit which also includes a DNA binding domain that
binds selectively to unmethylated CpGs (91). As bivalent domains are predominantly
associated with CpG islands in ESCs, the CXXC portion of KMT2 proteins may come into
play. Interestingly, CFP1 deficiency results in a drastic loss of H3K4 methylation levels at the
promoters of highly expressed genes in ESCs but not at bivalent gene promoters (45).
These findings together indicate that additional mechanisms are operative in directly
linking DNA methylation with the enzymology of H3K4 trimethylation.

Forming the “repressive” component of bivalency: H3K27 trimethylation and
polycomb repressive complex. Trimethylation at H3K27 is catalyzed by PRC2 (19, 51,
105, 108–110), which is comprised of four core subunits: suppressor of zeste 12 protein
homolog (SUZ12), embryonic ectoderm development (EED) protein, retinoblastoma
binding protein 4 (RBBP4), and EZH1/EZH2 (EZH1/2). EZH1/2 is the catalytic subunit that
serves as the histone lysine methyltransferase for H3K27 (reviewed in reference 111). In
ESCs, genes with bivalent domains are targeted by pluripotency factors, including Oct4
and Nanog. Recruitment of PRC2 to these targets is directed by PRC2-associated protein
Jarid2 or Mtf2 (110, 112–115). In addition to their role in establishing a bivalent
chromatin landscape in pluripotent cells (19, 51, 108, 109), PRC2 and H3K27me3 are
implicated in numerous physiological processes, including differentiation, tumorigen-
esis, senescence, and X-chromosome inactivation (53). Despite documentation of PRC2-
mediated chromatin modification in ESCs, the determinants responsible for directing
PRC2 occupancy at specific genomic elements remain a focus of active investigation.

There are also studies suggesting an interplay between PRC1 and PRC2 (116, 117).
For example, a subset of genes repressed by PRC2 is also bound by the PRC1 polycomb
complex (105). The recruitment and involvement of PRC1 at these loci may support
gene silencing, at least in some biological contexts. The PRC1 complex catalyzes
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ubiquitination of histone H2A on lysine 119 (H2AK119ub), a modification that appears
to contribute to transcriptional repression through RNA polymerase II pausing as well
as by facilitating recruitment of PRC2. While PRC1 and PRC2 reinforce each other’s
recruitment to genes for repression, it is noteworthy that PRC1-mediated repression
during early mouse development does not require activity of RING1B, a ubiquitin ligase
and a core component of PRC1 (118). Unlike H2A ubiquitination, H2B ubiquitination
(H2Bub1) has been shown to occur cotranscriptionally, is positively linked with gene
expression, and accurately reflects the advance of RNA polymerase II in live cells (119,
120). Whether there is interplay between PRC1-mediated ubiquitination of H2A at
lysine 119 and H2Bub at bivalent chromatin domains for tighter epigenetic control of
gene expression remains to be established. Similarly, neither PRC1 nor PRC2 is required
for recruitment of histone variant H2A.Z, which colocalizes with PRC2, to developmen-
tal genes in mouse embryonic stem cells (121). Together, these findings indicate that
additional studies are required to identify the precise mechanistic underpinnings of
transcriptional regulation by the two complexes.

REGULATORY CONSEQUENCES OF BIVALENT CHROMATIN

Research into the biological roles of bivalent chromatin is in its infancy. Establishing
a direct link between bivalency and cellular functions has been difficult due to
limitations of traditional genetic approaches that can modify only one histone modi-
fication at a time. Advances in clustered regularly interspaced short palindromic repeat
(CRISPR)-based genome editing may lead to definitively understanding the functional
consequences of bivalency. Nonetheless, some progress has been made in examining
the effects of bivalency in biological control and in cancer. Here, we review examples
that suggest a link between bivalency and cellular processes, including both transient
(e.g., cell cycle control, responsiveness to cell signaling) and long-term (e.g., lineage
commitment) processes, in normal and cancer cells (17, 20–26, 76, 122–125).

Transient gene regulation for lineage commitment: pluripotent cell cycle pro-
gression. Pluripotent stem cells provide a unique model system to investigate the
role(s) of bivalency in cell cycle and lineage commitment for several reasons. Pluripo-
tent cells have (i) a largely bivalent chromatin landscape, (ii) unlimited proliferative
potential, (iii) a shortened G1 phase (126, 127), and (iv) the ability to differentiate into
any cell type. Recent findings from our group and others indicate that bivalent
chromatin marks undergo dynamic reassignment during the pluripotent stem cell
cycle. For example, bivalently marked genes that are maximally upregulated upon
differentiation of pluripotent cells are enriched in H3K4me3 during mitosis, and after
differentiation, H3K4me3 on these genes becomes cell cycle independent. Deposition
of H3K4me3 is mediated by cell cycle-dependent recruitment to bivalent gene pro-
moters of chromatin modifiers that are involved in H3K4 methylation and demethyla-
tion (125). Dalton and colleagues have shown that CDK2-dependent phosphorylation
of the KMT2B (MLL2) histone methyltransferase results in its recruitment to develop-
mental genes in G1 (128). Recruitment of KMT2B and deposition of H3K4me3 result in
interactions between distal enhancers and proximal regulatory sites in promoter re-
gions of developmental genes. These chromosomal interactions modify the higher-
order architectural landscape and lead to brief activation of these genes that is
restricted to G1 (128). Transient activation of developmental genes explains why stem
cell differentiation is often initiated during the G1 cell cycle phase and provides a role
for bivalent chromatin in cell fate determination following mitosis.

Role of bivalency in long-term regulation of cell phenotype: maintaining
hematopoietic lineages. Hematopoietic stem cells (HSCs) give rise to diverse cell types
of both the myeloid and lymphoid lineages. The survival of this wide array of hema-
topoietic cells depends on a delicate balance between self-renewal and differentiation
at each successive stage of lineage commitment. This balance is controlled in part by
epigenetic regulation of gene expression.

As discussed above, PRC2 plays a key role in deposition of the H3K27me3 mark and
thus establishes bivalent chromatin domains. Interestingly, HSCs exhibit monometh-
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ylation of, among other residues, H3K4 and H3K27 within enhancer regions of genes
that are required for differentiation of HSCs to erythrocyte precursors. Furthermore, the
majority of genes associated with trimethylation of these marks lose H3K4me3 after
differentiation. These changes in the bivalent epigenetic landscape of HSCs are tightly
associated with changes in gene expression (23), establishing a key role of bivalency in
hematopoietic lineage commitment. It has also been shown that PRC1, the histone 2A
(H2A) ubiquitin ligase, which functions as a transcriptional repressor, is required for
maintenance of the self-renewing potential of HSCs.

Together, bivalent histone modifications play key roles in regulating the balance
between HSC renewal and differentiation. They preserve the quiescent stem cell pool
and support the development of the full repertoire of mature hematopoietic cells.

Mutations, loss of function, or mistargeting of key enzymes that mediate epigenetic
modifications has been identified in both lymphoid and myeloid leukemias, further
emphasizing the importance of epigenetic regulation in hematopoiesis. Knowledge of
how these chromatin modifying enzymes and cofactors influence hematopoiesis pres-
ents opportunities for translational research (reviewed in “Bivalent Epigenetic Therapy”
below).

Transient gene regulation in cancer: steroid signaling and bivalency. The
steroid hormone estradiol functions primarily by binding to the steroid nuclear recep-
tors ESR1 (ER�) and ESR2 (ER�), leading to mobilization of coregulators that form
complexes altering chromatin structure in association with histone modifying enzymes
(66, 67). While estradiol has biological roles in both normal proliferation and normal
differentiation, providing the cellular plasticity needed for tissue remodeling through-
out the reproductive years, unregulated estradiol exposure can result in constitutive
activation of metabolic and cell cycle regulatory genes and increases the risk of breast
cancer. There is strong clinical and epidemiological data linking estrogen exposure with
an increased risk of developing breast cancer (68–74).

Epigenetic changes have been increasingly identified in the development of breast
cancer. For example, the role of DNA methylation has been extensively studied and
DNA hypermethylation is frequently associated with silencing of tumor suppressor genes,
steroid receptor genes, and genes involved in cell cycle regulation (129–132). Additionally,
alterations in patterns of histone modifications by several histone modifying enzymes,
including KMT2B, KMT2F (H3K4), and EZH2 (H3K27me3), have been linked with cancer
initiation and progression (133–136). Overexpression of the histone methyltransferase EZH2
is well documented in breast cancer, with increasing levels being associated with more-
aggressive metastatic breast cancers (137–139). Overexpression of wild-type EZH2 has also
been reported to serve as a transcriptional activator and/or repressor in ESR1-positive
breast cancer by modulating estrogen signaling (140–144).

About 75% to 80% of breast cancers are ESR1 positive and these tumors generally
exhibit increased levels of histone modifications compared to tumors in patients with
a poorer prognosis (145). Epigenetic studies assessing the levels of H3K4me3 and
H3K27me3 by our group, using three breast cancer cell lines, provide evidence of
higher levels of H3K27me3 in two basal breast cancer cell lines (MCF10A and MDA-
MB-231) with relatively unchanged H3K4me3 levels overall among the three cell lines
(76). Importantly, analysis of these data reveals a bivalent epigenetic signature that is
more prominent in the ESR1-positive MCF7 cell line and is similar to that identified in
pluripotent stem cells (Fig. 2).

The concept of partial recapitulation of a stem cell-like epigenetic signature, i.e.,
oncofetal epigenetic control, in cancer cells is further reinforced by single-cell studies
that show the presence of a quiescent subpopulation that exhibits high levels of
pluripotency transcription factors Nanog and Oct4 in MCF7 cells (146–149). Additional
studies are required to establish whether this oncofetal epigenetic signature is con-
tributed by the cancer stem cell subpopulation and reflects the dedifferentiated nature
of cancer cells and whether it could be used to identify specific and selective diagnostic
and therapeutic targets (76).
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Bivalency for regulation of tumor phenotype: epithelium-to-mesenchyme tran-
sition in breast cancer. The epithelium-to-mesenchyme transition (EMT) is a cellular
transformation by which epithelial cells lose their cellular polarity and cell-cell adhesion
properties and become mesenchyme-like, with enhanced motility and invasive capacity
(150, 151). Importantly, this change in the cell state is not permanent. Cancer cells that
have gone through the EMT process in the primary tumor may later revert to the
epithelial state through a mesenchyme-epithelium transition (152, 153). Therefore, the
EMT program is coordinately regulated; multiple signaling pathways, as well as several
epigenetic mechanisms, are involved in activation/repression of EMT (154, 155).

The E-cadherin (CDH1) gene provides a model system to examine the coordinated
nature of epigenetic regulation during EMT. The CDH1 gene is downregulated during
EMT by the binding of the Zeb, Snail, Slug, or Twist transcription factor to its gene
promoter region (156). The repression of the CDH1 gene by CpG hypermethylation is
commonly observed in several human cancers, including breast, bladder, liver, gastric,
and prostate cancer (157–160). In breast cancer, hypermethylation on the CDH1 pro-
moter is positively correlated with EMT (161). Expression of CDH1 is also regulated by
histone modification. For example, hepatocyte nuclear factor 3 (HNF3) promotes CDH1
expression and inhibits metastasis by cooperating with the p300 acetyltransferase in cancer
cell lines (156). In contrast, the CDH1 gene is also controlled through deacetylation. Snail
homologue 1 (SNAI 1) binds to its promoter and recruits HDACs to deacetylate the
promoter, thus suppressing the expression of the gene (162, 163). SNAI 1 also recruits LSD1
(lysine-specific histone demethylase 1) or SUV39H1 (suppressor of variegation 3-9 homolog
1, histone methyltransferase) to the CDH1 promoter, where the enzyme either removes
methyl groups from H3K4 (resulting in H3K4me2 enrichment) or adds methyl groups to
H3K9 (resulting in H3K9me3 enrichment), respectively (164, 165). EZH2, a component of the
PRC2 complex, was also found to be associated with silencing of the E-cadherin gene by
H3K27me3 during tumor progression (166). These findings establish a complex but precise
regulatory network regulating CDH1 expression during EMT and suggest that this gene
may frequently be in a bivalent configuration.

BIVALENT EPIGENETIC THERAPY

Mutations in proteins responsible for mediating epigenetic changes are widespread
in cancer and present attractive opportunities for therapeutic targets (see Table 1 for
examples). Therapies have been developed to target gain-of-function mutations in DNA
methylases, as well as histone modifiers and readers, and to impact DNA methylation,
histone modification, and reading and to epigenetically impact the tumor phenotype.

FIG 2 Partial recapitulation of the oncofetal epigenetic landscape, i.e., reemergence of genes bivalently
marked in stem cells, in cancer cells. Heat maps (left) and summarization profiles (right) of H3K4me3 (top)
and H3K27me3 (bottom) enrichment in the H7-hESC cell line and in the MCF7 and MDA-231 cell lines in
1,172 H7-hESC bivalent genes are shown. The gene transcription start site (tss) and transcription
termination site (tts) are indicated. Note the similarity between MCF7 and H7-hESC with respect to
H3K27me3 near promoters and the lack of the same in MDA-MB-231. FE, fold enrichment. (The data in
the figure are adapted and modified from reference 76 with permission.)
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These include LSD1 inhibitors, EZH2 inhibitors, PRMT5 (protein arginine methyltrans-
ferase 5) inhibitors, DOT1L (disruptor of telomeric silencing 1-like) inhibitors, and BET
(bromodomain and extraterminal) protein inhibitors (167). Loss-of-function mutations
are more challenging to impact therapeutically; however, with a deep understanding of
the pathways involved, drug development can focus on targeting synthetic lethal
interactions. Synthetic lethality exploits the relationship between two genes wherein
loss of one gene does not lead to cell death but loss of the two genes simultaneously
does result in cell death. This strategy has been successfully applied to target loss-of-
function mutations in chromatin remodeling complexes (for example, the synthetic
lethal effect of an EZH2 inhibitor in SNF5-mutated rhabdoid tumors) and histone
methyltransferases (168, 169).

Knowing that chromatin bivalency contributes in a significant way to oncogenesis,
specific efforts are under way to target the enzymes that mediate construction of the
bivalent signature in cancer. As described above, the members of the MLL (KMT) family
of complexes are key mediators of H3K4 methylation. Oncogenic MLL translocations are
frequently seen in acute leukemias and are particularly prevalent in a devastating form
of infantile acute lymphoblastic leukemia (ALL). The majority of MLL translocations
result in loss of the catalytic SET domain and occur with fusion partners capable of
recruiting the H4K79 lysine methyltransferase DOT1L. Efforts to target the oncogenic
MLL fusions have been largely focused on the development of DOT1L inhibitors, such
as EPZ-5676, which is currently in clinical trials (170). It has additionally been found that
H2B E3 ligase RNF20 is required for MLL-rearranged leukemogenesis, wherein there are
increased levels of H3Bub in MLL target genes correlating with sites of H3K79me2,
making RNF20 an attractive epigenetic target in MLL-rearranged leukemias (171).
Interestingly, cancers characterized by an oncogenic MLL fusion must retain one
wild-type MLL allele, as the normal H3K4 methyltransferase activity is essential for
oncogenesis. Therefore, other efforts to target this epigenetic disease are focused on
the function of WT MLL. There has been some investigation into using LSD1 inhibitors
to restore the balance between MLL and LSD1 in H3K4 methylation (172). Other groups
are using compounds that specifically inhibit the SET-WDR5 interaction in order to
inhibit the WT MLL complex (42, 173).

As described above, PRC2, and its catalytic subunit EZH2, are largely responsible for
maintaining the “repressive” half of the bivalent signature. Overexpression of and
gain-of-function mutations in EZH2 have been described in a variety of cancers, most

TABLE 1 Examples of the steadily growing repertoire of epigenetic therapies for a variety of malignancies that are currently being used
or tested in clinical trialsa

Drug Target Epigenetic class Disease(s) treated

Azacitidine DNA methyltransferase (DNMT1) DNA methylation AML
Decitadine guadecitadine DNA methyltransferase (DNMT1) DNA methylation Recurrent fallopian tube carcinoma; recurrent

ovarian carcinoma; recurrent primary
peritoneal carcinoma; papillary thyroid
carcinoma; follicular thyroid carcinoma; non-
small-cell lung cancer; colorectal cancer;
metastatic pancreatic adenocarcinoma

Vorinostat Histone deacetylase Histone modification Cutaneous T-cell lymphoma; AML; glioma;
prostate cancer

EPZ-5676 (pinometostat) DOT1L (a histone methyltransferase) Histone modification MLL-rearranged leukemia
Tranylcypromine LSD1 (a histone demethylase) Histone modification AML; refractory solid tumors
CPI-0610 BET family proteins Histone reader Lymphoma; multiple myeloma; acute leukemias
GSK525762 BET family proteins Histone reader NUT midline carcinoma
TEN-010 BET family proteins Histone reader AML; refractory solid tumors
AG-120 Mutant IDH1 Metabolic pathway AML; glioma; cholangiocarcinoma; refractory

solid tumors
Tazemetostat EZH2 (a histone methyltransferase) Histone modification (direct);

chromatin remodeling
complexes (indirect)

B-cell lymphoma; mesothelioma; synovial
sarcoma; rhabdoid tumors; INI1-negative
tumors

aAML, acute myeloid leukemia.
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notably B-cell-derived hematopoietic malignancies (174). Efforts undertaken to inhibit
EZH2 have resulted in the identification of tazemetostat and CPI-1205, small-molecule
inhibitors of EZH2 which are currently being tested in clinical trials for treatment of a
variety of PRC2-dependent malignancies, including B-cell lymphomas. These examples
highlight the therapeutic potential of targeting the enzymology for bivalent chromatin.

BIVALENT CHROMATIN: NOVEL REGULATORY DIMENSIONS

Emerging literature on bivalent chromatin and its pivotal role in regulation of key
biological processes indicates additional regulatory functions for bivalency in regulat-
ing cancer phenotypes. Here, we highlight two key areas where additional research will
yield a mechanistic understanding of bivalency in establishing cancer phenotypes and
may provide options for therapeutic intervention.

Oncofetal gene expression. Oncofetal genes have been defined as highly ex-
pressed and stringently regulated during embryonic development and inactivated in
most adult tissues but aberrantly reexpressed in many cancer types (reviewed in
references 175 and 176). Notable examples of oncofetal gene products include alpha
fetoprotein (AFP), carcinoembryonic antigen (CEA), high mobility group AT-hook pro-
tein 2 (HMGA2), abnormal cell lineage protein 28 homologue (LIN-28), insulin-like
growth factor 2 mRNA binding protein (IGF2BP), 5T4 oncofetal trophoblast glycopro-
tein, sal-like protein 4 (SALL4), receptor tyrosine kinase-like orphan receptor 1 (ROR1),
forkhead box M1 (FOXM1), NODAL, and teratocarcinoma-derived growth factor 1
(TDGF1; also called “Cripto growth factor”) (reviewed in references 177 to 186). Collec-
tively, oncofetal proteins contribute to tumor phenotypes through regulation of stem-
ness, proliferation, invasion, and metastasis. Decades of research have established a
number of oncofetal proteins as effective biomarkers for cancer aggressiveness (re-
viewed in references 177 to 180, 183, and 185). Unfortunately, there has been limited
success in using oncofetal proteins as therapeutic targets. Furthermore, the mechanistic
underpinnings of their reexpression or regulation in cancer are not well understood
(187–191).

Recent studies have provided some insights into the regulation of oncofetal genes
in cancer. A number of oncofetal genes have been identified as downstream targets of
let-7, a tumor suppressor microRNA that plays key roles in a variety of cancer types
(192). Targets of let-7 include the well-characterized LIN-28 and HMGA2 oncofetal genes
and the IGF2BP1 to -3 family member genes (178, 184, 193, 194). Each of these genes
is involved in growth at the organism level, as well as in regulation of metabolism
during development (178, 184, 193, 194). In cancer, each of these genes is reactivated
and contributes to the tumor phenotype. For example, the LIN28B gene is associated
with neuroblastoma (195), the HMGA2 gene is expressed in aggressive ovarian cancer
(196), and IGF2BP family member genes are reactivated in a number of cancers,
including breast, cervical, and hepatic cancers (197). These findings indicate that a
common mechanism is operative in posttranscriptional regulation of several oncofetal
genes and suggest that a common mechanism may also regulate transcriptional
reactivation of these genes across cancer types.

While upstream transcriptional regulators of some oncofetal genes are known
(198–201), surprisingly little is known about epigenetic regulation of their expression.
Studies examining cancer-associated reexpression of various oncofetal genes have
mostly focused on DNA methylation. For example, the AFP, CEA, SALL4, and Nodal genes
are all unmethylated during development, become methylated in adult tissues, and are
unmethylated or hypomethylated in several cancer types (202–205). As we discuss
above in detail, many aspects of epigenetic control, including chromatin bivalency, are
reacquired at the onset and during progression of cancer. We propose the hypothesis
that once oncofetal genes become unmethylated at the onset of cancer, they acquire
bivalent chromatin marks, poising them for increased expression throughout the
progression of cancer. This hypothesis has the potential to explain the correlation
between increased levels of various oncofetal proteins and tumor aggressiveness. It is
equally possible that genes encoding oncofetal proteins are either transiently marked
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by bivalent histone modifications or not bivalently marked at all. Instead, their up-
stream regulators are bivalently marked, thus allowing the expression of these genes in
cancer cells. Lack of a true cancer progression model also limits the identification of the
transient nature of bivalency. Additional studies are needed to establish whether
oncofetal genes acquire a bivalent chromatin landscape during tumorigenesis. Such a
bivalent landscape of oncofetal genes will provide options for regulatory plasticity and
may offer selective and specific therapeutic targets.

Cancer stem cells. The quiescent nature of cancer stem cells results in escape of this
cell population from the conventional chemotherapeutic approaches that often target
actively dividing cancer cells (206–208). It will be important to investigate whether
cancer stem cells—the cell population that represents a dedifferentiated state—
reacquire bivalency in regulatory regions of oncogenes. There are some examples that
point to such a mechanism. For example, the gene encoding E-cadherin permits dynamic
regulation of gene expression during the EMT. Within the CD24�/CD44� stem cell-
enriched populations of human breast cancer cells, E-cadherin expression has been
silenced and its promoter contains bivalent H3K4me3 and H3K27me3 modification.
However, in CD24� cells, which express high levels of E-cadherin, only the H3K4me3
mark is present on the E-cadherin promoter (209). To allow this dynamic switching
between cell states, the key EMT transcription factor ZEB1 is also marked with bivalent
chromatin (210). Systematic genome-wide studies using a purified cancer stem cell
population are needed to examine how much of the bivalent chromatin landscape of
pluripotent stem cells is reestablished in cancer stem cells. Such studies may also reveal
the key differences between the two cell types in control of proliferation. Epigenetic
therapies can then be developed to target bivalent chromatin and may be more
effective in eradicating cancer stem cells.

OPTIONS AND OPPORTUNITIES

The complexity of gene regulation is reflected by the establishment and mainte-
nance of bivalent chromatin through the interplay of various histone modifications,
ranging from methylation of H3K4 and H3K27 residues to sequential addition of
posttranslational modifications to or removal of posttranslational modifications from
adjacent residues and/or histones, as well the coordination between these modifications
and DNA methylation. Both redundancy and selectivity of enzymes and cofactors are
required for deposition or removal of these marks and further highlight the intricate nature
of bivalency. An additional level of control is presented by activation or repression of other
genomic targets (mRNAs, long noncoding RNAs, and microRNAs) in a context-dependent
manner that is dictated by extracellular signaling. Taking the findings together, this
complexity provides options for cellular plasticity in a variety of biological or disease-
related contexts.

However, several key issues remain unaddressed and require additional studies. (i)
Experimental evidence discussed in this review provides a preliminary insight into the
role of bivalency in cell fate decisions in pluripotent cells. Additional evidence is needed
to establish whether bivalency is a prerequisite for lineage commitment and whether
distinct gene subsets are bivalently marked prior to acquisition of distinct cell pheno-
types. This knowledge will illuminate the significance of partial recapitulation of
bivalency in some cancer types. (ii) In addition to H3K4me3/H3K27me3-mediated
bivalency, other histone modifications may poise genes for rapid transcription. For
example, trophoblast and endodermal stem cells demonstrate a pattern of bivalent
H3K4me3/H3K9me3 modifications on lineage-specific genes that function indepen-
dently of H3K4me3/H3K27me3 to regulate differentiation (211). Similarly, in mesen-
chymal stem cells, H3K4/H3K9me3 bivalent chromatin at several key adipogenic
genes was demonstrated to keep lineage-specific genes poised, but repressed, until
commitment to adipogenesis took place (21). It remains unclear how prevalent such
“noncanonical bivalent domains” are and whether these are associated with gene
regulation in specific cellular pathways. (iii) Partial recapitulation of pluripotent
bivalency in some cancer types (termed “oncofetal epigenetic control” in this
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review) is an exciting recent observation. Further research is required to establish
whether the same set of genes reacquires bivalency across tumor types. (iv) Our
group has noted that the numbers of bivalent genes differed within the same
cancer type as well as across cancer types. This variability may reflect the hetero-
geneous nature of tumor cell population and/or variability in cancer stem cell
populations. It will be important to examine bivalency at the single-cell level in
purified cancer stem cell populations. (v) Is oncofetal epigenetic control a conse-
quence of or a prerequisite for cancer onset and progression? Despite the open-
ended questions concerning these issues, bivalency is emerging as a key determi-
nant of cellular plasticity, and its partial recapitulation in a number of cancer types
offers new avenues for identification of biomarkers and for development of ther-
apeutic approaches that are selective and specific.
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