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ABSTRACT Immunosenescence, an age-related decline in immune function, is a
major contributor to morbidity and mortality in the elderly. Older hosts exhibit a de-
layed onset of immunity and prolonged inflammation after an infection, leading to
excess damage and a greater likelihood of death. Our study applies a rule-based
model to infer which components of the immune response are most changed in an
aged host. Two groups of BALB/c mice (aged 12 to 16 weeks and 72 to 76 weeks)
were infected with 2 inocula: a survivable dose of 50 PFU and a lethal dose of 500
PFU. Data were measured at 10 points over 19 days in the sublethal case and at 6
points over 7 days in the lethal case, after which all mice had died. Data varied pri-
marily in the onset of immunity, particularly the inflammatory response, which led
to a 2-day delay in the clearance of the virus from older hosts in the sublethal co-
hort. We developed a Boolean model to describe the interactions between the virus
and 21 immune components, including cells, chemokines, and cytokines, of innate
and adaptive immunity. The model identifies distinct sets of rules for each age
group by using Boolean operators to describe the complex series of interactions
that activate and deactivate immune components. Our model accurately simulates
the immune responses of mice of both ages and with both inocula included in the
data (95% accurate for younger mice and 94% accurate for older mice) and shows
distinct rule choices for the innate immunity arm of the model between younger
and aging mice in response to influenza A virus infection.

IMPORTANCE Influenza virus infection causes high morbidity and mortality rates ev-
ery year, especially in the elderly. The elderly tend to have a delayed onset of many
immune responses as well as prolonged inflammatory responses, leading to an over-
all weakened response to infection. Many of the details of immune mechanisms that
change with age are currently not well understood. We present a rule-based model
of the intrahost immune response to influenza virus infection. The model is fit to ex-
perimental data for young and old mice infected with influenza virus. We generated
distinct sets of rules for each age group to capture the temporal differences seen in
the immune responses of these mice. These rules describe a network of interactions
leading to either clearance of the virus or death of the host, depending on the ini-
tial dosage of the virus. Our models clearly demonstrate differences in these two
age groups, particularly in the innate immune responses.
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Influenza A virus leads to about 36,000 deaths every year in the United States (1).
Older members of the population are highly susceptible to influenza virus infection,

accounting for about 90% of all influenza deaths (2). The increased susceptibility of the
elderly to infections leads to enormous medical costs; the elderly account for about
one-half of hospital stays and one-third of the prescription drug use in the United
States (3). These costs will likely continue to increase well into this century, as the older
population is predicted to triple by 2050, reaching about 2 billion individuals worldwide
(3).

The elderly are known to exhibit increased morbidity and mortality in response to
influenza virus infection due to a weakening of the immune response with age, called
immunosenescence (4). Immunosenescence is a complicated remodeling of the im-
mune response, leading to an overall weakened response to pathogens, particularly
those that have not been encountered by the host previously. Both innate and adaptive
responses are impacted by immunosenescence (5). Both mice and humans have been
shown to exhibit dysregulated inflammation in response to infection due to immu-
nosenescence (6). The elderly generally experience a delayed onset of innate immunity
and a prolonged inflammatory response, causing excess inflammatory damage to the
body and thus more persistent symptoms. Older hosts tend to have higher baseline
levels of proinflammatory cytokines, a condition recently termed “inflamm-aging” (7).
Elevated cytokine levels are correlated with increased inflammatory damage. In fact,
elevated interleukin-6 (IL-6) levels postinfection are an accurate predictor of morbidity
and mortality (5). Phagocytosis by immune cells, particularly neutrophils, also tends to
decrease with age in human hosts but not in mice (8). The specific changes in the
neutrophil secretion of various cytokines and chemokines in either human or murine
hosts are still largely unknown. Changes in macrophage phagocytic function are also
unclear, as some reports have shown no changes in macrophage phagocytosis (9),
while others have shown evidence of a decline (10, 11). Decreased chemotactic
responses in macrophages have also been shown (2).

The function of both T cells and B cells has been shown to decline with age, leading
to an overall decline in the efficacy of flu vaccines (2). In both humans and mice,
age-related thymic involution has been shown to cause a decrease in the number of
naive T lymphocytes (4, 12), limiting the ability of the host to mount a defense against
novel pathogens. Helper T cell function declines with age, as does the overall number
of B cells in the host (13). The numbers of IgG and IgA antibodies have been shown to
increase with age, although the efficacy of antibodies against specific pathogens
decreases (14).

To investigate further the changing immune mechanisms that arise in immunose-
nescence in response to influenza A virus, we have constructed a network model of the
intrahost immune response to viral infection to elucidate the differences in the immune
responses of older and younger hosts. Variables included in the model represent cell
types, cytokines, chemokines, interferons, antibodies, and viral load. The model features
components from innate, adaptive, and humoral immunity. Cell types include macro-
phages, neutrophils, natural killer (NK) cells, conventional dendritic cells, plasmacytoid
dendritic cells (pDCs), T cells, B cells, and epithelial cells. To activate and recruit these
cells, we include cytokines and chemokines such as IL-1�, IL-1�, IL-6, IL-10, IL-12, type
I and type II interferons, tumor necrosis factor alpha (TNF-�), RANTES, macrophage
inflammatory protein 1� (MIP-1�), and keratinocyte chemoattractant (KC). The model
also incorporates antibodies to clear the virus from the host. Interactions among the
virus, cells, cytokines, chemokines, and interferon comprise the early phases of the
immune response, until antibodies are eventually upregulated and clear the virus. Our
Boolean model investigates the structure of these interactions and compares interac-
tions between young and old hosts.
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Boolean network models were previously shown to generate important conclusions
regarding the host immune response to other infections (15–18), and we now present
such a model of influenza virus infection. Initiated by the presence of a viral load in the
lungs, the network propagates several processes activated to fight the infection. We
match the trajectories of each component of the immune system to rich time series
data from a murine model of influenza virus infection (19). Studying the time evolution
of the immune response allows an analysis of the initiation and duration of these
immune components and the age-related differences between hosts.

RESULTS
Boolean networks. (i) Optimized model for younger mice. The rules modeling

the younger-mouse population predict the experimental data with 97% accuracy,
missing only 6 out of 197 data points in the sublethal simulations (Fig. 1A) and 4 out
of 113 data points in the lethal simulations (Fig. 1B). There are 8 combinations of rules
that yield this level of accuracy, and these rules are summarized in Table 1.

In the sublethal case (Fig. 1A), several immune components are activated or up-
regulated immediately after infection is initiated, including IL-1�, IL-1�, IL-6, MIP-1�, KC,
and infected epithelial cells (IECs). The quick responses of these components imply a
direct impact of the viral load on their production. In this model, the direct dependence
of cytokines on the virus represents upregulation by lung epithelial cells (20); since we
do not have data for these cells, we represent this mechanism with a simple interaction
between the virus and the cytokine. The infected cell population also increases as a
result of healthy epithelial cells coming into contact with the virus. Again, this is
modeled by a direct dependence on the virus itself. None of the cells in the model have
measurements on day 1, so we cannot say with certainty whether or not these cells
responded quickly to the presence of the virus. Our simulations do not predict a
significant change from the baseline over the course of 1 day, however.

FIG 1 Optimal fits to the full data set for younger mice in sublethal (A) and lethal (B) simulations.
Experimental data are indicated with 0’s and 1’s. Variables for which no data were measured are indicated
with a blank cell. The simulated trajectories are indicated with the shading of the table cell, where a black
cell represents a variable predicted to have a value of 1 at that time point and a white cell represents a
variable predicted to have a value of 0. Thus, if a black cell overlaps a value of 1, the simulation correctly
predicts that variable’s trajectory at that point. A white cell overlapping a value of 0 is also a correct
prediction. Blank cells can predict a value of either 0 or 1 without penalty. A total of 10 data points are
missed in the optimal fit.
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On day 2, more of the innate immune components become activated. Macrophages,
neutrophils, and dendritic cells are all brought to the site of infection by the cytokines
and chemokines that were upregulated on day 1. The presence of infected cells on day
1 causes an increase in type I interferon as well as an increase in the virus from low
levels to high levels on day 2. There is also a decrease in the levels of MIP-1�, implying
that its levels drop back to the baseline value after increasing on day 1. This is likely an
anomaly in the data rather than a significant biological event. Our simulations predict
that the zero on day 2 is probably incorrect.

On day 3, the cells of the model were again not measured. However, our model
predicts increases in the numbers of activated NK cells, cytotoxic T lymphocytes (CTLs),

TABLE 1 Optimal-fit rule choices for younger and older mice

Rule

% of models using rule

Younger mice Older mice

ActiveM ¢ (KC and Vlow) | TNF 0.0 100.0
ActiveM ¢ Vhigh | IL1a 100.0 0.0
TNF ¢ ActiveM | Vhigh 50.0 0.0
TNF ¢ ActivecDC | Vhigh 50.0 0.0
TNF ¢ ActiveM 0.0 100.0
IL1a ¢ ActiveM | Vlow 50.0 0.0
IL1a ¢ ActiveM 0.0 100.0
IL1a ¢ ActivecDC | Vlow 50.0 0.0
IL1b ¢ ActiveM | Vlow 0.0 25.0
IL1b ¢ ActiveM 0.0 25.0
IL1b ¢ ActivecDC | Vlow 0.0 25.0
IL1b ¢ pDC | Vlow 100.0 25.0
IL-6 ¢ ActiveM | Vlow 0.0 0.0
IL-6 ¢ ActiveM 0.0 0.0
IL-6 ¢ ActiveTh 0.0 100.0
IL-6 ¢ ActivecDC | Vlow 0.0 0.0
IL-6 ¢ pDC | Vlow 100.0 0.0
IL-10 ¢ ActiveTh & Vhigh 100.0 0.0
IL-10 ¢ ActiveNK & Vhigh 0.0 0.0
IL-10 ¢ ActiveB & Vhigh 0.0 100.0
IL12p70 ¢ ActiveTh & Vhigh 0.0 0.0
IL12p70 ¢ ActiveTh 0.0 62.5
IL12p70 ¢ ActiveM & IL1b 0.0 37.5
IL12p70 ¢ pDC 100.0 0.0
RANTES ¢ ActiveM 100.0 50.0
RANTES ¢ ActivecDC 0.0 0.0
RANTES ¢ ActiveCTL 0.0 50.0
MIP1b ¢ ActiveM | Vlow 50.0 0.0
MIP1b¢ ActiveM 0.0 100.0
MIP1b ¢ ActivecDC | Vlow 50.0 0.0
KC ¢ ActiveM | Vlow 0.0 50.0
KC ¢ Vlow | pDC 100.0 50.0
ActiveNK ¢ ActiveM 0.0 100.0
ActiveNK ¢ ActivecDC & Vlow 100.0 0.0
IFNg ¢ ActiveM 100.0 100.0
ActiveN ¢ Vlow | TNF 0.0 100.0
ActiveN ¢ KC & Vlow 100.0 0.0
IFNab ¢ (ActiveTh & Vhigh) | IEC 100.0 100.0
ActiveCTL ¢ ActiveM 100.0 0.0
ActiveCTL ¢ ActiveTh 0.0 100.0
pDC ¢ ActivecDC 0.0 100.0
pDC ¢ ActiveN 100.0 0.0
ActivecDC ¢ ActiveNK 0.0 87.5
ActivecDC ¢ IL1b 100.0 12.5
ActiveTh ¢ Vlow | ActiveM 0.0 100.0
ActiveTh ¢ ActivecDC | IL12p70 100.0 0.0
ActiveB ¢ ActiveM 100.0 100.0
Ab ¢ (ActiveB & pDC) | Ab 0.0 33.3
Ab ¢ (ActiveB & IL-10)| Ab 100.0 66.7
Vlow ¢ (IEC | Vlow | Vhigh) & �(Ab) 100.0 100.0
Vhigh ¢ (IEC | Vhigh) & �(Ab) 100.0 100.0
IEC ¢ (Vlow | Vhigh) & �ActiveCTL & �ActiveNK 100.0 100.0
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pDCs, T helper cells, and B cells on day 3 in response to the high viral titers present on
day 2. The data show that RANTES and TNF are upregulated on day 3 as well. TNF data
also show an increase on day 1, followed by a decrease back to baseline values on day
2. Our simulations predict that the data point on day 1 is likely to be inaccurate.

The time step next jumps to day 5, when IL-10 and IL-12 are significantly produced
by T helper cells or pDCs. On day 7, antibodies are produced, which then causes the
virus levels to drop on day 9. When the virus clears the system, other elements of the
immune system can begin to return to baseline values as well. On day 11, IL-10, NK
cells, neutrophils, and type I interferon fall to baseline levels in our simulations. The
data suggest that IL-10 and type I interferon levels decrease on day 9 and 15,
respectively, so our simulations predict two data points incorrectly here. On day 15,
pDC levels return to baseline, and on day 19, IL-1�, IL-6, IL-12, and KC levels all then
decrease to baseline values as well. By the end of the simulation, 12 of the 23 variables
modeled in the system returned to baseline values, signifying that the immune
response was winding down and the host was healing from a survivable infection.

The simulations with a lethal inoculum (Fig. 1B) begin with a high level of virus. As
a reaction to the greater presence of the virus, more innate immune components will
be upregulated immediately following infection. Macrophages, TNF, IL-1�, IL-1�, IL-6,
MIP-1�, and KC are each turned on in the simulation and the data, and while RANTES
data predict that this chemokine should predict a value of 1 on day 1, our model misses
this time point. On day 2, more of the cells are brought in, including NK cells,
neutrophils, CTLs, dendritic cells, and B cells. Day 3 brings pDCs and T helper cells. On
day 5, our model predicts IL-10 and IL-12 induction, although the data suggest that
these cytokines remain at baseline levels. Finally, day 7 brings the antibodies, but the
virus titer has remained high for so long that the host succumbs to infection.

(ii) Optimized model for older mice. The rules modeling the older mice simulate
the data with 94% accuracy, generating 18 total model errors for the 306 data points.
Table 1 lists the summary of 384 rule combinations used to generate these simulations.
There are multiple rule sets that yield 18 model errors, and as such, not every rule set
will produce an identical simulation, although the total number of errors is identical.
Figure 2 shows the output of these solutions. Darker gray squares represent a greater
likelihood that each model will predict that a variable is turned on at that point, and
lighter gray squares indicate a greater likelihood that the rule predicts that a variable
will be turned off.

On day 1, epithelial cells become infected by the virus, and CD4� T cells become
activated and move to the site of infection. In some simulations, IL-1�, KC, and
neutrophil levels also increase in the lungs on day 1. On day 2, the levels of macro-
phages, IL-6, type I interferon, and CTLs are then increased in all simulations, and IL-12
and type II interferon levels are increased in some simulations. Macrophages then cause
increases in the levels of most cytokines and chemokines, as well as activating B cells,
via their role as antigen-presenting cells. In response to the increased inflammatory
response on day 3, IL-10 is upregulated significantly on day 5. Dendritic cells are also
brought in on day 5, and pDCs are delayed until day 7. This is in contrast to younger
mice, in which dendritic cells were activated on days 2 and 3. The data also show a
quick state change in pDCs on day 2, followed by a decrease on days 3 and 5 and then
an increase again on day 7. The day 2 data point is likely an anomaly in the data, and
our model tends to ignore this point in the rule choices.

Antibodies are upregulated on either day 7 or 9 and clear the virus from the system
on day 9 or 11, depending on the rule chosen. Once the virus is removed, type I
interferon, IL-10, and, in some cases, neutrophils, return to their baseline levels. The
values for all other variables remain elevated on day 19, implying that the immune
system has not yet recovered from infection. In the data, the KC level also decreased to
its baseline level, but our rules miss this transition.

In the lethal case (Fig. 2B), the simulations were identical to the first 7 days of the
sublethal simulation, demonstrating that the high level of virus present initially did not
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have an effect on the strength of the immune response. Elderly hosts have been shown
to exhibit slow responses to virus (5, 21).

(iii) Differences in rule choices for young and old mice. Because the data
generally differed between age groups in both activation and deactivation for most
variables in the model, most variables were governed by distinct rules. Figure 3C
denotes the variables that are regulated by different rules between the two age groups.
Many of these distinctions involve differences in the dependence on the virus; in
younger mice, many variables responded to the presence of the virus, while in the older
mice, only a few variables did so. Cytokines and chemokines with a direct dependence
on the virus were significantly produced by epithelial cells in the host.

Activated macrophages were the cellular source of many cytokines and chemokines
in both young and old mice. Younger mice also tended to have an additional,
equivalent rule in which these cytokines were produced by activated dendritic cells. In
both our simulations and the data, macrophages and dendritic cells become activated
at the same time in younger mice. Dendritic cells did not have this same effect in older
mice, as they become activated 1 to 2 days later than macrophages. Panda et al.
showed previously that dendritic cells were unable to respond to influenza virus with
the same efficacy in older mice as in younger mice, and they exhibited decreased
production of TNF, IL-6, and IL-12 (22). In our model, dendritic cells from older mice
were unable to significantly contribute to the production of many of the cytokines,
including those identified in the work by Panda et al. In fact, in older mice, dendritic
cells are responsible for the production of the chemokine KC only.

Dysregulation of cytokine production can also lead to defects in the antibody
response to influenza (22), which in turn can lead to a decrease in the efficacy of the
antiviral response of the host. The data from experiments with older mice indicate that
the virus remains in the host 2 days longer than it remains in younger mice. The
lengthened infection period leads to excess symptoms in older mice (19). This may also

FIG 2 Optimal fits to the full data set for older mice in sublethal (A) and lethal (B) simulations. Experimental
data are indicated with 0’s and 1’s. Variables for which no data were measured are indicated with a blank
cell. The simulated trajectories are indicated by the shading of the table cell, where a black cell represents
a variable predicted to have a value of 1 at that time point and a white cell represents a variable predicted
to have a value of 0. Thus, if a black cell overlaps a value of 1, the simulation correctly predicts that variable’s
trajectory at that point. A white cell overlapping a value of 0 is also a correct prediction. Blank cells can
predict a value of either 0 or 1 without penalty. A total of 18 data points are missed in the optimal fit.
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account for some of the increased morbidity and mortality seen in older hosts in
response to viral infection (19, 23).

Consensus rule sets and rule robustness. Figure 4 shows the distribution of model
errors associated with the bootstrap consensus rule sets for younger and older mice.
The younger bootstrap replicates led to an average error value of 13.2, with a minimum
of 10 and an interquartile range (IQR) of 12 to 14 (Fig. 4A). The older bootstrap
replicates had an average error value of 20.1, with a minimum of 15 and an IQR of 19
to 21 (Fig. 4B).

As with the original data set, each of the bootstrap replicates had multiple optimal
rule sets with different rules. For the younger mice, we generated 4,607 rule sets, and
for the older mice, we generated 30,072 rule sets in total for the 100 data sets tested.
Table 2 summarizes the rule choices between age groups, indicating the percentages
of rule sets that include a particular rule for the full set of bootstrap outputs. Figures 5
and 6 show the average fit of the models generated in the bootstrap experiment.
Numbers represent the average values of the data for a particular variable on each day.

FIG 3 Network diagram of optimal rule choices for the Boolean model fitted to the full data set. (A) Diagram of rule choices for the full data set for younger
mice. Blue arrows indicate a direct relation between two components. More than one blue arrow pointing toward a variable indicates an “or” condition. Green
lines indicate two or more components that activate another component through an “and” operator. Black arrows indicate the output of the “and” operator.
Red blunted arrows indicate a “not” condition. Rectangles represent cell populations, circles represent cytokines and chemokines, hexagons represent viral
loads, and the diamond represents antibodies. Dashed lines represent rule alternatives that exist in some, but not all, models that comprise the optimal solution.
(B) Diagram of rule choices for older mice. Lines and shapes are as described above for panel A. (C) Differences in rule choices between age groups. Orange
arrows represent rules seen in the younger-mouse model but not in the older-mouse model. Purple arrows represent rules seen in the older-mouse model but
not in the younger-mouse model. Shapes without incoming arrows have identical rules between age groups.
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Figure 5 shows the bootstrap output for younger mice, and Fig. 6 shows the output for
older mice. In all variables, the frequency of a particular rule choice aligned well with
what the optimal solution suggests (Table 2). Thus, we conclude that our model was
robust and that our rules did not overfit the original data set.

Effect of deletion of immune system components on viral clearance. We tested
the effect of removing certain elements of the immune response in silico. For each age
group, one variable was kept at its baseline level for all steps of the simulation under
sublethal conditions. All models identified by the bootstrap replicates were tested
under these conditions, and the average results for each age group are summarized in
Table 3. In a previous paper (24), we tested an ordinary differential equation (ODE)
model of the immune response to influenza virus infection using the experimental data
for younger mice only. In that paper, we tested the model’s prediction of the intrahost
immune response under sublethal conditions with several elements of the inflamma-
tory response knocked out. The Boolean model knockouts are compared to the ODE
model in Table 3.

The removal of IL-10 from the system prevents the virus from being cleared from the
system. Without IL-10 being present, antibody levels do not increase, and the level of
the virus remains elevated for the full course of the simulation. IL-10 has been shown
in experiments to induce the differentiation of B cells to plasma cells, which in turn
produce antibodies (25). In our ODE model, IL-10 functioned as an anti-inflammatory
mediator but did not have a direct impact on the adaptive immune response, as it did
in the Boolean models. An IL-10 deletion in the ODE model caused the virus to be
cleared 2 days sooner than in an experiment with IL-10 (26). It is likely that an IL-10
deletion has a complex effect on the host, which can be either protective or injurious,
depending on both the host and the pathogen (27, 28).

We next removed NK cells from the system and tested the effect of their deletion
from the host. In our Boolean model, NK cells had different effects on each age group.
Without NK cells, younger mice were still able to clear the virus fully from the system
in about 85% of simulations. NK cells predominantly clear infected cells, but CTLs have
a redundant role in clearing infected cells. CTLs kill the cells independently, leading to
viral clearance. This result differs from the results of the ODE model, in which an NK cell
knockout kept the virus from being cleared and forced the level of infected cells to stay
elevated for a longer time.

In older mice, NK cells were important for the clearance of infected cells and had an
additional role in aiding in the production of IL-10 (29). Without NK cells, older mice will
not produce significant amounts of IL-10, which will limit antibody production as well.
Without antibodies, the virus cannot be cleared from the system. Numbers of NK cells

FIG 4 Error distributions for bootstrap replicate outputs. Shown are distributions of model errors for bootstrap replicates for younger mice
(4,607 models) (A) and older mice (30,072 models) (B).
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have been shown to increase as we age (30), so their loss may have been felt more
strongly in older mice.

The removal of antibodies keeps the virus from being cleared in both Boolean
models, consistent with biological evidence (31). In the ODE model, virus was cleared
even without an increase in the levels of antibodies (our unpublished data). Infected
cells were cleared quickly, removing the source of new virus from the system. Without
a large production of the virus, the innate responses cleared the virus relatively easily,

TABLE 2 Bootstrapping rule choices for younger and older mice

Rule

% of models using rule

Younger mice Older mice

ActiveM ¢ (KC & Vlow) | TNF 0.0 99.9
ActiveM ¢ Vhigh | IL1a 100.0 0.1
TNF ¢ ActiveM | Vhigh 53.2 1.3
TNF ¢ ActivecDC | Vhigh 46.8 1.3
TNF ¢ ActiveM 0.0 97.4
IL1a ¢ ActiveM | Vlow 50.3 0.1
IL1a ¢ ActiveM 0.0 99.9
IL1a ¢ ActivecDC | Vlow 49.7 0.1
IL1b ¢ ActiveM | Vlow 50.1 21.6
IL1b ¢ ActiveM 0.3 35.0
IL1b ¢ ActivecDC | Vlow 49.6 21.7
IL1b ¢ pDC | Vlow 0.0 21.7
IL-6 ¢ ActiveM | Vlow 45.2 0.0
IL-6 ¢ ActiveM 0.0 20.3
IL-6 ¢ ActiveTh 0.0 79.7
IL-6 ¢ ActivecDC | Vlow 44.8 0.0
IL-6 ¢ pDC | Vlow 10.0 0.0
IL-10 ¢ ActiveTh & Vhigh 75.9 0.7
IL-10 ¢ ActiveNK & Vhigh 24.1 49.7
IL-10 ¢ ActiveB & Vhigh 0.0 49.6
IL12p70 ¢ ActiveTh & Vhigh 36.1 0.5
IL12p70 ¢ ActiveTh 2.1 64.3
IL12p70 ¢ ActiveM & IL1b 0.0 35.2
IL12p70 ¢ pDC 61.8 0.0
RANTES ¢ ActiveM 66.7 49.3
RANTES ¢ ActivecDC 27.2 0.0
RANTES ¢ ActiveCTL 6.1 50.7
MIP1b ¢ ActiveM | Vlow 48.4 4.5
MIP1b¢ ActiveM 3.5 91.1
MIP1b ¢ ActivecDC | Vlow 48.1 4.5
KC ¢ ActiveM | Vlow 3.1 50.0
KC ¢ Vlow | pDC 96.9 50.0
ActiveNK ¢ ActiveM 0.0 99.3
ActiveNK ¢ ActiveM & Vlow 60.5 0.7
ActiveNK ¢ ActivecDC & Vlow 39.5 0.0
IFNg ¢ ActiveM 100.0 100.0
ActiveN ¢ Vlow | TNF 0.0 50.0
ActiveN ¢ KC & Vlow 100.0 50.0
IFNab ¢ (ActiveTh & Vhigh) | IEC 100.0 100.0
ActiveCTL ¢ ActiveM 100.0 1.6
ActiveCTL ¢ ActiveTh 0.0 98.4
pDC ¢ ActivecDC 0.0 100.0
pDC ¢ ActiveN 100.0 0.0
ActivecDC ¢ ActiveNK 7.3 82.5
ActivecDC ¢ IL1b 92.7 17.5
ActiveTh ¢ Vlow | ActiveM 0.0 100.0
ActiveTh ¢ RANTES & ActiveM 19.7 0.0
ActiveTh ¢ ActivecDC | IL12p70 80.3 0.0
ActiveB ¢ ActiveM 100.0 100.0
Ab ¢ (ActiveB & pDC) | Ab 0.0 28.2
Ab ¢ (ActiveB & IL-10)| Ab 100.0 71.8
Vlow ¢ (IEC | Vlow | Vhigh) & �(Ab & �IL-10) 0.0 36.3
Vlow ¢ (IEC | Vlow | Vhigh) & �(Ab) 100.0 63.7
Vhigh ¢ (IEC | Vhigh) & �(Ab) 100.0 100.0
IEC ¢ (Vlow | Vhigh) & �ActiveCTL & �ActiveNK 100.0 100.0
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although this may not reflect how the virus acts in vivo. The Boolean models better
reflect the necessity of antibodies for survival of viral infection.

The bottom row of Table 3 demonstrates the models’ responses when macro-
phages, cytokines, and chemokines have all been removed from the system. The
removal of all these inflammatory components from the model has a largely deleterious
effect on the host. In all three model simulations, the virus cannot be cleared from the
system without the onset of inflammation, and numbers of infected cells peaked at
higher levels and for longer times than with this arm of the immune system in place.

DISCUSSION

Immunosenescence in humans has to date remained a poorly understood phenom-
enon. Changes in the immune system of healthy older patients can be difficult to
ascertain given the wide range of interpatient variability seen in human subjects as well
as the complex system of interactions between immune components. Discrete, rule-
based models allow the data-driven discovery of important interactions between
components of the host-virus response to influenza virus infection in a way that may
be more robust to interpatient variability than other modeling approaches, such as
ODEs. Most previously reported Boolean models of the immune response to infection
focus exclusively on the analysis of steady-state conditions and do not leverage
available dynamical data (15–18); our model, however, looked at a rich set of time series
data to which the outputs of the model are matched. The modeling framework developed
here (Boolean model combined with linear-programming optimization of the rule set to
match observed data) is easy to apply to other scenarios, and the data-fitting process is
computationally inexpensive.

Rule-based models allow an intuitive interpretation of the interactions between
variables, making them simpler for nonexperts to understand and apply. The rules allow
a representation of complicated biological phenomena with a straightforward combi-
nation of “ors,” “ands,” and “nots.” Rule-based models also allow the discovery of novel
interactions between components of the model.

FIG 5 Output from the bootstrap experiments for younger mice. Average values of bootstrap data are
indicated by numbers, and the simulated trajectories are indicated by shading, where a black cell
represents a variable predicted to have a value of 1 at that time point and a white cell represents a variable
predicted to have a value of 0. Gray shading indicates that a variable is “on” at that point for some, but not
all, rule sets. Darker gray shading indicates a greater likelihood of a variable having a value of 1 at that point.
NaN, component not measured at this time point.
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In comparing activation data between young and old mice, it is clear that there must
be a shift in the cellular source of many cytokines and chemokines as we age. The
Boolean data show that the levels of activated macrophages increase on day 2 for
both younger and older mice. There is disagreement in the literature over how
macrophage populations change as we age: some papers report a decrease in bone
marrow macrophage counts (32, 33), whereas other papers suggest an increase (34).
Defects have also been reported for Toll-like receptors (TLRs) on macrophage surfaces
(2), which may diminish their ability to react to an infection and affect the numbers of
macrophages found in tissues during experiments. Our data suggest that age presents
no difference in the recruitment of macrophages to the site of infection, but there is a
difference in cytokine expression in these cells.

Cytokine dysregulation plays an important role in the rule choices for older mice.
Almost every cytokine and chemokine is regulated by rules different from those used
in the younger-mouse model. In particular, older mice are less likely to have inflam-
matory components respond directly to the virus, representing an initial upregulation
by lung epithelial cells. Dysregulation of the lung epithelium may account for the
slower initiation of many immune responses in older hosts, in whom the inflammatory
response has been shown to be delayed by about 2 days (19).

FIG 6 Output from the bootstrap experiments for older mice. Average values of bootstrap data are
indicated by numbers, and the simulated trajectories are indicated by shading, where a black cell
represents a variable predicted to have a value of 1 at that time point and a white cell represents a variable
predicted to have a value of 0. Gray shading indicates that a variable is “on” at that point for some, but not
all, rule sets. Darker gray shading indicates a greater likelihood of a variable having a value of 1 at that point.

TABLE 3 Effect of deletion of immune components on virus clearance in younger and
older mice

Component kept at
baseline

ODE model result for
younger mice

Boolean model result for
younger mice

IL-10 Virus is cleared 2 days faster Virus is not cleared
NK cells Virus is not cleared Virus is not cleared in 15%

of simulations
Antibodies No significant change in

virus clearance
Virus is not cleared

All inflammation Virus is not cleared Virus is not cleared
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Our rules imply that both type I and type II interferons were regulated via the same
mechanisms in older and younger mice. Both age groups rely on monocytes to produce
gamma interferon (IFN-�) (35). The rule for IFN-�/� production is slightly more complex,
as it needs to match both an increase early in infection and a decrease late in the
simulation. In our model, IFN-�/� is produced primarily by infected epithelial cells and
CD4� T cells. Although T cells may not produce interferon directly, their presence may
prime other cells, such as plasmacytoid dendritic cells, to produce interferon. We
cannot model this directly, as the Boolean-valued data for dendritic cells cannot
adequately represent this interaction, so we utilize T helper cells in the rule instead.

B cells were also regulated by the same rules in young and old mice. Although their
function and effect on other components of the model may vary, the Boolean data
revealed enough similarity in the B cells that they could agree on rule choices. This
implies that the differences in activation and recruitment in the innate immune
response are more substantial than those in the B cell responses in this model.

Some of our results might have been improved with a richer data set. Some
variables of this model, such as neutrophils and epithelial cells, did not have accom-
panying data to which we could match our trajectories. Data for other variables, like
antibodies and macrophages, were available for some but not all cohorts. Numbers of
cells were not measured on every day of the experiment, causing several missing data
points, at which times our model could predict a cell to be “on” or “off” without penalty.
Adding to this data set may have strengthened our predictions by removing this
ambiguity. We are also unable to obtain truly longitudinal data for a mouse model of
influenza, as mice must be sacrificed in order to measure the data (24). These trajec-
tories then had to be reconstituted from pooled data from three different animals
sacrificed at each time point. Results might have been further improved if we had been
able to track a single animal over the full course of infection. We initiated the
optimization process for rule set identification from a superset of potential rules derived
from the literature and obvious patterns seen in data. It might have been preferable to
infer a universe of potential rules entirely from data, starting from a comprehensive set
of all possible rules given a preset level of rule complexity. We are currently looking into
efficient ways to compute this superset. We used bootstrapping to mitigate overfitting
and thus assess the robustness of the rule sets inferred from the data. Eliminating data
from individual animals seemed the most intuitive method of creating subsets of data
but also introduced the necessity of recomputing 0’s and 1’s in these subsets. This is a
much more stringent requirement than simply eliminating 0’s and 1’s randomly from
the complete data set. To our knowledge, there are no established methods to assess
rule set robustness in situations such as ours, where the source data themselves are not
binary.

Hernandez-Vargas et al. previously studied a portion of these influenza virus infec-
tion data for young and old mice (36). Using a small, target cell-limited ODE model,
those authors fit data for the virus levels in both age groups. They determined that type
I interferon, type II interferon, and TNF have redundant roles in mediating antiviral
effects postinfection, but they did not consider the different mechanisms by which
each of these cytokines helps the host to fight infection. Our model incorporates many
more mechanisms, and as such, we can capture information about dysregulation in the
activation and recruitment of cells and cytokines, which tend to vary greatly between
age groups. In our Boolean model, TNF and interferon do not have redundant roles.
TNF acts as a proinflammatory cytokine to increase the presence of macrophages and
neutrophils, and it can be upregulated by dendritic cells, macrophages, or epithelial
cells. Interferon helps to prevent the spread of the virus from infected to uninfected
cells. Because our data do not include counts of infected cells, we do not model this
explicitly. Hernandez-Vargas et al. also did not find an important effect of NK cells in
improving the fits of their model to the experimental data. Our model, however,
presents an important role for NK cells, particularly in the simulations with older mice.
Numbers of NK cells have been shown to increase greatly with age, likely to compen-
sate for a deficiency in CTLs in older hosts (30). The greater complexity represented in
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our model with 20 more components allows our model to demonstrate the importance
of some specific pieces of the immune response that a simpler model may not be able
to reveal.

In conclusion, we present an application of optimization methods to compute
rule-based Boolean network models of murine influenza A virus infection, based on
rich, multivariate time series experimental data with sublethal and lethal inocula in
young and old mice. Our model emphasizes rule differences, mapping to biological
differences between younger and older hosts, supporting some documented mecha-
nisms of immunosenescence. Importantly, the Boolean network also led to the sug-
gestion of alternative data-driven mechanisms, like those of IL-10, which could guide
further focused experimental work on uncovering the biological bases of immunose-
nescence.

MATERIALS AND METHODS
Experimental data. Data to which the model is calibrated were measured in BALB/c mice subjected

to influenza A virus infection, a subset of which was presented previously (19, 24). Mice were of one of
two age groups: young mice, 12 to 16 weeks of age, or old mice, 72 to 76 weeks of age. Within each of
these age groups, mice were further subdivided into two cohorts based on the initial viral inoculum:
sublethal (50 PFU dose) or lethal (500 PFU) (19). In the sublethal cohort, data were obtained on days 0,
1, 2, 3, 5, 7, 9, 11, 15, and 19. In the lethal cohort, data were collected on days 0, 1, 2, 3, 5, and 7, at which
point the remaining mice succumbed to infection. At each time point, at least three mice were sacrificed
for the data measurements, and from these mice, we generated a mean and standard deviation of each
measurement. We used these statistics to transform the data from real-valued measurements to Boolean
values. Using day 0 measurements as a common baseline (a total of 12 measurements, 6 for each initial
dose), we performed analysis of variance (ANOVA) to test if a data point for variable X at time T is
significantly larger than the value of variable X at baseline (P � 0.05). We then applied a post hoc
correction to the ANOVA output to account for the many t tests required. We used Dunnett’s test, which
corrects for multiple comparisons to a single control (37). If a significant difference is observed, variable
X is assigned a value of 1 at time T (to denote an elevated level); otherwise, the variable is assigned a
value of 0. (There were no instances in which a variable would attain a value significantly lower than its
day 0 baseline value.) We repeated this process for all variables across all cohorts, yielding the
Boolean-valued data points to which the model is calibrated. We have 310 data points for the younger
mice and 306 data points for the older mice.

The virus is considered to be “on” until the immune system clears it. Initially, sublethal infection has
a low level of the virus, and lethal infection has a high level of the virus. Virus is the only component in
the system that begins with a data point of 1, indicating that it is initially present at an elevated level,
causing infection. A viral titer of between 50 PFU and 500 PFU is considered a low virus level, and any
viral titer above 500 PFU is considered a high virus level. Once the level of the virus is below 50 PFU, it
falls below the lower limit of detection, and we consider it to be cleared from the system (a data point
of 0).

Modeling framework. We have constructed a rule-based model of the immune response to
influenza virus infection, which accounts for 23 variables representing the viral load, immune cells,
cytokines, chemokines, antibodies, and infected epithelial cells (Table 4). The library of potential
interactions and relations between the model variables is inferred from data in the existing literature and
then refined by using our experimental data. The alternative outcomes of a modeled infection are either
viral clearance or death of the host, depending on the inoculum.

The model is a strict two-state Boolean model, with each variable attaining two values, 0 (at or near
baseline values) or 1 (significantly above baseline values). The values of the variables change synchro-
nously at discrete time points that are not necessarily equally spaced in time, to allow variable rates of
switching processes. These changes are governed by a Boolean rule, which defines the conditions under
which the variable should take on a value of 1 at the next step based on the current values of other
variables. These rules are relatively simple and involve a combination of “and,” “or,” and “not” operators
(also denoted &, �, and �, respectively). For example, if two or more components are required for the
activation of a variable, the rule will include an “and” operator (e.g., in the rule “ActiveN ¢ KC & Vlow,”
both KC and a low level of virus are required to activate neutrophils). If one of multiple sources is
sufficient to activate a variable, this rule will include an “or” operator (e.g., in the rule “IL1b ¢ ActiveM � Vlow,”
an elevation of the IL-1� level requires either activated macrophages or a low level of the virus). If one
component inhibits another, the rule will include a “not” operator (e.g., in the rule “Vhigh ¢ [IEC � Vhigh]
& �Ab,” the increase of the virus to a high level requires the absence of antibodies and either the
presence of infected cells or an already elevated level of the virus). Because the two age groups feature
distinct patterns in their data sets (in particular, there is a 1- to 2-day delay in the onset of many
inflammatory components), we use distinct rule sets to model each age group’s response to infection.
Calibration of the model, which consists of selecting the rules for inclusion in the transfer functions,
allows us to capture the data-driven differences in immune responses between the age groups and
provide conclusions on the impact of immunosenescence on the immune response to influenza virus
infection.
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To assemble the rules of the Boolean model, we first generated a library of potential rules for each
of the 23 variables based on data available in the literature that included various observed or hypo-
thetical interactions between the model variables. For example, the proinflammatory cytokine TNF can
be produced by neutrophils (38), macrophages (39), dendritic cells (40), and epithelial cells (41). The time
at which TNF transitions from a value of 0 to a value of 1 dictates which of these potential producers will
be most influential in its trajectory. Thus, choices for TNF rules included combinations of these cells. Rule
choices were generated primarily from the literature, but some are also data driven. Rules are kept simple
in that no more than five variables were involved in any particular rule. Data from both younger and
older mice were fit from the same library of 68 total rule choices.

Optimization of rule choices. To find the optimal set of Boolean rules that best described the data,
we reformulated the rule discovery problem into a mixed-integer linear-programming (MILP) problem.
A similar formulation was reported previously by Atias et al. (42). We define our objective function as the
minimum difference between the model trajectory and the measured data, as given by equation 1. This
was reformulated as a linear objective function using dummy variables (see equation A1 in the Appendix
for details). Dt,s and Mt,s represent the measured data and model, respectively, for state s at time t.

min�s�S �t�TS
|Dt,S � Mt,S| (1)

All potential Boolean rules were expressed as a series of logical equivalences (if and only if statements
P1 ↔ P2). These rules were expanded into their equivalent conjunctive normal form, which can be
expressed as a series of independent or constraints, each of which can be represented as a single linear
inequality (43). As long as each of these linear inequalities is satisfied, the overall conjunction expression
is satisfied. The result is

Q1 � Q2 � · · · � Qn (2)

Q1 � P11
� P12

� · · · ⇒ y11
� y12

� · · · � DV (3)

Q2 � P21
� P22

� · · · ⇒ y21
� y22

� · · · � DV (4)

where yij
represents the Boolean value of the expression Pij

and DV is a Boolean decision variable. The
decision variable allows the optimizer to apply this constraint (DV � 1) or turn it off (DV � 0). Additional
formulation details are provided in the Appendix.

A Python (version 3.5) package was written to accept Boolean data and a list of potential rules for
each state. This package reformulates the inputs into an MILP problem for use with the Python
Optimization Modeling Objects package (Pyomo) (44, 45). Pyomo converts this script into a solver-
friendly file, which was solved by using the IBM ILOG CPLEX optimization studio. CPLEX was set to
populate all optimal solutions via its solution pool feature. Finally, our Python package parses through
this solution pool and generates the rule selection frequency identified in Results.

Network simulation. The Boolean network was simulated with the Python package. Model error is
defined as the total number of data points incorrectly predicted by the simulation. Each time step
represents a jump from one state of the system to the next, rather than a fixed time interval. In this way,
we capture all state changes that occur in each variable as defined by a change in a variable from a 0
to a 1 or from a 1 to a 0 but potentially ignore differences between cohorts in the finer timing of changes
in states.

TABLE 4 Variables and associated abbreviations for the Boolean network model

Immune component Variable designation

Activated macrophages ActiveM
TNF-� TNF
IL-1� IL1a
IL-1� IL1b
IL-6 IL-6
IL-10 IL-10
IL-12p70 IL12p70
RANTES RANTES
MIP-1� MIP1b
Keratinocyte chemoattractant KC
Activated NK cells ActiveNK
Gamma interferon IFNg
Activated neutrophils ActiveN
Alpha/beta interferon IFNab
Activated CTLs ActiveCTL
Plasmacytoid dendritic cells pDC
Activated conventional dendritic cells ActivecDC
Activated helper T cells ActiveTh
Activated B cells ActiveB
Antibodies Ab
Low virus titer Vlow
High virus titer Vhigh
Infected epithelial cells IEC
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We simulate the system with synchronous updates for 6 time steps for the lethal cohort and 10 time
steps for the sublethal cohort. At time zero, only the virus is set to a value of 1; all other variables are
considered “off” initially. In the sublethal simulations, only Vlow is “on” initially, whereas in the lethal
simulations, both Vlow and Vhigh are “on” initially. Within each age group, sublethal and lethal cohorts
are simulated with the same set of rules; only the initial condition is changed.

Building a consensus rule set. None of the classical averaging techniques apply to our specific task
of building a consensus rule set for each cohort (46–48). We therefore proceeded as follows. We
generated 100 new data sets by removing randomly 10% of the raw data (making sure that at least two
data points remain at each time point for each variable) and recalculating the Boolean levels for each of
the 23 variables. Optimization of the set of rules was performed for each bootstrap data set in the same
way as for the full data set. Generally, multiple rule sets were found to give the same optimal predictive
accuracy. The consensus bootstrap rule set was obtained by creating, for each variable, a disjunctive rule
assembling each rule emerging from the optimal rule sets.

APPENDIX

To fit the Boolean data, we find the optimal set of rules that fit the data with the
fewest total errors. We begin with a library of 68 possible rule choices (Table A1). We
generate a separate set of rules for older and younger mice, but only one rule set is
used to model the sublethal and lethal data within one age group. To obtain these rule
sets, we reformulated the rule discovery problem into an integer linear-programming
problem (42, 49). The objective function is the minimized difference between the
model prediction and the measured data. The objective was then linearized by using
dummy variables, At,s, given by the equation

min�
s�S

�
t�Ts

At,s, subject to Dt,s � Mt,s 	 At,s and Dt,s � Mt,s � �At,s (A1)

where Dt,s and Mt,s represent the measured data and model, respectively, for state s at
time t.

Formulation of Boolean rules. All Boolean rules can be expressed in the conjunc-
tive normal form, which is comprised of a series of “and” clauses: rule R � Q1 � Q2

� . . . � QN, where Qi is a series of inclusive “or” terms, Qi � P1 � P2 � . . . � PM (43).
Each term P is the name of a variable in the system with or without a “not” operator
preceding it, depending on whether the term has a positive or negative effect on the
clause.

Let yi represent the Boolean value of Pi. Each of the Qi logical “or” constraints can be
expressed as

y1 � y2 � · · · � yr � 1 (A2)

In other words, at least one yi value must be 1 for the “or” constraint to be satisfied. The
“and” constraint, R, does not need to be explicitly stated because equation A2 ensures
that each subclause, Qi, is true, and if R is comprised of a series of true clauses, R must
be satisfied.

The “not” clauses, ¬Pi, can be expressed as 1 � yi. Implications, e.g., P1f P2, can be
expressed as ¬P1 � P2, which is an “or” constraint:

1 � y1 � y2 � 1 (A3)

Using this framework, we can formulate this as an MILP problem (42, 49). Potential rules
are always of the form Si,t�1 ¢ St, where St represents a series of logical operations
acting upon state s at current time t. This logical clause will generate an update in the
ith state Si at time t � 1. If this rule were true, Si,t�1 N St for all time, t. Applying the
above-described equivalences, we obtain

¬Si,t � 1 � St (A4)

¬St � Si,t � 1 (A5)

which we expand into the conjunctive normal form and apply the appropriate linear
constraints.

Finally, to perform rule optimization, Boolean decision variables, Dij, are initialized
for every rule j at each state i. The k “or” constraints generated from the conjunctive
normal form of the ijth rule are now represented as
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TABLE A1 Library of rule choices

Rule choice

ActiveM ¢ (KC & Vlow) | TNF
ActiveM ¢ Vhigh | IL1a
ActiveM ¢ IL1a | ActiveN
TNF ¢ ActiveM | Vhigh
TNF ¢ ActivecDC | Vhigh
TNF ¢ ActiveM
IL1a ¢ ActiveM | Vlow
IL1a ¢ ActiveM
IL1a ¢ ActivecDC | Vlow
IL1b ¢ ActiveM | Vlow
IL1b ¢ ActiveM
IL1b ¢ ActivecDC | Vlow
IL1b ¢ pDC | Vlow
IL-6 ¢ ActiveM | Vlow
IL-6 ¢ ActiveM
IL-6 ¢ ActiveTh
IL-6 ¢ ActivecDC | Vlow
IL-6 ¢ pDC | Vlow
IL-10 ¢ ActiveTh & Vhigh
IL-10 ¢ ActiveNK & Vhigh
IL-10 ¢ ActiveB & Vhigh
IL12p70 ¢ ActiveTh & Vhigh
IL12p70 ¢ ActiveTh
IL12p70 ¢ ActiveM & IL1b
IL12p70 ¢ pDC
RANTES ¢ ActiveM
RANTES ¢ ActivecDC
RANTES ¢ ActiveCTL
MIP1b ¢ ActiveM | Vlow
MIP1b¢ ActiveM
MIP1b ¢ ActivecDC | Vlow
KC ¢ ActiveM | Vlow
KC ¢ ActiveM
KC ¢ Vlow | pDC
ActiveNK ¢ ActiveM
ActiveNK ¢ ActiveM & RANTES
ActiveNK ¢ ActiveM & Vlow
ActiveNK ¢ ActivecDC & Vlow
IFNg ¢ (ActiveM)
IFNg ¢ ActiveN
ActiveN ¢ Vlow | TNF
ActiveN ¢ KC & Vlow
IFNab ¢ ActiveNK
IFNab ¢ (ActiveTh & Vhigh) | (IEC & Vhigh)
IFNab ¢ (ActiveTh & Vhigh) | IEC
ActiveCTL ¢ ActiveM
ActiveCTL ¢ ActiveTh
pDC ¢ ActivecDC
pDC ¢ ActiveN
ActivecDC ¢ ActiveNK
ActivecDC ¢ Vlow | Ng
ActivecDC ¢ IL1b
ActiveTh ¢ Vlow | ActiveM
ActiveTh ¢ RANTES & ActiveM
ActiveTh ¢ ActivecDC | IL12p70
ActiveB ¢ ActiveM
Ab ¢ (ActiveB & pDC) | Ab
Ab ¢ (ActiveB & IL-10)| Ab
Vlow ¢ (IEC | Vlow | Vhigh) & �(Ab & �IL-10)
Vlow ¢ (IEC | Vlow | Vhigh) & �(Ab)
Vhigh ¢ (IEC | Vhigh) & �(Ab)
IEC ¢ (Vlow | Vhigh) & �ActiveCTL & �ActiveNK
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constraint 1, y1 � y2 � · · · � yr � Dij;

constraint 2, y1 � y2 � · · · � yr � Dij;

· · ·

constraint k, y1 � y2 � · · · � yr � Dij

(A6)

Here we modify the rule laid out in equation A2 to allow the optimizer to turn a rule
on or off, depending on how well it fits the experimental data. If the decision variable
Dij is 0, the values of yi are unconstrained, and potential rule ij does not apply. If Dij is
1, the rule applies. A final constraint is set such that each state may have only 1 rule
selected:

�
j � 1

J

Dij � � 1 (A7)

Now we look at a detailed example of constraint formation from an example potential
rule: ActiveM(t � 1) ¢ KC(t) � IL-6(t). This rule is equivalent to the following con-
straints:

ActiveM�t � 1� ⇒ �KC�t� � IL6�t�� � ¬ActiveM�t � 1� � �KC�t� � IL6�t��
� �¬ActiveM�t � 1� � KC�t�� � �¬ActiveM�t � 1� � IL6�t�� (A8)

1 � ActiveM�t � 1� � KC�t� � D (A9)

1 � ActiveM�t � 1� � IL6�t� � D (A10)

�KC�t� � IL6�t�� ⇒ ActiveM�t � 1� � ¬ �KC�t� � IL6�t�� � ActiveM�t � 1�
� ActiveM�t � 1� � ¬KC�t� � ¬ IL6�t� (A11)

ActiveM�t � 1� � 1 � KC�t� � 1 � IL6�t� � D (A12)
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