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Methodology for Computational
Fluid Dynamic Validation for
Medical Use: Application to
Intracranial Aneurysm
Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of
cardiovascular diseases. However, it uses assumptions that simplify the complexities of
the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to cal-
culate the effect of these assumptions in the CFD simulation results. However, existing
CFD validation approaches do not quantify error in the simulation results due to the
CFD solver’s modeling assumptions. Instead, they directly compare CFD simulation
results against validation data. Thus, to quantify the accuracy of a CFD solver, we devel-
oped a validation methodology that calculates the CFD model error (arising from model-
ing assumptions). Our methodology identifies independent error sources in CFD and
validation experiments, and calculates the model error by parsing out other sources of
error inherent in simulation and experiments. To demonstrate the method, we simulated
the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD soft-
ware STAR-CCMþ. Particle image velocimetry (PIV) provided validation datasets for the
flow field on two orthogonal planes. The average model error in the STAR-CCMþ solver was
5.63 6 5.49% along the intersecting validation line of the orthogonal planes. Further-
more, we demonstrated that our validation method is superior to existing validation
approaches by applying three representative existing validation techniques to our CFD
and experimental dataset, and comparing the validation results. Our validation method-
ology offers a streamlined workflow to extract the “true” accuracy of a CFD solver.
[DOI: 10.1115/1.4037792]

Keywords: computational fluid dynamics, particle image velocimetry, cardiovascular
flow, biomedical industry, hemodynamics, ASME V&V 20, validation protocol, patient-
specific, CFD validation, PIV

Introduction

Image-based computational fluid dynamics (CFD) has been
extensively used in research to simulate blood flow in cardiovas-
cular systems [1–4]. Recently, there has been an increasing inter-
est in using CFD for clinical management of cardiovascular
diseases [5–9]. However, because of the potential direct impact on
patients’ lives, the margin for error in the results of a cardiovascu-
lar CFD simulation is undoubtedly small. Thus, the accuracy of

these CFD-based tools must be quantified before their translation
into clinic. Unfortunately, there are no guidelines specifically tai-
lored to validate CFD solvers in the context of cardiovascular
flows.

Because cardiovascular flows are multiphysics and complex
by nature, CFD models of these flows generally use simplifying
modeling assumptions (e.g., rigid vessel walls and Newtonian
blood properties) [2,3] to reduce the complexity of the computa-
tional model. These assumptions affect the performance of the
CFD solver and can potentially affect the simulated flow field in
the intended cardiovascular system. Evaluating the error in sim-
ulation results due to these CFD modeling assumptions is crucial
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for assessing the validity of a CFD solver. However, previous
CFD validation studies in cardiovascular flows only performed
either qualitative or quantitative comparisons of simulation
results with validation data (generally in vitro experimental
measurements) [10–13]. Directly comparing the simulation and
experimental data in this way does not provide any information
about the CFD solver’s modeling assumptions, and thus is not
sufficient to validate the accuracy of a CFD solver. Thus, a vali-
dation methodology that quantifies the performance of a CFD
solver by evaluating the error due to the CFD modeling assump-
tions is needed.

To this end, we developed a validation methodology for CFD
that can quantify the error due to its modeling assumptions. We
adopted and streamlined the concepts of the American Society of
Mechanical Engineers Verification & Validation 20 Standard
(ASME V&V 20) [14] and calculated CFD model error, by pars-
ing out other sources of error in simulation and validation data-
sets. The CFD model error is an estimate of “how good” the
assumptions of the candidate CFD solver are at simulating the
physics of a given flow.

We applied this validation methodology in a clinically relevant
context by simulating blood flow in a patient-specific intracranial
aneurysm (IA) using the commercial CFD software package STAR-
CCMþ (v10.02, CD-adapco, Melville, NY). We validated the simu-
lated IA flow field against experimental velocity field measure-
ments from two-dimensional particle image velocimetry (PIV) in
an identical silicone aneurysm model. From the simulation and
experimental results, we calculated the validation error and uncer-
tainties to quantify the model error using our validation frame-
work. To demonstrate the advantage of using our validation
methodology over existing validation approaches [10–13], we
applied three existing validation techniques to our CFD and exper-
imental results, and compared the results from each validation
technique with our validation results.

Methods

CFD Validation Methodology. Existing CFD validation stud-
ies [11–13,15] quantify the difference between CFD results and
validation data as the error in the CFD simulation. However, this
difference does not reflect the accuracy of the CFD solver. This
difference is also affected by other error sources (in both simula-
tion and experimental data), and does not capture the error due to
CFD solver’s modeling assumptions. Let us assume that CFD is
used to predict a physical quantity, T (where T is the true value).
The simulation provides a numerical result, S, as a prediction of
T. The error in simulation result (dS) is

dS ¼ S� T (1)

As shown in Fig. 1, the CFD error (dS) has three sources

(1) numerical error (dnum), arising from the numerical
discretization;

(2) input parameter error (dinput), error in the CFD result (S) due
to the errors in the input parameters into the simulation;

(3) model error (dmodel), arising from the CFD modeling
assumptions.

Therefore, the overall simulation error can be expressed as

dS ¼ dmodel þ dnum þ dinput (2)

Combining Eqs. (1) and (2) gives

dmodel ¼ S� ðdnum þ dinput þ TÞ (3)

There are two possible scenarios when calculating dmodel, given
the numerical prediction S. First, the true value of the physical
quantity is known. In this case, we need to estimate dnum and
dinput, and use Eq. (3) to calculate dmodel. Second, the true value T

is unknown. In this case, an in vitro or in vivo validation experi-
ment is required to predict the measured value, D, for the physical
quantity. Consequently, the error in experimental measurement
(dD) is

dD ¼ D� T (4)

Substituting the value of the true value, T, from Eq. (4) into
Eq. (3) gives

dmodel ¼ S� ðdnum þ dinput þ D� dDÞ

which can be rewritten as

dmodel ¼ S� Dþ ðdnum þ dinput � dDÞ (5)

where (S� D), the difference between CFD results and experi-
mental measurements, is referred to as the validation error E

E ¼ S� D (6)

Thus, Eq. (5) can be written in terms of the validation error (E) as

dmodel ¼ E� ðdnum þ dinput � dDÞ (7)

The terms in parenthesis in RHS can be lumped together and
represented by a validation uncertainty (uval) term. Thus, the
model error can be written in terms of validation error and uncer-
tainty as

Fig. 1 Overview of the validation concept with sources of error
in round-edged rectangular boxes. dmodel (shaded box, error due
to modeling assumptions) represents the true accuracy of the
simulation model. (a) Generalized sources of errors in a compu-
tational model and experimental measurements. (b) Sources of
errors considered while calculating dmodel based on our example
CFD simulation and PIV experiments on the IA model.
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dmodel ¼ E� uval (8)

where

uval ¼ dnum þ dinput � dD (9)

Since all three terms in RHS in Eq. (9) are systematic error and
independent of each other [16,17], uval can expressed as the root
mean square of their uncertainties as follows:

uval ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

num þ u2
input þ u2

D

q
(10)

Where

(1) Numerical Uncertainty (unum) is the uncertainty due to
numerical discretization in the CFD solver.

(2) Input Parameter Uncertainty (uinput) is the uncertainty due
to input parameters in the CFD simulation.

(3) Experimental Uncertainty (uD) is the uncertainty in the
experimental measurements.

The model error can then be expressed as the combination of E
and uval as

dmodel ¼ E 6 uval (11)

Determination of unum, uinput and uD, and eventually uval as well as
determining E becomes essential in calculating dmodel as shown by
Eq. (11).

Numerical Uncertainty (unum). The uncertainty in CFD results
due to the spatial and temporal discretization of the flow domain
is called the numerical uncertainty (unum). Based on Richardson
extrapolation or h-extrapolation [18,19], unum is calculated by ana-
lyzing the differences in CFD results for systematically refined
discretization. CFD results for at least two discretization (the so-
called coarse and fine discretization) are required to evaluate unum.
Based on these two discretization, the grid refinement factor is
defined as the ratio of coarse to fine discretization

r ¼ hcoarse

hfine

(12)

where h is the representative cell, mesh or grid size for spatial dis-
cretization, and time step for temporal discretization.

The difference in S in the two discretization is defined as the
estimated error (ea), which is calculated as

ea ¼ jS1 � S2j (13)

where S1 and S2 are the results of the output parameter of interest
in the coarse and fine discretization, respectively.

Then, grid convergence index (GCI) and unum are calculated
from ea, the factor of safety (Fs), and the expansion factor
(k). The recommended values of Fs and k are 1.25 and 1.15,
respectively [14]

GCI ¼ Fs � ea

rp � 1
(14)

unum ¼
GCI

k
(15)

where p is defined as the observed order of the method, and is
equal to 1 for systematically refined discretization. Equations
(12)–(15) are used to calculate the uncertainties due to spatial and
temporal discretizations [14].

Progressive refinement of the spatial discretization of the flow
domain should result in convergence of unum, and the converged
value of unum should be used to calculate dmodel. Therefore, to

demonstrate that the value of unum converges, we recommend to
use at least four consecutively refined meshes, and then calculate
unum on the three consecutive mesh pairs in the sequence. It is pos-
sible that four meshes are not enough to observe the convergence
of unum. In these cases, further grid refinement should be per-
formed to ascertain proper convergence of unum [14,20].

Input Parameter Uncertainty (uinput). Input parameter uncer-
tainty (uinput) is defined as the uncertainty in CFD results due to
the error in input parameters and is defined as

u2
input ¼

Xn

i¼1

X̂i
@S

@Xi

uXi

X̂ i

� �2

(16)

where uXi
is the associated standard uncertainty of the input

parameter, X̂i is the nominal parameter value, and n is the number
of uncorrelated input parameters. The term X̂ ið@S=@XiÞ is called
the scaled sensitivity coefficient, which can be calculated by using
a second-order central finite difference approximation for the term
@S=@Xi as follows:

@S

@Xi
¼ S X1;X2;…;XiþDXi;…;Xnð Þ� S X1;X2;…;Xi�DXi;…;Xnð Þ

2DXi

(17)

Experimental Uncertainty (uD). The experimental uncertainty
(uD) is the uncertainty in the experimental results, a consequence
of variabilities in the experimental setup. The general methodol-
ogy used to calculate uD requires evaluating the uncertainties of
the individual measured variables during an experiment, and then
calculating the overall uncertainty in the experimental results due
to variations in the measured variables [14].

Example: Validation of CFD Simulation in an Intracranial
Aneurysm

Intracranial Aneurysm Model Selection and Phantom
Fabrication. As a test-bed for application of our validation meth-
odology in a cardiovascular blood flow model, we chose a repre-
sentative patient-specific saccular internal carotid artery aneurysm
with 9 mm diameter. Under institutional review board approval
from University at Buffalo, we obtained the three-dimensional
(3D) angiographic image of this patient IA (Fig. 2(a)) recorded at
the Gates Vascular Institute. We segmented the image using vir-
tual modeling tool kit [21] (vmtk) to obtain a triangulated surface
stereolithographic (stl) geometry of the IA model (Fig. 2(b)). Sub-
sequently, using a 3D printer (Objet Eden 500V, Stratasys Ltd.,
Eden Prarie, MN), we printed a physical model of the IA geome-
try. Employing the lost wax technique [22] on the 3D printed
geometry, we fabricated an optically clear silicone (Sylgard 184
elastomer, Dow Corning, Midland, MI) cube containing hollow
aneurysm-vessel geometry (Fig. 2(c)).

PIV Setup. Particle image velocimetry experiments were
performed on the IA phantom to obtain planar velocity measure-
ments on two orthogonal planes in the IA sac (Fig. 3). A blood-
mimicking fluid (47.4% water, 36.9% glycerol, and 15.7% NaI)
[23] was prepared and fine-tuned [24] to match the refractive
index of the silicone phantom (1.42) to eliminate the refraction of
the light sheet. Table 1 shows properties of the fine-tuned fluid. A
flow loop was then setup (Fig. 3(a)) and seeded with 3.2 lm neu-
trally buoyant fluorescent tracer particles. A peristaltic pump
(Harvard Bioscience, Inc., Holliston, MA) generated physiologi-
cal waveforms with the duration of a cardiac cycle as 0.85 s (heart
rate¼ 70 beats/min). An inline flow probe and a flowmeter (AD
Instruments, Inc., Colorado Springs, CO) were connected
upstream to the phantom to record the mean flow rate in the loop
[25]. The recorded data were transferred to a computer using an
in-house LABVIEW code (National Instruments, Austin, TX). A
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state-of-the-art PIV system (LaVision, Inc., Ypsilanti, MI) was
arranged next to the flow loop that included a neodymium-doped
yttrium aluminum garnet (Nd:YAG) laser (LaVision, Goettingern,
Germany), with a wavelength of 532 nm, and a high-speed 16 bit
CMOS camera at 5.5 megapixels. The PIV system acquired image
pairs at 40 time-points in one cycle, with 100 image pairs acquired
for each time-point. To obtain the velocity vectors, a multipass
cross-correlation analysis was used on each image pair with the
interrogation window size of 64� 64 pixels in the first pass and
32� 32 pixels in the second pass. The vectors were then averaged
to obtain the time-averaged in-plane velocity vectors for the IA
model. The PIV experiment was performed on two orthogonal
planes: sagittal and transverse planes (Fig. 3(b)) to obtain in-plane
time-averaged velocity vectors.

CFD Methods. The IA phantom was re-imaged using a Toshiba
Infinix C-arm machine (Toshiba Medical Systems Corp., Tokyo,
Japan) and accurate surface imaging of the IA model was obtained
[11]. The re-imaged file was segmented into a surface stl file
(Fig. 2(d)) and was used to perform CFD simulations. The 3D
computational domain of the IA model was discretized into poly-
hedral cells, with four prism layers near the wall. A finite volume
solver in STAR-CCMþ was used to solve the flow-governing
Navier–Stokes equations under pulsatile, incompressible, and
laminar flow conditions. The aneurysm wall was assumed rigid
with no-slip boundary condition, and blood was assumed as New-
tonian. Traction-free boundary condition was implemented at the

outlet of the IA model. We matched the inlet flow rate, flow wave-
form, density, and viscosity values with the experiment (Table 1).
Each simulation was run for three flow waveforms to allow for
convergence of the solution, and results from the final waveform
were used as the solution of the simulation.

CFD Solver Parameter Optimization. To obtain the optimal
parameter settings for the STAR-CCMþ solver, we tested the sensitiv-
ity of the simulation results to the following CFD parameters: (1)
spatial discretization, (2) temporal resolution, and (3) order of
accuracy of the solver discretization scheme. We first performed a
grid convergence analysis where the IA flow domain was discre-
tized into ten different mesh sizes, with number of elements

Fig. 3 PIV setup and orthogonal planes in the IA model for PIV data acquisition: (a) schematic diagram
of the PIV experimental setup and (b) IA geometry with orthogonal sagittal and transverse planes used
for PIV flow measurements. The dotted line of intersection of the planes was used as the domain of vali-
dation (validation line) for the STAR-CCM1 CFD solver.

Table 1 Fluid properties and flow conditions. Properties of the
blood-mimicking fluid and inlet boundary conditions for both
the flow loop in the experimental setup and CFD simulations.

Fluid

Refractive index 1.42
Viscosity (cP) 4.15
Density (kg/m3) 1238

Inlet flow conditions
Flow rate (ml/min) 256
Reynolds number 358
Duration of a cardiac cycle (s) 0.85

Fig. 2 The patient-specific IA model used for validation of STAR-CCM1 CFD solver: (a) 3D angiographic
image of the IA, (b) surface geometry reconstructed from the angiographic image, (c) clear silicone
aneurysm phantom fabricated for PIV experiment, and (d) reconstructed surface geometry from reim-
aging the silicone phantom

121004-4 / Vol. 139, DECEMBER 2017 Transactions of the ASME



ranging from 69,920 to 12.8 million. Then, we performed a tem-
poral resolution analysis on the spatially optimized flow domain,
by varying the number of time steps from 170 to 2833 per flow
waveform. Finally, the spatially and temporally optimized compu-
tational flow domain was tested for different orders of accuracy of
the spatial and temporal discretization of the STAR-CCMþ CFD
solver. Six simulations including combinations of following spa-
tial and temporal discretization schemes were performed: first and
second-order implicit unsteady discretization schemes for tempo-
ral discretization (first and second order temporal), and first and
second-order accurate upwind schemes and third-order accurate
central differencing schemes (first, second, and third order spa-
tial). In total, 21 simulations were performed on the IA model. In
each of these simulations, we monitored average velocity magni-
tude (�vmag) and validation error percentage ( �E) along the line of
intersection of the sagittal and transverse planes, matching the
planes of PIV imaging.

Validation Analysis. We applied the validation methodology
(Eqs. (6), (10), and (11)) on the simulated flow field by STAR-
CCMþ CFD solver at the optimized settings. The validation anal-
ysis was performed on the line of intersection of the sagittal
and transverse planes (see Fig. 3(b)) which shall be referred to
as the validation line. The time-averaged magnitude of velocity
in the sagittal plane along the validation line was used as the
physical quantity to be validated. The validation line was
divided into 100 equidistant points (with normalized distance
from x ¼ 0 to x ¼ 1), on which velocity magnitude (vmag) from
both CFD (S) and experiment (D) were obtained to calculate
validation error (E ¼ S� D).

The numerical uncertainty (unum) was calculated using
Eqs. (12)–(15) on the simulations results for both spatial discreti-
zation and temporal resolution. To check for convergence of spa-
tial numerical uncertainty, unum;s (spatial component of unum) was
calculated for consecutive mesh pairs in the grid convergence
analysis up until the converged mesh. We then normalized unum;s

by the average experimental velocity magnitude (�vmag;piv) to rep-
resent it as the percentage of the average flow velocity magnitude
for each consecutive mesh pair in the sequence. The uncertainty
due to temporal resolution was calculated using the same
Eqs. (12)–(15) based on the optimal time resolution (fine temporal
discretization), and the preceding temporal resolution (coarse tem-
poral discretization) from the temporal resolution analysis.

To calculate uinput, we examined the effect of four input param-
eters on the CFD results: density (q), viscosity (l), flow rate (Q),
and duration of a cardiac cycle (T) also shown in oval boxes in
Fig. 1(b). The systematic uncertainties associated with q, l, and T
were based on ten separate experimental measurements, while the
uncertainty in Q was obtained from the specifications of the flow-
meter (Table 2). Based on the nominal values and systematic
uncertainties of each input parameter, two simulations were per-
formed by perturbing the input to the simulations (X̂i 6 uXi

). The
results of these simulations were used to calculate scaled sensitiv-
ity coefficient (@S=@Xi) using Eq. (17). Equation (16) was then
used to calculate overall uinput that includes contributions from all
four input parameters. Eight simulations were performed, two
each for density, viscosity, flow rate, and duration of a cardiac
cycle to calculate uinput.

The experimental uncertainty (uD) was calculated using the cor-
relation statistics algorithm [26] in the LAVISION DAVIS 8.1 software.
The term uD included uncertainty in velocity measurements due to
factors like background noise, out-of-plane particle motion, inac-
curate focusing of the camera, and nonhomogeneous seeding den-
sity of particles during the PIV experiment [27].

Comparison With Existing Validation Techniques. To dem-
onstrate the advantage of our validation methodology over existing
validation approaches, we applied three existing validation techni-
ques to our CFD and experimental results (Table 3). For qualitative
comparison of the flow field, velocity vectors in the sagittal and
transverse planes were plotted for both CFD results and experimental
measurements. For line comparison and validation error quantifica-
tion [11], velocity magnitudes in both CFD results and experimental
measurements along the validation line were plotted, and E was
quantified. For the angular and magnitude similarity quantification
[13], the average angular similarity index (ASI) and magnitude simi-
larity index (MSI) were quantified and averaged along the validation
line. Equations used to calculate ASI and MSI are provided in Table
3. Finally, for our validation methodology, we plotted dmodel (by
pointwise plotting E and uval) along the validation line.

Results

CFD Solver Parameter Optimization Results. Figure 4 shows
the result of the parameter optimization on velocity magnitude and
validation error percentage averaged on the validation line (�vmag

and �E, respectively) for each solver parameter, including the num-
ber of elements in mesh discretization, the number of time steps in
temporal resolution, and the order of accuracy of solver discretiza-
tion scheme. As we progressively refined the mesh, time step, or
solver accuracy, convergence was reached when the difference in
�vmag between successive simulations was less than 1%. Figure 4(a)
shows the grid convergence analysis between 69,920 and 12.8 mil-
lion elements in the discretization of IA model. After an initial dip,
�vmag increased steadily with successive mesh refinement until its
asymptotic value of 9.8 cm/s. The successive difference in �vmag

between 9.6 million to 12.8 million elements was 0.7%, meeting
the convergence criterion. Grid size of 9.6 million elements ( �E
¼ 6.28%) was used for subsequent analyses.

Figure 4(b) plots the temporal resolution analysis, where the
cardiac cycle was discretized between 170 and 2833 time steps.
We found that for all the tested temporal resolutions, the differen-
ces between successive �vmag were less than 1%, meeting the con-
vergence criterion. However, �E decreased from an initial 8.85%
to a minimum of 5.63% at 1700 time steps. Therefore, this tempo-
ral resolution was adopted for subsequent analyses.

Figure 4(c) shows the solver discretization accuracy analysis
for different combinations of spatial (first, second, and third) and
temporal orders of accuracy (first—unfilled, second—hatched).
When the spatial accuracy was fixed, the order of temporal accu-
racy did not make any significant difference in �vmag, and produced
similar �E. However, increasing spatial accuracy from first to sec-
ond order resulted in 20% increase in the monitored �vmag and a
reduction of �E from 14.13% to 5.63%. Furthermore, increasing
the spatial discretization scheme to third order did not produce

Table 2 Input parameter uncertainty analysis. Results of the average input parameter uncertainty (�u input) analysis. Xi represents
the corresponding input parameters to the CFD simulations, with uXi representing their systematic uncertainties obtained from the
experiments. The nominal values of the parameters were taken from Table 1. The scaled sensitivity coefficients (X̂ i (›S/›Xi )) calcu-
lated for each input parameter is also shows, which was fed into Eq. (16) to calculate uinput.

Input parameter (Xi) Nominal parameter value (X̂ i) Systematic uncertainty (uXi) Scaled sensitivity coefficients (X̂ ið@S=@XiÞ)

Flow rate, Q (ml/min) 256 64% 5.271
Viscosity, l (cP) 4.15 0.029 �0.004
Density, q (kg/m3) 1238 0.001 �0.104
Duration of a cardiac cycle, T (s) 0.85 0.004 0.045
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Fig. 4 Velocity magnitude (�v mag, left) and validation error percentage (�E , right) monitored for different solver
parameters in STAR-CCM1. (a) Grid convergence analysis. (b) Temporal resolution analysis. (c) Solver discretization
accuracy analysis (spatial: first, second, and third; temporal: first (unfilled) and second (hatched)). The optimal
solver parameters are indicated by an arrow in the �v mag plots (left) for grid sensitivity and temporal resolution analy-
sis, and by the shaded gray rectangle in the solver discretization analysis. The corresponding minimum �E for the
optimum parameters are also indicated in the plots on the right.

Table 3 List of representative validation techniques in literature that were applied to our CFD and experimental results. Also listed
are the validation parameter of interest and equations to quantify that parameter for each validation technique.

Validation approach Study Quantity for comparison Equation

Qualitative comparison Ford et al. [12] None None

Line comparison and validation error quantification Hoi et al. [11] Error (E) E ¼ S� D

Angular and magnitude similarity Raschi et al. [13] ASI, MSI ASI ¼ uCFD:uPIV

juCFDjjuPIVjSheng et al. [10]

MSI ¼ 1�
���� juCFDj
maxðjuCFDjÞ

� juPIVj
maxðjuPIVjÞ

����
CFD solver model error (dmodel) Current Model error (dmodel) dmodel ¼ E 6 uval

121004-6 / Vol. 139, DECEMBER 2017 Transactions of the ASME



significant difference in �vmag and �E. Since STAR-CCMþsolver treats
second order spatial and first order temporal schemes as default,
this combination was used in subsequent analyses.

Based on the above mentioned optimization analysis, we chose
the following CFD solver settings to simulate flow in our IA
model: (1) unstructured grids consisting of polyhedral cells and
prism layers at the wall with a total of 9.6 million elements; (2)
cardiac cycle resolution of 1700 time steps in the physiologically
pulsatile waveform; and (3) second order spatial and first order
temporal discretization accuracy.

Validation Results. Figure 5 shows results of the validation
analysis on STAR-CCMþ solver along the validation line in the IA

model. Figure 5(a) lists the equations for calculating the model
error (dmodel), the validation error (E), and the validation uncer-
tainty (uval). Figure 5(b) shows the percentage of the spatial
numerical uncertainty (unum;s, normalized by the experimental
average velocity magnitude, �vmag;piv) plotted for each consecutive
mesh pair in the sequence used in the grid convergence analysis
(in Fig. 4(a)). As shown in Fig. 5(b), as the mesh pairs in the
sequence are changed from coarse grid pair (1-2) to fine grid pair
(8-9), the value of unum;s progressively decreases resulting in a
converging value of 3.30% at the 8-9 mesh pair, where the num-
ber of mesh elements were 7.1 million and 9.6 million, respec-
tively. Figure 5(c) plots pointwise dmodel along the validation line
as the combination of E (circles) and uval (bars). The value of
dmodel ranged from �5.42 cm/s to 3.57 cm/s with dissimilar contri-
butions from E and uval along the validation line. E varied
between �4.60 cm/s and 0.90 cm/s, with highest magnitude of E
at x¼ 0.89. The value of uval ranged between 60.08 cm/s and
62.60 cm/s, with maximum value occurring around x¼ 0.4. The
highest magnitude of dmodel occurred at x¼ 0.89 with a large neg-
ative E (�4.63 cm/s) and small uval (0.79 cm/s), which means that
at this location, CFD grossly under-predicted the velocity values
as compared to the experimental measurements.

As shown in Fig. 5(d), we also calculated E, unum, uinput, and uD

(percentage based on PIV measurements) averaged over the
validation line, which were 5.63%, 3.30%, 3.89%, and 3.41%,
respectively. The combined uncertainty, i.e., �uval was 5.49%. Con-
sequently, the overall dmodelðE 6 uvalÞ averaged on the validation
line was 5.63 6 5.49%.

Comparison With Existing Validation Techniques. Figure 6
shows results of application of four validation approaches to our
CFD and experimental results. In the Qualitative Comparison of
Velocity Flow Field section, we describe each validation result
and insight gained about the CFD solver’s accuracy from each
validation analysis.

Qualitative Comparison of Velocity Flow Field. Figure 6(a)
shows visual comparison of time-averaged in-plane velocity field
on the transverse and sagittal planes. Velocity vectors and magni-
tude contours show good agreement in the flow patterns between
simulation (CFD) and experimental results (PIV) in both the
planes. A 3D vortex can be seen, rotating clockwise in the
transverse plane and counter-clockwise in the sagittal plane.
The location of the vortex generally matches between CFD and
PIV. Although the general flow patterns match between the CFD
and experimental results, qualitative comparison does not provide
any information about the CFD solver’s accuracy.

Line Comparison and Validation Error Quantification. Figure 6(b)
shows the velocity magnitude in CFD results and experimental
measurements plotted along the validation line. Simulation results
agree well with PIV measurement data along the validation line,
except for 0.85� x� 0.91, where CFD shows a deeper valley than
PIV. The average E along the validation line was 5.63%. This val-
idation approach quantifies E, but E alone does not represent the
accuracy of the CFD solver itself.

Angular and Magnitude Similarity Between CFD and
Experimental Results. As shown in Fig. 6(c), the average ASI
was 77.7% (standard deviation¼ 17.5%) and MSI was 97.2%
(standard deviation¼ 3.7%) along the validation line. This indi-
cates that there was high similarity in the magnitude and good
similarity in the angles of the velocity vectors between CFD
results and experimental measurements. Since ASI and MSI are
normalized indices, they can be misleading as absolute differences
in the CFD and experimental results can be diminished by normal-
izing the values.

CFD Solver Model Error. Figure 6(d) shows the result of our
validation methodology on the validation line, where dmodel is
plotted as a combination of E (circles) and uval (bars). E and uval

Fig. 5 Result of the validation analysis on STAR-CCM1 CFD
solver along the validation line. (a) Equations used to quantify
the model error (dmodel). (b) Spatial numerical uncertainty
(unum;s) percentage normalized by the average experimental
velocity magnitude (�v mag;piv) for each combination of mesh
pairs in the sequence from the grid convergence analysis in
Fig. 4(a). (c) Pointwise plot of dmodel along the validation line,
hollow circles are the validation error (E) values, and error bars
are the validation uncertainty (uval) at each point. (d) The aver-
age values of the validation error (�E ) and the uncertainties
(�unum; �u input and �uD ) along the validation line, resulting in the
overall average model error (�dmodel).
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together represent the variations in CFD-predicted results, which
include the contributions from different error sources in the results
(refer to Fig. 1(b) for sources of errors). Mathematically, dmodel,
the combination of E and uval, represents the error in STAR-CCMþ
due to its modeling assumptions along the validation line. Thus,
dmodel provides the true accuracy of STAR-CCMþ along the valida-
tion line against the given PIV experimental measurements.

Discussion

Importance of Calculating the Model Error (dmodel). In this
study, we present a systematic validation methodology, where
dmodel is the validation quantity of interest, representing the error
due to CFD modeling assumptions. For our example case, we
used PIV experiments as surrogate for in vivo flow in the IA.
However, since the STAR-CCMþ simulation matched the PIV experi-
mental fluid and flow conditions, resulting dmodel did not capture
the effect of common CFD assumptions like Newtonian fluid,
generalized inlet boundary conditions, and rigid wall. To capture
the effect of these assumptions on the CFD solver, more accurate
in vivo flow velocity data (e.g., 4D pc-MRI) is required as the
validation data.

Our results show that when compared to existing validation
techniques in literature, dmodel arising from our validation
approach provides most precise information about the accuracy of
STAR-CCMþ on the validation line. While the existing validation
techniques mentioned in Table 3 and Figs. 6(a)–6(c) may be
acceptable in a research setting, they may not be sufficient for val-
idating CFD solvers for clinical application in cardiovascular sys-
tems. By quantifying dmodel, our validation framework provides a
sense of “credibility” of a CFD solver in its intended context of
use.

Optimization of CFD Solver Parameters. As our results
suggest, identifying the optimal CFD solver parameters prior to
assessing the solver’s accuracy is critical, since not doing so could
result in wide-ranging simulation results and validation error
(E¼ 5.63–17.47% in this study). Thus, the true accuracy of a CFD
solver cannot be assessed if optimal solver parameters are not used.
This can be exemplified by a recent study organized by the FDA to
assess the interlaboratory differences in CFD solvers from different
research groups [15,28,29]. In that study, members of the research
community were invited to perform steady-state CFD simulations
of flow in an ideal axisymmetric nozzle, which was chosen to repre-
sent a generic biomedical device. The results showed that the stand-
ard deviation of simulated velocity among the participants was
greater than 60% of the mean velocity value, with only 4 out of 28
simulation results falling in the confidence intervals of the experi-
mental PIV measurements. We suspect that the choice of CFD
solver settings was partially the cause of the large discrepancies in
CFD results between the participating groups. Since participants
were free to choose CFD solver settings and were not required to
optimize them, the considerable variations between CFD results
and modest agreement in global and local flow behaviors between
CFD and experiment may have been due to suboptimal solver
parameters. We believe that if a validation framework (like the one
presented in this study) was used, error sources in each partici-
pant’s CFD results could have been identified, thus elucidating rea-
sons for the large discrepancies among CFD solvers.

Flow-Specific Considerations in Validation Analysis. Not
only can suboptimal CFD solver settings cause larger model error:
inherent complexities in the simulated flow field could also do so.
Our validation results displayed significant spatial variation,

Fig. 6 Results of application of different validation approaches to the CFD results and
experimental measurements. (a)–(c) Previous validation techniques and (d) proposed
validation methodology. (a) Qualitative comparison showing velocity magnitude con-
tours with in-plane velocity vectors of constant length plotted on top (in black) to illus-
trate the flow direction in the sagittal plane in CFD and PIV. (b) Pointwise velocity
magnitudes from STAR-CCM1 simulation (CFD, hollow circles) and experimental measure-
ment (PIV, shaded squares) plotted along the validation line normalized from 0 to 1. (c)
Average ASI and MSI calculated over the validation line. (d) Pointwise mode error
(dmodel) plotted along the validation line showing the error and uncertainty in STAR-CCM1

simulation results.
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especially in the region x> 0.8 (Fig. 7), which coincided with the
largest variation of dmodel. To understand what might have caused
this variation, we examined the simulated aneurysmal flow field in
further detail. Figure 7 shows the presence of a strong impinge-
ment jet entering the IA sac, which coincides with higher velocity
magnitude and gradient. In this impingement zone (IZ) (0.8 �
x � 1), �E was substantially higher (13.92%) than in the nonim-
pingement zone (4.45%). Furthermore, �uinput was almost double
in the impingement zone, while �unum was much lower (see Sup-
plementary Material, which is available under the “Supplemental
Data” tab for this paper on the ASME Digital Collection). We
believe that large �uinput where the flow is impinging arises from
high velocity gradients near the aneurysm wall. This high sensitiv-
ity of velocity due to input boundary conditions can lead to inac-
curate velocity predictions, and have potentially contributed to
higher E. Furthermore, lower �unum in the impingement zone could
be due to faster convergence of velocity during grid convergence
analysis, since there are higher velocity values in the impingement
zone compared to the nonimpingement zone. This analysis shows
that complex flow phenomenon, like an impingement jet, can
result in high model error. Thus, complexities in the underlying
flow field should be closely considered when performing a valida-
tion analysis.

Limitations. Our study has some limitations. First, velocity
measurements from two-dimensional PIV experiments did not

accurately capture the complex 3D flow field inside the IA (Fig.
7). Measurements from 4D pc-MRI could provide in vivo valida-
tion data for the IA model, which can be used to measure the
accuracy of STAR-CCMþ in simulating the flow in this IA model.
Second, we did not consider the uncertainties due to geometrical
errors like imaging and segmentation of the IA phantom as a part
of input parameters. Geometry is an important input parameter to
the CFD solver, and should be considered as a part of input
parameter uncertainty in future studies. Third, we used a line as
the domain of interest in the IA model to demonstrate the applica-
tion of our validation methodology. We did not quantify the accu-
racy of STAR-CCMþ solver throughout the 3D computational flow
domain. Our results should not be considered as the accuracy of
STAR-CCMþ in this IA model.
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