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Abstract

Measures of brain changes can be computed from sequential MRI scans, providing valuable 

information on disease progression for neuroscientific studies and clinical trials. Tensor-based 

morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of 

tissue growth or atrophy. In this paper, we examine the power of different nonrigid registration 

models to detect changes in TBM, and their stability when no real changes are present. 

Specifically, we investigate an asymmetric version of a recently proposed unbiased registration 

method, using mutual information as the matching criterion. We compare matching functionals 

(sum of squared differences and mutual information), as well as large deformation registration 

schemes (viscous fluid registration versus symmetric and asymmetric unbiased registration) for 

detecting changes in serial MRI scans of 10 elderly normal subjects and 10 patients with 

Alzheimer’s Disease scanned at 2-week and 1-year intervals. We demonstrated that the unbiased 

methods, both symmetric and asymmetric, have higher reproducibility. The unbiased methods 

were also less likely to detect changes in the absence of any real physiological change. Moreover, 

they measured biological deformations more accurately by penalizing bias in the corresponding 

statistical maps.

1. Introduction

In recent years, computational neuroimaging has become an exciting interdisciplinary field 

with many applications in functional and anatomic brain mapping, image-guided surgery, 

and multimodality image fusion [1, 4, 7, 8]. The goal of image registration is to align, or 

spatially normalize, one image to another. In multi-subject studies, this reduces subject-

specific anatomic differences by deforming individual images onto a population average 

brain template. When applied to serial scans of human brain, image registration offers 

tremendous power in detecting the earliest signs of illness, understanding normal brain 

development or aging, and monitoring disease progression. Recently, there has been an 

expanding literature on various nonrigid registration techniques, with different image 

matching functionals, regularization schemes, and numerical implementations. In [6, 9], the 

authors systematically examined the statistical properties of Jacobian maps (the determinant 

of the local Jacobian operator applied to the deformations), and proposed an unbiased large-

deformation image registration approach. In this context, unbiased means that the Jacobian 

determinants of the deformations recovered between a pair of images follow a log-normal 

distribution, with zero mean after log-transformation. The authors argued that this 
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distribution is beneficial when recovering change in regions of homogeneous intensity, and 

in ensuring symmetrical results when the order of two images being registered is switched. 

The authors applied this method to a longitudinal MRI dataset from a single subject, and 

showed promising results in eliminating spurious signals. They also noticed that different 

registration techniques, when applied to the same longitudinal dataset, may sometimes yield 

visually very different Jacobian maps, causing problems in interpreting local structural 

changes. Given this ambiguity and the increasing use of registration methods to measure 

brain change, more information is required concerning the baseline stability, reproducibility, 

and statistical properties of signals generated by different nonrigid registration techniques.

In this paper, we introduce a novel Asymmetric Unbiased model (by contrast with the 

Symmetric Unbiased model) and, for the first time, we analyze unbiased models with mutual 

information based matching functionals (prior work has focused on the case where the 

summed squared intensity difference is used as the criterion for registration). Most 

importantly, we aim to provide quality calibrations for different non-rigid registration 

techniques in TBM. In particular, we compare two common matching functionals: L2, or the 

sum of squared intensity differences, versus mutual information, and three regularization 

techniques (fluid registration versus the Asymmetric Unbiased and Symmetric Unbiased 

techniques). Our experiments are designed to decide which registration method is more 

reproducible, more reliable, and offers less artifactual variability in regions of homogeneous 

image intensity. The foundation of our calibrations is based on the assumption that, by 

scanning healthy normal human subjects twice over a 2-week period using the same 

protocol, serial MRI scan pairs should not show any systematic biological change. 

Therefore, any regional structural differences detected using TBM over such a short interval 

may be assumed to be errors. We apply statistical analysis to the profile of these errors, 

providing information on the reliability, reproducibility and variability of different 

registration techniques. Moreover, serial images of 10 subjects from the ADNI follow-up 

phase (images acquired one year apart) were analyzed in a similar fashion and compared to 

the ADNI baseline data. In images collected one year apart, real anatomical changes are 

present; neurobiological changes due to aging and dementia include widespread cell 

shrinkage, regional gray and white matter atrophy and expansion of fluid-filled spaces in the 

brain. Thus, a good computational technique should be able to differentiate between 

longitudinal image pairs collected for the ADNI baseline (2-week) and follow-up (1-year) 

phases.

At this point, we would like to motivate the unbiased approach, which couples the 

computation of deformations with statistical analyses on the resulting Jacobian maps. As a 

result, the unbiased approach ensures that deformations have intuitive axiomatic properties 

by penalizing any bias in the corresponding statistical maps. In the following sections, we 

describe the mathematical foundations of this approach, define energy functionals for 

minimization, and perform thorough statistical analyses to demonstrate the advantages of the 

unbiased registration models.
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2. Unbiased Image Registration

Let Ω be an open and bounded domain in ℝn, for arbitrary n. Without loss of generality, 

assume that the volume of Ω is 1, i.e. |Ω| = 1. Let I1 : Ω → ℝ and I2 : Ω → ℝ be the two 

images to be registered. We seek to find the transformation g : Ω → Ω that maps the source 

image I2 into correspondence with the target image I1. In this paper, we will restrict this 

mapping to be differentiable, one-to-one, and onto. We denote the Jacobian matrix of a 

deformation g to be Dg, with Jacobian denoted by |Dg(x)| ≔ det(Dg(x)). The displacement 

field u(x) from the position x in the deformed image I2 ◦ g(x) back to I2(x) is defined in 

terms of the deformation g(x) by the expression g(x) = x − u(x) at every point x ∈ Ω. Thus, 

we consider the problems of finding g and u to be equivalent.

We now describe the construction of the Unbiased Large-Deformation Image Registration. 

We associate three probability density functions (PDFs) to g, g−1, and the identity mapping 

id: Pg(x) = |Dg(x)|, Pg−1 (x) = |Dg−1(x)|, Pid(x) = 1. By associating deformations with their 

corresponding global density maps, we can now apply information theory to quantify the 

magnitude of deformations. In our approach, we choose the Kullback-Leibler (KL) 

divergence and symmetric Kullback-Leibler (SKL) distance. The KL divergence between 

two probability density functions, p1(x) and p2(x), is defined as

We define the SKL distance as SKL(p1(x), p2(x)) = KL(p1(x), p2(x)) + KL(p2(x), p1(x)).

The Unbiased method solves for the deformation g (or, equivalently, for the displacement u) 

minimizing the energy functional E, consisting of the image matching term F and the 

regularizing term R which is based on KL divergence or SKL distance. The general 

minimization problem can be written as

(1)

Here, λ > 0 is a weighting parameter.

2.1. Asymmetric Unbiased Registration

To quantify the magnitude of deformation g, in this paper we introduce a new regularization 

term RKL, which is an asymmetric measure between Pid and Pg:

This regularization term can be shown to be

(2)
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2.2. Symmetric Unbiased Registration

We also examine the regularization functional based on the symmetric KL distance between 

Pid and Pg:

As shown in [6, 9], the regularization term is linked to statistics on Jacobian maps as follows

(3)

Notice that the symmetric unbiased regularizing functional is pointwise nonnegative, while 

the asymmetric unbiased regularizer in (2) can take either positive or negative values locally.

3. Fidelity Metrics

In this paper, the matching functional F takes two forms: the L2 norm (the sum of squared 

intensity differences) and MI (mutual information). We briefly describe both distances in 

this section.

3.1. L2-norm

The L2-norm matching functional is suitable when the images have been acquired through 

similar sensors and thus are expected to present the same intensity range and distribution. 

The L2 distance between the deformed image I2 ◦ g(x) = I2(x − u) and target image I1(x) is 

defined as

3.2. Mutual Information

One of the main advantages of using mutual information is that it can be used to align 

images of different modalities, without requiring knowledge of the relationship (joint 

intensity distribution) of the two registered images. To define the mutual information 

between the deformed image I2(x − u) and the target image I1(x), we denote by pI1 and 

the intensity distributions estimated from I1(x) and I2(x − u), respectively. An estimate of 

their joint intensity distribution is denoted as . We also let i1 = I1(x), i2 = I2(x − u(x)) 

denote intensity values at point x ∈ Ω. Given the displacement field u, the mutual 

information computed from I1 and I2 is provided by
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We seek to maximize the mutual information between I2(x − u) and I1(x), or equivalently, 

minimize the negative of , i.e. .

4. Minimization of Energy Functionals

In general, we expect minimizers of the energy functional E(u) to exist. Computing the first 

variation of the functional in (1), we obtain the gradient of E(u), namely ∂uE(u). We define 

the force field f, which drives I2 into registration with I1, as

(4)

Here, R(u) is either RKL(u) or RSKL(u). We minimize (1) using the fluid flow proposed in 

[1]. Given the velocity field v, the following partial differential equation can be solved to 

obtain the displacement field u:

(5)

Here, τ is an artificial time variable. The instantaneous velocity as in [3] is obtained by 

convolving f with Gaussian kernel Gσ of variance σ2, v = Gσ * f (x, u).

To avoid possible confusion, we summarize the methods we will be referring to in our 

subsequent analyses. In later discussions, minimization of the following energies

(6)

(7)

using equations (4), (5) will be referred to as L2-Asymmetric Unbiased and L2-Symmetric 

Unbiased models, respectively. The model above, provided λ = 0, will be referred to as the 

L2-Fluid model.

Similarly, minimization of

(8)
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(9)

will be referred to as the MI-Asymmetric Unbiased and MI-Symmetric Unbiased models, 

respectively. Such models, with λ = 0, define the MI-Fluid model.

5. Statistical Analysis

5.1. Statistical testing on the deviation of log Jacobian maps in the absence of changes

Based on the authors’ approach in [6], we observe that, given that there is no systematic 

structural change within two weeks, any deviation of the Jacobian map from one should be 

considered error. Thus, we expect that a better registration technique would yield log |Dg| 

values closer to 0 (i.e., smaller log Jacobian deviation translates into better methodology). 

Mathematically speaking, one way to test the performance is to consider the deviation map 

dev of the logged (i.e., logarithmically transformed) Jacobian away from zero, defined at 

each voxel as dev(x) = | log |Dg(x)||. For two different registration methods A and B, we 

define the voxel-wise deviation gain of A over B (denoted by SA,B) as SA,B(x) = devA(x) − 

devB(x).

For the ADNI baseline dataset (in which patients are scanned twice with MRI, two weeks 

apart), we perform a group paired t test across subjects, by computing a voxel-wise t-map of 

deviation gains. In order to statistically compare the performance of two registration 

methods, we rely on the standard t test on the voxel mean of S. To construct a suitable null 

hypothesis, we notice that the following relation would hold, assuming B outperforms A: 

SA,B > 0. Thus, the null hypothesis in this case would be testing if the mean deviation gain is 

zero: H0 : μSA,B = 0. To determine the ranking of A and B, we have to consider one-sided 

alternative hypotheses. For example, when testing if B outperforms A, we use the following 

alternative hypothesis: H1 : μSA,B > 0. The voxel-wise T statistic, defined as

(10)

where , and , 

thus follows the Student’s t distribution under the null hypothesis and may be used to 

determine the p-value that the null hypothesis is true. If the alternative hypothesis is 

accepted, we confirm that sequence B outperforms A at point x. Otherwise, we would rank 

A and B equally if the null hypothesis is not rejected.

5.2. Detecting Real Changes - Statistical testing on the mean log Jacobian

For both the ADNI follow-up dataset (in which patients are scanned twice with MRI, one 

year apart) and ADNI baseline dataset, we create a voxel-wise t map using the local log 

Jacobian values of the ten subjects, allowing us to test the validity of the zero mean 

assumption. To simplify the notation, we introduce J to denote J = |Dg|. The following 
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voxel-wise T statistic compared to a two-tailed Student’s t distribution may then be used to 

test the above null hypothesis

(11)

where , and . 

We reject the null hypothesis if the p value calculated above exceeds a pre-set threshold 

based on a suitable confidence interval.

5.3. Permutation Testing to Correct Multiple Comparisons

To determine the overall global effects of different registration methods on the deviation of 

log Jacobian maps throughout the brain, we performed permutation tests to adjust for 

multiple comparisons. Following the analyses in [5], we resampled the observations by 

randomly flipping the sign of  under the null hypothesis. For each 

permutation, voxelwise t tests are computed. We then compute the percentage of voxels 

inside the chosen ROI (in this case the ICBM mask) with T statistics exceeding a certain 

threshold. The multiple comparisons- corrected p value may be determined by counting the 

number of permutations whose above-defined percentage exceeds that of the un-permuted 

observed data. For example, we say that sequence B outperforms A on the whole brain if 

this corrected p value is smaller than 0.05 (that is, less than 5% of all permutations have the 

above-defined percentage greater than that of the original data). All possible (210 = 1024) 

permutations were considered in determining the final corrected p value.

5.4. Cumulative Distribution Function (CDF)

To visually assess the global significance level of the voxel-wise t tests on deviation gains 

and log-Jacobian values, we also employed the cumulative distribution function (CDF) plot. 

In brief, we plot observed cumulative probabilities against the theoretical distribution under 

the null hypothesis. In the case of deviation gains S of a worse technique A over a better 

technique B in the ADNI baseline data, we expect a CDF curve to lie above the Null line (y 
= x), in the sense that a better technique exhibits less systematic changes. In the case of log-

Jacobian values, a better registration technique, on the other hand, should be able to separate 

the CDF curves between ADNI baseline and follow-up phases (this is what we refer to as the 

separation of CDF curves in the presence of real physiological changes).

6. Results

In this section, we tested the Asymmetric Unbiased and Symmetric Unbiased models and 

compared the results to those obtained using the Fluid registration model [1, 3]. Of note, 

even though Asymmetric Unbiased and Symmetric Unbiased methods minimize different 

energy functionals, our experiments showed that they generate very similar maps. For each 

regularization technique, we employed both L2 and mutual information matching functionals 

(see (6)–(9)). In order to obtain a fair comparison, re-gridding was not employed.
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6.1. ADNI Baseline Scans

In this section, nonlinear registration was performed on a dataset that we shall refer to as the 

“ADNI Baseline” dataset, which includes serial MRI images of ten normal elderly subjects 

acquired two weeks apart. Each of the ten pairs of scans is represented on a 128 × 160 × 128 

grid. Here, the foundation of calibrations is based on the assumption that, by scanning 

normal control human subjects serially within a two-week period using the same MRI 

protocol, no systematic structural changes should be recovered.

Here, we compared Fluid, Asymmetric Unbiased, and Symmetric Unbiased methods 

coupled with both L2 and mutual information matching. Uniform values of λ = 500 and λ = 

1000 were used for all deformations using L2-Symmetric Unbiased and L2-Asymmetric 

Unbiased algorithms, respectively. Also, λ = 5 and λ = 10 were used for deformations using 

MI-Symmetric Unbiased and MI-Asymmetric Unbiased methods. Since the Asymmetric 

Unbiased model quantifies only the forward deformation, the weight of the corresponding 

regularization functional is half the magnitude of that of the Symmetric Unbiased model, 

and hence, a weighting parameter twice as large should be used.

Figures 1–3 show the results of registering a pair of serial MRI images for one of the 

subjects. The deformation was computed in both directions (time 2 to time 1, and time 1 to 

time 2) using all three regularization methods based on L2 and mutual information matching. 

Results indicate the Asymmetric Unbiased and Symmetric Unbiased methods outperform 

Fluid method, generating more stable inverse consistent maps [2] with less variability.

Figure 4 shows the mean Jacobian maps of ten subjects obtained using Fluid, Asymmetric 

Unbiased, and Symmetric Unbiased registration algorithms coupled with both L2 and mutual 

information matching. Jacobian maps generated using unbiased models have values closer to 

1, whereas Fluid model generated noisy mean maps. Figures 5 and 6(a,b) demonstrate the 

Unbiased regularization technique outperforming Fluid registration with statistical 

significance.

To emphasize the differences between the distributions of log Jacobian values for Fluid and 

unbiased (both asymmetric and symmetric) methods, in Figure 7, we plotted the cumulative 

distribution function of the p-values in deviation gains (SA,B). For a null distribution, this 

cumulative plot falls along the line y = x. Larger upward inflections of the CDF curve near 

the origin are associated with significant deviation gains, indicating that both Asymmetric 

Unbiased and Symmetric Unbiased methods outperform Fluid method in being less likely to 

exhibit structural changes in the absence of systematic biological changes.

We also compared L2 and mutual information cost functionals for both Fluid and Symmetric 

Unbiased regularization. (Since Asymmetric Unbiased and Symmetric Unbiased 

regularizations produce similar results, we do not show the results for the asymmetric 

version). We showed that MI-Fluid outperforms L2-Fluid with statistical significance (Figure 

6(c)). However, the result of the comparison of L2-Symmetric Unbiased and MI-Symmetric 

Unbiased is inconclusive (Figure 6(d)). In other words, mutual information performs better 

(than L2) when coupled with Fluid registration, but there is no statistical difference between 

mutual information and L2 when the Symmetric Unbiased method is used. To explain this 
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result, we postulate that by constraining the deformations less (i.e., as in Fluid registration), 

assuming intensity 1-to-1 correspondence (i.e., matching using L2) may lead to local 

oscillations of the deformation maps, as minimizing L2 forces a local search for the smallest 

intensity differences. One result of this is a Jacobian map with locally extreme values, 

translating into spurious signals and, in our case, less reproducibility. On the other hand, the 

Symmetric Unbiased method eliminates local oscillations, allowing globally better matching 

when intensity 1-to-1 correspondence can be assumed (i.e., when L2 is applicable as a data 

fidelity term).

6.2. ADNI Follow-up Scans

In this section, we analyze a dataset we shall call the “ADNI Follow-up” phase dataset, 

which includes serial MRI images (220 × 220 × 220) of ten subjects acquired one year apart. 

As the images are now one year apart, real anatomical changes are present, which enables 

the comparison of methods in the presence of true biological changes.

In Figure 8, nonlinear registration was performed using Fluid, Asymmetric Unbiased, and 

Symmetric Unbiased methods coupled with both L2 and mutual information matching. 

Visually, the Fluid method generates noisy mean Jacobian maps, while maps generated 

using unbiased methods suggest a volume reduction in gray matter as well as ventricular 

enlargement. Here, both Asymmetric Unbiased and Symmetric Unbiased methods perform 

equally well. Figure 9 displays the cumulative distribution of p-values for the voxel-wise log 

Jacobian t-maps for both ADNI Baseline and ADNI Follow-up datasets. We expect a better 

method to separate these two CDF curves, indicating that a real biological change has 

occurred between the two time points. A greater separation is accomplished when Unbiased 

methods are used, while the Fluid method does not differentiate between the two datasets.

7. Conclusion

This paper is the first work to systematically investigate the reproducibility and variability of 

different registration methods in TBM. We showed that Asymmetric Unbiased and 

Symmetric Unbiased models perform significantly better than the fluid registration 

technique. Although various techniques have been extensively applied to detect disease 

effects and monitor brain changes with TBM, this paper is the first calibration study to 

compare registration models for tensor-based morphometry. We believe our results are 

important, as they provide greater insight into the interpretation of TBM results in the future.
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Figure 1. 
Nonrigid registration was performed on an image pair from one of the subjects from the 

ADNI Baseline study (serial MRI images acquired two weeks apart) using L2-Fluid, L2-

Asymmetric Unbiased, L2-Symmetric Unbiased, MI-Fluid, MI-Asymmetric Unbiased, and 

MI-Symmetric Unbiased registration methods. Jacobian maps of deformations from time 2 

to time 1 (column 1) and time 1 to time 2 (column 2) are superimposed on the target 

volumes. The unbiased methods generate less noisy Jacobian maps with values closer to 1; 

this shows the greater stability of the approach when no volumetric change is present. 
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Column 3 examines the inverse consistency of deformation models. Products of Jacobian 

maps are shown for the forward and backward directions. For the unbiased methods, the 

products of the Jacobian maps are less noisy, with values closer to 1, showing better inverse 

consistency.
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Figure 2. 
(a) KL divergence and (b) SKL distance per iteration are shown for L2-Fluid (solid red), L2-

Asymmetric Unbiased (solid blue), and L2-Symmetric Unbiased (dashed green) methods. (c) 

KL divergence and (d) SKL distance per iteration are shown for MI-Fluid, MI-Asymmetric 

Unbiased, and MI-Symmetric Unbiased methods. For Fluid regularization technique, both 

KL and SKL measures increase. Even though the Asymmetric Unbiased method explicitly 

minimizes the KL distance, and the Symmetric Unbiased model minimizes the SKL 

distance, both of the KL and SKL measures stabilize for unbiased methods.
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Figure 3. 
Histograms of voxel-wise deviation gains (a) L2-Fluid over L2-Symmetric Unbiased, and (b) 

MI-Fluid over MI-Symmetric Unbiased for one of the subjects, for the forward direction 

(time 2 to time 1) and backward direction (time 1 to time 2). The histograms are skewed to 

the right, indicating the superiority of Symmetric Unbiased registration method over Fluid 

registration. Since the results obtained using the Asymmetric Unbiased method are similar to 

those obtained using the Symmetric Unbiased method, they are not shown here.
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Figure 4. 
Nonrigid registration was performed on the ADNI Baseline study (serial MRI images 

acquired two weeks apart) of ten normal elderly subjects using L2-Fluid, L2-Asymmetric 

Unbiased, and L2-Symmetric Unbiased, MI-Fluid, MI-Asymmetric Unbiased, and MI-

Symmetric Unbiased registration methods. For each method, the mean of the resulting 10 

Jacobian maps is superimposed on one of the brain volumes. Visually, Fluid registration 

generates noisy mean maps, while maps generated using the Asymmetric Unbiased and 

Symmetric Unbiased methods are less noisy with values closer to 1. For all deformation 

models, regions with least stability, due to both spatial distortion and intensity 

inhomogeneity, are the brain stem, thalamus, and ventricles.
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Figure 5. 
Voxel-wise paired t test for the deviation gain S empirically thresholded at 2.82 (p = 0.005 

on the voxel level with 9 degrees of freedom), showing where Asymmetric Unbiased and 

Symmetric Unbiased registration outperform Fluid registration (regions in red) with 

statistical significance on a voxel level. Regularization methods are coupled with L2 and MI 

matching.
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Figure 6. 
Multiple Comparison Analysis using permutation testing on the deviation gain S of (a) L2-

Fluid over L2-Symmetric Unbiased, (b) MI-Fluid over MI-Symmetric Unbiased, (c) L2-

Fluid over MI-Fluid, and (d) MI-Symmetric Unbiased over L2-Symmetric Unbiased, all for 

ADNI baseline dataset. Each permutation randomly assigns a positive or negative sign to 

each of the 10 log-Jacobian maps. Here, results are plotted with respect to the number of 

positive signs (from 0 to 10) with 10 positive signs indicating the observed data. Dark blue, 

light blue, and green colors indicate the minimum, average, and maximum percentage of 

voxels with p < 0.05 of all possible permutations with a given number of positive signs. 

Experiments in (a) and (b) are designed to compare Fluid and Symmetric Unbiased 

regularization techniques. The result shows that out of 1024 permutations, no permutation 

gives a greater percentage of voxels with p < 0.05 than the observed data does, which 

indicates that unbiased regularization technique outperforms Fluid methods with p < 0.001. 

Results in (c) and (d) compare L2 and mutual information matching functionals. In (c), we 

observe that MI-Fluid method outperforms L2-Fluid method with p < 0.001. However, the 

comparison of MI-Symmetric Unbiased and L2-Symmetric Unbiased in (d) is inconclusive. 

Since the results obtained using Asymmetric Unbiased method are similar to those obtained 

using Symmetric Unbiased method, they are not shown here.

Yanovsky et al. Page 17

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Cumulative distribution of p-values for the deviation gain S of L2-Fluid over L2-Asymmetric 

Unbiased, L2-Fluid over L2-Symmetric Unbiased, MI-Fluid over MI-Asymmetric Unbiased, 

and MI-Fluid over MI-Symmetric Unbiased. Here, the ADNI baseline dataset is used. The 

CDFs lines are well above the Null line (y = x), indicating that both asymmetric and 

symmetric unbiased methods outperform Fluid method (i.e. less deviation) in being less 

likely to exhibit structural change in the absence of biological change.
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Figure 8. 
Nonrigid registration was performed on the ADNI Follow-up study (serial MRI images 

acquired 12 months apart) using L2-Fluid, L2-Asymmetric Unbiased, L2-Symmetric 

Unbiased, MI-Fluid, MI-Asymmetric Unbiased, and MI-Symmetric Unbiased registration 

methods. For each method, the mean of the resulting 10 Jacobian maps is superimposed on 

one of the brain volumes. Visually, Fluid registration generates noisy mean maps, while 

maps generated using the Asymmetric Unbiased and Symmetric Unbiased methods suggest 

a volume reduction in gray matter as well as ventricle enlargement.
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Figure 9. 
Cumulative distribution of p-values for the voxelwise log Jacobian t-maps (as defined in 

Equation (11)) for both ADNI Baseline (in blue) and Follow-up (in green) using L2-Fluid, 

L2-Asymmetric Unbiased, and L2-Symmetric Unbiased methods. A better method should 

separate these two CDF plots (see Section 5.4) with the Null line in between, indicating a 

real biological change has occurred between these two time points. Hence, L2-Asymmetric 

Unbiased and L2-Symmetric Unbiased methods outperform L2-Fluid method.

Yanovsky et al. Page 20

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Unbiased Image Registration
	2.1. Asymmetric Unbiased Registration
	2.2. Symmetric Unbiased Registration

	3. Fidelity Metrics
	3.1. L2-norm
	3.2. Mutual Information

	4. Minimization of Energy Functionals
	5. Statistical Analysis
	5.1. Statistical testing on the deviation of log Jacobian maps in the absence of changes
	5.2. Detecting Real Changes - Statistical testing on the mean log Jacobian
	5.3. Permutation Testing to Correct Multiple Comparisons
	5.4. Cumulative Distribution Function (CDF)

	6. Results
	6.1. ADNI Baseline Scans
	6.2. ADNI Follow-up Scans

	7. Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

