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Abstract

Real-time decision making in emerging IoT applications typically relies on computing quantitative 

summaries of large data streams in an efficient and incremental manner. To simplify the task of 

programming the desired logic, we propose StreamQRE, which provides natural and high-level 

constructs for processing streaming data. Our language has a novel integration of linguistic 

constructs from two distinct programming paradigms: streaming extensions of relational query 

languages and quantitative extensions of regular expressions. The former allows the programmer 

to employ relational constructs to partition the input data by keys and to integrate data streams 

from different sources, while the latter can be used to exploit the logical hierarchy in the input 

stream for modular specifications.

We first present the core language with a small set of combinators, formal semantics, and a 

decidable type system. We then show how to express a number of common patterns with 

illustrative examples. Our compilation algorithm translates the high-level query into a streaming 

algorithm with precise complexity bounds on per-item processing time and total memory 

footprint. We also show how to integrate approximation algorithms into our framework. We report 

on an implementation in Java, and evaluate it with respect to existing high-performance engines 

for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows 

more natural and succinct specification of queries compared to existing frameworks, (2) the 

throughput of our implementation is higher than comparable systems (for example, two-to-four 

times greater than RxJava), and (3) the approximation algorithms supported by our 

implementation can lead to substantial memory savings.
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1. Introduction

The last few years have witnessed an explosion of IoT systems in applications such as smart 

buildings, wearable devices, and healthcare [9]. A key component of an effective IoT system 

is the ability to make decisions in real-time in response to data it receives. For instance, a 

gateway router in a smart home should detect and respond in a timely manner to security 

threats based on monitored network traffic, and a healthcare system should issue alerts in 

real-time based on measurements collected from all the devices for all the monitored 

patients. While the exact logic for making decisions in different applications requires 

domain-specific insights, it typically relies on computing quantitative summaries of large 

data streams in an efficient and incremental manner. Programming the desired logic as a 

deployable implementation is challenging due to the enormous volume of data and hard 

constraints on available memory and response time.

The motivation for our work is to assist IoT programmers: the proposed language 

StreamQRE (pronounced Stream-Query) makes the task of specifying the desired decision-

making logic simpler by providing natural and high-level declarative constructs for 

processing streaming data, and the proposed compiler and runtime system facilitates 

deployment with guarantees on memory footprint and per-item processing time. The 

StreamQRE language extends quantitative regular expressions—an extension of classical 

regular expressions for associating numerical values with strings [11], with constructs 

typical in extensions of relational query languages for handling streaming data [5, 7, 15, 17, 

34, 36, 38, 45]. The novel integration of linguistic constructs allows the programmer to 

impart to the input data stream a logical hierarchical structure (for instance, view patient 

data as a sequence of episodes and view network traffic as a sequence of Voice-over-IP 

sessions) and also employ relational constructs to partition the input data by keys (e.g., 

patient identifiers and IP addresses).

The basic object in our language is a streaming function, a partial function from sequences 

of input data items to an output value (which can be a relation). We present the syntax and 

formal semantics of the StreamQRE language with type-theoretic foundations. In particular, 

each streaming function has an associated rate that captures its domain, that is, as it reads the 

input data stream, the prefixes that trigger the production of the output. In our calculus, the 

rates are required to be regular, captured by symbolic regular expressions, and the theoretical 

foundations of symbolic automata [47] lead to decision procedures for constructing well-

typed expressions. Regular rates also generalize the concept of punctuations in the streaming 

database literature [36].

The language has a small set of core combinators with formal semantics. The atomic query 

processes individual items. The operators split and iter are quantitative analogs of 

concatenation and Kleene-iteration, and integrate hierarchical pattern matching with familiar 

sequential iteration over a list of values. The global choice operator allows selection between 

two expressions with disjoint rates. The output composition allows combining output values 

produced by multiple expressions with equivalent rates processing input data stream in 

parallel. The key-based partitioning operator map-collect is a generalization of the widely 

used map-reduce construct that partitions the input data stream into a set of substreams, one 
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per key, and returns a relation. Finally, the streaming composition streams the sequence of 

outputs produced by one expression as an input stream to another, allowing construction of 

pipelines of operators.

Modular declarative specifications

The core StreamQRE combinators can be used to define a number of derived patterns, such 

as tumbling and sliding windows [36], selection, and filtering, that are useful in practice. We 

have implemented the language as a Java library that supports basic and derived 

combinators, and a number of built-in quantitative sequential iterators such as sum, 

maximum, minimum, average, linear regression, discounted sum, standard deviation, and 

linear interpolation. We show how to program in StreamQRE using an illustrative example 

regarding monitoring patient measurements, the recent Yahoo Streaming Benchmark for 

advertisement-related events [22], and the NEXMark benchmark for auction bids [43]. 

These examples illustrate how hierarchically nested iterators and global case analysis 

facilitate modular stateful sequential programming, and key-based partitioning and relational 

operators facilitate traditional relational programming. The two styles offer alternatives for 

expressing the same query in some cases, while some queries are best expressed by 

intermingling the two views.

Compilation into streaming processor with guaranteed complexity bounds

The StreamQRE compiler translates a query to a single-pass streaming algorithm. The 

regular operators associate an unambiguous parse tree with every prefix of the input stream. 

The typing rules allow the algorithm to maintain only a constant (in the length of the data 

stream) number of potential parse tree alternatives. The hierarchical sequential iterators can 

be evaluated naturally and efficiently using a stack. Since exact computation of operations 

such as the median of a sequence of values and computing sum over sliding windows 

requires linear space for exact computation [39], we show (with supporting implementation) 

how to integrate approximate computation of subexpressions in the query evaluation. 

Implementing the synchronization semantics of multiple threads of computation created 

during the evaluation of key-based partitioning also requires care. For a subclass of 

StreamQRE expressions, we give a theoretical guarantee of O(1) memory footprint and O(1) 

per-item processing time.

Experimental performance evaluation

We compared our StreamQRE implementation with three open-source popular streaming 

engines RxJava [3], Esper [2], and Flink [1], and found that the theoretical guarantees of our 

compiler indeed translate to better performance in practice: the throughput of the 

StreamQRE engine is 2 to 4 times higher than RxJava, 6 to 75 times higher than Esper, and 

10 to 140 times higher than Flink. We also show that the approximation algorithms 

supported by our implementation can lead to substantial memory savings. Finally, 

StreamQRE supports both sequential iteration and key-based partitioning as high-level 

programming constructs leading to alternative expressions of the same query with 

substantially different performance, thus opening new opportunities for query optimization, 

even beyond those used in database and stream processing engines.
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Organization

The remaining paper is organized as follows. §2 informally introduces the key StreamQRE 

constructs using an illustrative example regarding monitoring patient measurements. The 

language definition is presented in §3. The StreamQRE compiler is described in §4. 

Experimental evaluation of the Java implementation of StreamQRE is given in §5. Section 

§6 describes related work, and the contributions and future work are summarized in §7.

2. Overview

As a motivating example, suppose that a patient is being monitored for episodes of a 

physiological condition such as epilepsy [37], and the data stream consists of four types of 

events: (1) An event B marking the beginning of an episode, (2) a time-stamped 

measurement M(ts, val) by a sensor, (3) an event E marking the end of an episode, (4) and an 

event D marking the end of a day. Given such an input data stream, suppose we want to 

specify a policy f that outputs every day, the maximum over all episodes during that day, of 

the average of all measurements during an episode. A suitable abstraction is to impart a 

hierarchical structure to the stream:

The data stream is a sequence of days (illustrated as diamonds), where each day is a 

sequence of episodes (illustrated as rectangles), and each episode is a sequence of 

corresponding measurements (shown as circles) between a begin B marker (shown as an 

opening bracket) and an end E marker (shown as a closing bracket). The regular expression 

((B · M* · E)* · D)* over the event types B, M, E and D specifies naturally the desired 

hierarchical structure. For simplicity, we assume that episodes do not span day markers.

The policy f thus describes a hierarchical computation that follows the structure of this 

decomposition of the stream: the summary of each episode (pattern B · M* · E) is an 

aggregation of the measurements (pattern M) it contains, and similarly the summary of each 

day (pattern ( B · M* · E)* · D) is an aggregation of the summaries of the episodes it contains.· 

In order for the policy to be fully specified, the hierarchical decomposition (parse tree) of the 

stream has to be unique. Otherwise, the summary would not be uniquely determined and the 

policy would be ambiguous. To guarantee uniqueness of parsing at compile time, each 

policy f describes a symbolic unambiguous regular expression, called its rate, which allows 

for at most one way of decomposing the input stream. The qualifier symbolic means that the 

alphabets (data types) can be of unbounded size, and that unary predicates are used to 

specify classes of letters (data items) [47]. The use of regular rates implies decidability of 

unambiguity. Even better, there are efficiently checkable typing rules that guarantee 

unambiguity for all policies [19, 26, 40].

Existing query languages such as CQL [15] and CEDR [18] indeed use regular expressions, 

and other complex forms of pattern matching and sliding windows, to select events. 
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However, the selected events are collected as a set without any intrinsic temporal ordering. If 

the desired summary of an episode is a set-aggregator (such as the average of all 

measurements), then the relational languages suffice. But suppose the diagnosis depends on 

the average value of the piecewise-linear interpolation of the sampled measurements. Such a 

computation is easy to specify as a stateful streaming algorithm that iterates over the 

sequence of data items, but cannot be expressed directly in existing relational query engines 

(and would instead need to be specified by a user-defined aggregate function that cannot be 

optimized by the compiler). The list-iteration scheme provided by the combinator fold : B × 

(B × A → B) × A* → B (where B is the aggregate type, and A is the type of the elements 

of the list), which is very common in functional programming languages, is sufficient for 

expressing iterative computations.

State can be introduced in relational languages using recursion, but this is neither natural, 

nor necessary, nor conducive to efficient compilation to a streaming algorithm. Recent work 

on quantitative regular expressions (QRE) [11] shows how to tightly integrate regular 

expressions with numerical computations, and allows a natural expression of sequential 

iterators. QREs and other such proposals in runtime monitoring and quantitative formal 

verification, however, do not provide relational abstractions.

In our example, suppose now the data stream consists of measurements for multiple patients, 

hence every episode marker and measurement has a patient identifier:

where pId is the unique identifier for a patient. Suppose we have written a query f 

processing the data stream for a single patient that outputs the desired quantitative summary 

at the end of each day as discussed earlier. If the daily summary computed by f exceeds a 

fixed threshold value, then we say that the patient has had a critical day. Suppose we want to 

output each day the set of patients for whom the two past consecutive days have been 

critical. Given f, we can first construct the query g which partitions the input stream by 

patient identifiers, applies f to each sub-stream, collects the results of the form (pId, 

daySummary) in a set, and selects those patients whose daily summary indicates a critical 

day. The high-level query then can be specified by supplying the input stream both to g and 

a version of g shifted by a day, and intersect the outputs of the two. Such computation can be 

most naturally specified in existing relational query languages, but not in state-based 

formalisms. This key-based partitioning operation is our analog of the map-reduce operation 

[27, 28], but it raises semantic and implementation questions that have to do with the 

sequential nature of the data stream: reducing must be sequence-aware, and we need a 

mechanism to indicate when to emit the output.

The proposed query language StreamQRE draws upon features of relational languages for 

continuous query processing and quantitative extensions of regular expressions and related 

formalisms. Unlike previous proposals, it allows the arbitrary mixing of relation-based and 

sequence-based operations.
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3. The StreamQRE Language

In this section we introduce the formal syntax and semantics of the core StreamQRE 

language. Figure 1 summarizes the formalism, which we will use to program several 

common stream transformations, such as stream filtering, projection, and windowing. 

Several detailed examples that illustrate the use of StreamQRE can be found in [12].

Basic types & operations—Since our query language combines regular expressions 

with quantitative operations, we first choose a typed signature which specifies the basic data 

types and operations for manipulating them. We fix a collection of basic types, and we write 

A, B, … to range over them. This collection contains the type Bool of boolean values, and 

the unit type Ut whose unique inhabitant is denoted by def. It is also closed under the 

cartesian product operation × for forming pairs of values. Typical examples of basic types 

are the natural numbers Nat, the integers Int, and the real numbers R. We also fix a 

collection of basic operations on the basic types, for example the k-ary operation op : A1 × 

⋯ × Ak → B. The identity function on D is written as idD : D → D, and the operations π1 : 

A × B → A and π2 : A × B → B are the left and left projection respectively. We assume 

that the collection of operations contains all identities and projections, and is closed under 

pairing and function composition. We write !A : A → Ut for the unique function from A to 

Ut.

Predicates—For every basic type D, we fix a collection of atomic predicates, so that the 

satisfiability of their Boolean combinations is decidable. We write φ : D → Bool to indicate 

that φ is a predicate on D, and we denote by trueD : D → Bool the always-true predicate. 

The requirement for decidability of satisfiability for predicates is necessary for the query 

typing rules that we will present later. The satisfiability checks can be delegated to an SMT 

solver [26].

Example 1: For the example stream of monitored patients described in §2, the data type DP 

is the tagged (disjoint) union:

where PID is the set of patient identifiers, T is the set of timestamps, and V is the set of 

scalars for the measurements.

Relational types and operations—We consider relation types of the form Rel(A), 

where A is a basic type. The elements of Rel(A) are multisets over A. To express the well-

known operations select, project and join from relational algebra [6], it suffices to consider 

the operation of cartesian product and the higher-order functions map and filter.
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We also consider standard set-aggregators of relational query languages (e.g., sum, count, 

minimum, maximum, average), which we model as operations of type Rel(A) → A. We 

write Map〈K, V〉 for the subtype of Rel(K × V) which consists of (partial) maps from K to 

V.

Symbolic Regexes—For a type D, we define the symbolic regular expressions over D 
[46], denoted RE〈D〉, as

where φ ranges over predicates on D. The concatenation symbol · is sometimes omitted, i.e. 

we write rs instead of r · s. The expression r+ (iteration at least once) abbreviates r · r*.We 

interpret an expression r : RE〈D〉 as a set 〚r〛 ⊆ D* of strings over D. We put 〚φ〛 = {d ∈ 
D | φ(d)} is true}, and this extends to all expressions in the usual way.

The notion of unambiguity for regular expressions [19] is a way of formalizing the 

requirement of uniqueness of parsing. The languages L1 and L2 are said to be 

unambiguously concatenable if for every word w ∈ L1 · L2 there are unique w1 ∈ L1 and w2 

∈ L2 with w = w1w2. The language L is said to be unambiguously iterable if for every word 

w ∈ L* there is a unique integer n ≥ 0 and unique wi ∈ L with w = w1 ⋯ wn. The definitions 

of unambiguous concatenability and unambiguous iterability extend to regular expressions 

in the obvious way. Now, a regular expression is said to be unambiguous if it satisfies the 

following: (1) r, s are disjoint for every subexpression r ⊔ s, (2) r, s are unambiguously 
concatenable for every subexpression rs, and (3) r is unambiguously iterable for every 

subexpression r*.

Observation 2: Suppose r and s are unambiguous symbolic regexes over D. Let Σ be the set 

of truth assignments for the base predicates of r and s. Assuming that satisfiability of the 

predicates can be decided in unit time, the problems

1. Are r and s disjoint?

2. Are r and s unambiguously concatenable?

3. Is r unambiguously iterable?

4. Is r contained in s?

are decidable in polynomial time in |r|, |s|, |Σ| [19, 26, 40]. In particular, checking weather a 

regular expression is unambiguous can be done in polynomial time.
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Remark 3

Witnesses of Ambiguity: Consider the computation: “summarize a patient episode with at 

least one high-risk measurement”. This computation is analogous to the regex-matching 

problem: “identify sequences over a and b with at least one occurrence of b”. The regex 

(a⊔b)*b(a⊔b)* is very natural to write, but is ambiguous. The procedure for checking 

unambiguity (see Observation 2) can flag it as ambiguous, and it can also give a minimum-

length trace witnessing the ambiguity: the sequence bb can be parsed in two ways, either as 

ε · b · b or as b · b · ε. Generally, this procedure can pinpoint both the ambiguous 

subexpression and the smallest examples that prove ambiguity. For the given example, the 

expression is equivalent to the unambiguous a*b(a + b)*.

Streaming functions: The basic semantic object in our calculus is a partial map f of type D* 

⇀ C (we use the arrow ⇀ to indicate partiality), where D is the type of the input elements 

and C the type of the outputs. We call these objects streaming functions. They describe 

general transformations of unbounded streams by specifying the output f(w) (if any) on the 

stream w seen so far. For example, suppose we want to describe a filtering transformation on 

streams of scalars of type V, where only the nonnegative scalars are retained and the negative 

ones are filtered out. The streaming function f : V* ⇀ V that describes this transformation is 

defined on the sequences {v1v2 … vn | n ≥ 1 and vn ≥ 0} and the value is the last scalar of 

the sequence, i.e. the current item.

Streaming Queries: We now introduce formally the language of Streaming Quantitative 
Regular Expressions (QREs) for representing stream transformations. For brevity, we also 

call these expressions queries. A denotational semantics will be given in terms of streaming 

functions. The denotations satisfy the additional property that their domains are regular sets 

over the input data type. The rate of a query f, written R( f), is a symbolic regular 

expression that denotes the domain of the interpretation of f, that is, the set of stream 

prefixes for which f is defined:〚 R( f)〛= dom(〚 f〛). We say that a sequence w of data 

items matches the query f if it belongs to dom(〚 f〛). The definition of the query language 

has to be given simultaneously with the definition of rates (by mutual induction), since the 

query constructs have typing restrictions that involve the rates. We annotate a query f with a 

type QRE〈D,C〉 to denote that the input stream has elements of type D and the outputs are of 

type C. The full formal definition of the syntax and semantics of streaming queries is given 

in Figure 1. The decidability of type checking is established in Observation 2.

Example 4

Rate of a Query: In the patient monitoring example, the statistical summary of a patient’s 

measurements should be output at the end of each day, and thus, depends only on the types 

of events in a regular manner. The rate in this case is the regular expression (( B · M* · E)* · 

D)*.

Atomic queries: The basic building blocks of queries are expressions that describe the 

processing of a single data item. Suppose φ : D → Bool is a predicate over the data item 

type D and op : D → C is an operation from D to the output type C. Then, the atomic query 
atom(φ, op) : QRE〈D, C〉, with rate φ, is defined on single-item streams that satisfy the 
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predicate φ. The output is the value of op on the input element. It is common for op to be the 

identity function, and φ to be the always-true predicate. So, we abbreviate the query atom(φ, 

idD) by atom(φ), and atom(trueD) by atom().

Iteration: Suppose the query f : QRE 〈D, A〉 describes a computation that we want to iterate 

over consecutive non-overlapping subsequences of the input stream, in order to aggregate 

the produced values (of type A) sequentially using an aggregator op : B × A → B. More 

specifically, we split the input stream w into subsequences w = w1 w2 … wn, where each wi 

matches f. We apply the computation f to each of the wi, thus producing the output values 

a1 a2 ⋯ an with ai = 〚 f〛wi. Finaly, we combine these results using the list iterator left 
fold with start value init ∈ B and aggregation operation op : B × A → B by folding the list 

of values a1 a2 ⋯ an. This can be formalized with the combinator fold : B × (B × A → B) × 

A* → B, which takes an initial value b ∈ B and a stepping map op : B × A → B, and 

iterates through a sequence of values of type A:

for all sequences γ ∈ A* and all values a ∈ A. For example, fold(b, op, a1a2a3) = 

op(op(op(b, a1), a2), a3).

The query h = iter( f, init, step) : QRE〈D, B〉 describes the computation of the previous 

paragraph. In order for h to be well-defined as a function, every input stream w that matches 

h must be uniquely decomposable into w = w1w2 …wn with each wi matching f. This 

requirement can be expressed equivalently as: the rate R( f) is unambiguously iterable.

These sequential iterators can be nested imparting a hierarchical structure to the input data 

stream facilitating modular programming. In the single-patient monitoring stream, for 

example, we can associate an iterator with the episode nodes to summarize the sequence of 

measurements in an episode, and another iterator with the day nodes to summarize the 

sequence of episodes during a day.

Combination and application: Assume the queries f and g describe stream transformations 

with outputs of type A and B respectively that process the same set of input sequences, and 

op is an operation of type A × B → C. The query combine( f, g, op) describes the 

computation where the input is processed according to both f and g in parallel and their 

results are combined using op. Of course, this computation is meaningful only when both f 

and g are defined on the input sequence. So, we demand w.l.o.g. that the rates of f and g are 

equivalent. This binary combination construct generalizes to an arbitrary number of queries. 

For example, we write combine( f, g, h, op) for the ternary variant. In particular, we write 

apply( f, op) for the case of one argument.
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Quantitative concatenation: Suppose that we want to perform two streaming computations 

in sequence on consecutive non-overlapping parts of the input stream: first execute the query 

f: QRE〈D, A〉, then execute the query g: QRE〈D, B〉, and finally combine these two 

intermediate results using the operation op : A×B → C. More specifically, we split the input 

stream into two parts w = w1w2, process the first part w1 according to f with output 〚 f〛
w1, process the second part w2 according to g with output 〚 g〛w2, and produce the final 

result op( f(w1), g(w2)) by applying op to the intermediate results. The query split( f, g, 

op) : QRE〈D, C〉 describes this computation. In order for this construction to be well-defined 

as a function, every input w that matches split( f, g, op) must be uniquely decomposable 

into w = w1w2 with w1 matching f and w2 matching g. In other words, the rates of f and g 

must be unambiguously concatenable. The binary split construct extends naturally to more 

than two arguments. For example, the ternary version would be split( f, g, h, op).

Global choice: Given queries f and g of the same type with disjoint rates r and s, the query 

or( f, g) applies either f or g to the input stream depending on which one is defined. The 

rate of or( f, g) is the union r ⊔ s. This choice construction allows a case analysis based on 

a global regular property of the input stream. In our patient example, suppose we want to 

compute a statistic across days, where the contribution of each day is computed differently 

depending on whether or not a specific physiological event occurs sometime during the day. 

Then, we can write a query summarizing the daily activity with a rate capturing good days 

(the ones without any significant event) and a different query with a rate capturing bad days, 

and iterate over their disjoint union.

Key-based partitioning: The input data stream for our running example contains 

measurements from different patients, and suppose we have written a query f that computes 

a summary of data items corresponding to a single patient. Then, to compute an aggregate 

across patients, the most natural way is to partition the input stream by a key, the patient 

identifier in this case, supply the corresponding projected sub-streams to copies of f, one per 

key, and collect the set of resulting values. In order to synchronize the per-key computations, 

we specify a predicate φS : D → Bool which defines the synchronization elements. The rest 

of the elements, which satisfy the negation ¬φS, are the keyed elements. We typically write 

K for the set of keys, and κ : D → K for the function that projects the key from an item (the 

value of κ on synchronization items is irrelevant). For the patient input data type of Example 

1 we choose: φS = D(i.e., φS(x) is true when x is a day marker) and K = PID. The partitioning 

ensures that the synchronization elements are preserved so that the outputs of different 

copies of f are synchronized correctly (for example, if each f outputs a patient summary at 

the end of the day, then each sub-stream needs to contain all the end-of-day markers). Note 

that the output of such a composite streaming function is a mapping T : Map〈K, C〉 from 

keys to values, where C is the output type of f and T(k) is the output of the computation of f 

for key k. This key-based partitioning operation is our analog of the map-reduce operation 

[27, 28].

The details of this construction are subtle, and we have to introduce more notation to present 

the semantics precisely. We describe the partitioning of the input stream using terminology 

from concurrent programming. For every key k, imagine that there is a thread that receives 

Mamouras et al. Page 10

Proc ACM SIGPLAN Conf Program Lang Des Implement. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and processes the sub-stream with the data items that concern k. This includes all 
synchronization items, and those keyed data items x for which κ(x) = k. So, an item 

satisfying ¬φS is sent to only one thread (as prescribed by the key), but an item satisfying φS 

is sent to all threads. See Figure 2 for an illustration of the partitioning into sub-streams. For 

a sequence w of data items, we write Keys(w) to denote the set of keys that appear in w, and 

w|k for the subsequence of w that corresponds to the key k. Each thread computes 

independently, and the synchronization elements are used for collecting the results of the 

threads. We specify a symbolic regular expression r : RE〈D〉, which enforces a rate of output 

for the overall computation. For example, if r = (((¬ D)* · D)2)* then we intend to have 

output every other day. The rate should only specify sequences that end in a synchronization 

item.

Suppose f : QRE〈D, C〉 is a query that describes the per-key (i.e., per-thread) computation, 

and r is the overall output rate that we want to enforce. Then, the query

describes the simultaneous computation for all keys, where the overall output is given 

whenever the stream matches r. The overall output is the map obtained by collecting the 

outputs of all threads that match. W.l.o.g. we assume that the rate of f is contained in r, and 

that it only contains streams with at least one occurrence of a keyed data item. This can be 

expressed as the regex inclusion , which is equivalent to 

. The rate r should only depend on the occurrence of 

synchronization elements, a requirement that can be expressed syntactically:

for some expression s : RE〈D〉, where the only predicate that s is allowed to contain is φS. 

We write s[ψ/φ] to denote the result of replacing every occurrence of φ in s with ψ. When r 
satisfies this condition we say that it is well-formed w.r.t. φS. For example, if s = D* 

(indicating output at every day marker) and φS = D, then r = s[(¬φS)* φS/φS] = ((¬ D)* D)* is 

well-formed w.r.t. φS. All these restrictions that we have imposed on the rates do not affect 

expressiveness, but are useful for efficient evaluation and type-checking.

Remark 5: The operation of key-based partitioning raises significant challenges for the 

efficiency of type-checking. In the context of pure regex matching, one could consider either 

an existential or a universal notion of key-based partitioning:

The expression partition∃(κ,r) accepts nonempty words w with w|k ∈ 〚r〛, where k is 

the key of the last element of w. Similarly, the expression partition∀(κ; r) accepts 

nonempty words w with w|k ∈ 〚r〛 for every key k that appears in w. Notice that 
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partition∃(κ; r) is the standard construct of disjoint partitioning used in streaming 

systems (see, for example, the “partition-by” clause in the languages of [49] and [33]). 

Unfortunately, these natural notions of partitioning and matching give rise to decision 

problems (such as nonemptiness and unambiguity) that are not easy to compute. The 

introduction of synchronization elements for the map-collect construct of StreamQRE is 

meant to solve this problem by enforcing a rate of output that depends only on the 

occurrence of synchronization elements in a regular way. This simplifies the description of 

the domain of a map-collect query, and the typing checks become easy.

Streaming composition: A natural operation for query languages over streaming data is 

streaming composition: given two streaming queries f and g, f ≫ g represents the 

computation in which the stream of outputs produced by f is supplied as the input stream to 

g. Such a composition is useful in setting up the query as a pipeline of several stages. We 

allow the operation ≫ to appear only at the top-level of a query. So, a general query is a 

pipeline of ≫-free queries. At the top level, no type checking needs to be done for the rates, 

so we do not define the function R for queries f ≫ g. With streaming composition we can 

express non-regular patterns, such as a sequence of increasing numbers.

The semantics of streaming composition involves a lifting operator on streaming functions. 

For a function f : D* ⇀ * C we define the partial lifting lift(f) : D* ⇀ C*, which generates 

sequences of output values. The domain of lift(f) is equal to the domain of f, but lift(f) 
returns the sequence of all outputs that have been emitted so far.

3.1 Derived stream transformations

The core language of Figure 1 is expressive enough to describe many common stream 

transformations. We present below several derived patterns, including filtering, mapping, 

and aggregation over windows.

Iteration (at least once)—Let f : QRE〈D, A〉 be a query with output type A, init : B be 

the initialization value, and op : B × A → B be the aggregation function. The query 

iter1( f, init, op), with output type B, splits the input stream w unambiguously into 

consecutive parts w1 w2 … wn each of which matches f, applies f to each wi producing a 

sequence of output values a1 a2 … an, i.e. ai = f(wi), and combines the results a1 a2 … an 

using the list iterator left fold with start value init and accumulation operation op. The 

construct iter1 can be encoded using iter as follows:

The type of the query is QRE〈D, B〉 and its rate is R( f)+.

Iteration exactly n times—Let n ≥ 0 and f : QRE〈D, A〉 be a query to iterate exactly n 
times. The aggregation is specified by the initialization value init : B and the aggregation 

function op : B × A → B. The construct itern describes iteration (and aggregation) exactly 

n times, and can be encoded as follows: iter0( f, init, op) = init and
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The type of itern( f, init, op) is QRE〈D, B〉 and its rate it R( f)n (n-fold concatenation).

Matching without output—Suppose r is an unambiguous symbolic regex over the data 

item type D. We want to write a query whose rate is equal to r, but which does not produce 

any output. This is essentially the same as returning def. So, we define the regex to query 

translation function match:

An easy induction establishes that R( match(r)) = r.

Stream filtering—Let φ be a predicate over the type of input data items D. We want to 

describe the streaming transformation that filters out all items that do not satisfy φ. We 

implement this with the query filter(φ), which matches all stream prefixes that end with 

an item satisfying φ.

The type of filter(φ) is QRE〈D, D〉 and its rate is .

Stream mapping—The mapping of an input stream of type D to an output stream of type 

C according to the operation op : D → C is given by the following query:

The type of the query is QRE〈D, C〉 and its rate is .

Pattern-based tumbling windows—The term tumbling windows is used to describe the 

splitting of the stream into contiguous non-overlapping regions [36]. Suppose we want to 

describe the streaming function that iterates f: QRE〈D, C〉 at least once and reports the result 

given by f at every match. The following query expresses this behavior:
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The type of the query is QRE〈D, C〉 and its rate is R(f)+.

Sliding windows (slide by pattern)—To express a policy such as “output the statistical 

summary of events in the past ten hours every five minutes” existing relational query 

languages provide an explicit sliding window primitive [36]. We can support this primitive, 

which can be compiled into the base language by massaging the input data stream with the 

introduction of suitable tags (marking five-minute time intervals in this example). The 

insertion of the tags then allows to express both the window and the sliding using very 

general regular patterns. Let n ≥ 1 be the size of the window, and f : QRE〈D, A〉 be the query 

that processes a unit pattern. The aggregation over the window is specified by the value init : 
B for initialization and the aggregation function op : B × A → B. We give a query that 

computes the aggregation over the last n units of the stream (or over all units if the stream 

has less than n units):

Event counting in sliding windows—Consider the sliding window computation that 

counts the number of occurrences of an event. For a query f : QRE〈D, C〉, a window size n, 

and a predicate φ : C → Bool that indicates the occurrence of the event, we define:

The type of the query is  and its rate is R(f)+.

Remark 6 (Sliding Windows)—We defined earlier an encoding of sliding windows using 

the derived construct itern, which correponds to iterated concatenation n times. This 

encoding causes an exponential blowup in the size of the query, and is therefore an 

inefficient way to implement sliding windows. The purpose of describing this encoding, 

however, is to illustrate the expressiveness of regular parsing, namely that sliding windows 

are a special case of regular decomposition and therefore fit naturally in the StreamQRE 

framework.

Our implementation, which is benchmarked in Section 5, provides a specialized treatment of 

sliding windows without using the expensive encoding with itern. In particular, we allow 

plugging in arbitrary code for handling the insertion of new elements in the window and the 

eviction of expiring elements. So, all algorithmic techniques proposed in the literature for 

sliding-window aggregation [16, 41, 42] can be seamlessly integrated in StreamQRE. The 

main point here is that efficient sliding-window aggregation algorithms can be nested 
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arbitrarily with the regular constructs of StreamQRE without incurring any additional 

computational overhead.

4. Compilation Algorithm

In this section we will describe the compilation of a query f: QRE〈D, C〉 into a streaming 

algorithm that computes the intended function. Before presenting the compilation procedure, 

we should describe more precisely the streaming model of computation. The input stream is 

a potentially unbounded sequence of elements, and a streaming algorithm computes by 

consuming the elements of the stream in order, as they become available. The input stream is 

read incrementally in one pass, which means that past input elements cannot be accessed 

again. A streaming algorithm  consists of: (1) a possibly infinite state space S, which is 

the set of all possible internal configurations of the algorithm (i.e., its memory), (2) an initial 
state init ∈ S, and (3) a transition function next : S × D → S × C, which consumes the next 

input element, mutates the current state, and produces an output.

We say that the streaming algorithm  implements the query f: QRE〈D, C〉 if for every 

input w ∈ D*: the output of  after consuming w is equal to 〚 f〛w (when defined), and 

equal to nil when 〚 f〛w is undefined. The space and time requirements of a streaming 

algorithm are typically given as functions of the size n of the stream consumed so far, and 

possibly also in terms of other significant parameters of the input (e.g., range of numerical 

values).

The goal of the compilation procedure is to generate an algorithm that uses a small amount 

of space and processes fast each newly arriving element. Ideally, both the space and time 

requirements are independent of the length of the data stream. Conceptually, the 

computation of 〚 f〛w, where f is a query and w is an input stream, amounts to evaluating 

an expression tree that is of size linear in the length of w. This expression tree mirrors the 

parse tree that corresponds to the the rate of f, so one crucial challenge is the online 

computation of the split points in the stream to match the pattern. Suppose we process the 

query split( f, g, op) on w1w2w3w4, where the prefixes w1 and w1w2 match f and the 

subsequences w2w3 and w3w4 match g. After having seen the prefix w1w2, we need to 

maintain the parallel computation of two expression trees, since f has matched twice. The 

insight is that the number of these parallel computations is bounded and depends only on the 

size of the query (see also [10] and [11]). The computation of 〚 f〛w involves, however, 

more than just parsing: to compute efficiently the intermediate expression trees, they must 

have a compact representation. Indeed, the intermediate results can be represented by stacks 
of values, whose size is bounded by the size of the query. This is a crucial part of 

establishing the efficiency of the proposed evaluation algorithm.

Generalized evaluation problem—We proceed now with some technical details of our 

approach. In order to define the compilation procedure by recursion on the structure of the 

query f : QRE〈D, C〉, we have to generalize the problem. Let Stack be the type of finite 

stacks that can contain any value of any basic type, and [] be the empty stack. We assume 

that Stack is equipped with the following standard operations:
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and the operation getTopA : Stack → A∪{nil}, which maps a stack to the value on the top 

of it (or nil if the stack is empty). Instead of just input streams d1d2d3 … of data items, we 

consider streams that also contain non-consecutive occurrences of stacks. For example, s1 d1 

d2 d3 s2 d4 d5 s3 d6 d7 d8 … is such a stream. Informally, we think that every stack item 

marks the beginning of a thread of execution that processes all the data items that follow. 

Our example stream involves the parallel threads shown on the left. We want an algorithm 

that simulates the parallel computation of f on the threads. The output on a thread s w must 

be defined when 〚 f〛w is defined, and it has to be equal to the stack s.push(〚 f〛w). In 

order for the overall output to be well-defined, we require that at most one active thread 

gives output. We say that a sequence w ∈ (D∪Stack)* is well-formed for f if for every prefix 

of w there is at most one thread for which 〚 f〛 is defined. So, we describe for every query 

f an algorithm that solves this generalized problem on well-formed inputs from (D ∪ 
Stack)*.

There are four components to specify: the state space Statef, the initial state initf, the 

function startf that consumes stack items, and the function nextf that consumes data items 

(elements of D). Figures 3 and 4 show this construction (by recursion on f) for the base 

queries and the constructs iteration, concatenation, and map-collect. We write  to denote 

the streaming generalized evaluation algorithm for f. The other constructs are easier to 

handle, and hence omitted.

Split—To see why this generalization of the problem is necessary, let us consider the 

evaluation of h = split( f, g, op) on a single thread [] d1 d2 d3 d4 d5 d6 d7 d8. The 

algorithm , described in Figure 3, forwards every data item to both  and . Suppose 

that there are two prefixes of the input that match f: d1 d2 d3 and d1 d2 d3 d4 d5, for which 

 reports outputs a1 and a2 respectively. Recall that all queries are unambiguous, therefore 

it is not possible for both suffixes d4 d5 d6 d7 d8 and d6 d7 d8 to match g. We use the stacks 

of values as a mechanism to propagate the intermediate results of the computations. For our 

particular example stream, the evaluator  ensures that the sequence of items fed to  is 

d1 d2 d3 [a1] d4 d5 [a2] d6 d7 d8. This means that  has to simulate the concurrent 

evaluation of multiple suffixes of the data stream. After reading the stream, suppose 

accepts the suffix d6 d7 d8 and reports the value b2 = 〚 g〛d6d7d8. The output of  is then 
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[b2, a2], that is, the result of pushing the value b2 on the stack [a2] that started the accepting 

thread. Finally,  uses the output stack [b2, a2] to compute the answer op(a2, b2). This 

stack-based mechanism of propagating values is crucial for matching the outputs of f and g 

and computing the final value.

Atomic—It is instructive to see how the query atom(φ, op) is implemented in order to 

satisfy the contract of the generalized evaluation problem. The crucial observation is that 

there should only be output on consecutive occurrences of the form s d, where s is a stack 

and d is an item that satisfies the predicate φ. To achieve this, we have to record the stack s 
given with a start(s) invocation, and with the following next(d) invocation we return the 

stack s.push(op(d)) as output. As seen in Figure 3, the state space of the algorithm consists 

of elements L(in), where in is the stack that initiated the current thread of execution. The 

initial state is L( nil), since in the beginning there is no active thread. The function start sets 

the stack for the active thread, and returns nil because the empty sequence ε does not match 

the query atom(φ, op). The transition function next checks if there is an active thread and if 

the current item d satisfies the formula φ. If so, it returns the active stack after pushing the 

result on it.

Iteration—Consider now the generalized evaluation algorithm for iter( f, b0, σ), shown 

in Figure 3. The state space consists of elements I(child), where child is a state of . The 

initial state is I(initf), where initf is the initial state of . The idea of the algorithm is to 

use the stack to store the intermediate results of the aggregation. When starth is invoked with 

the stack s, we propagate the start call to the algorithm for f with the stack s.push(b0), since 

the initial value b0 is the first intermediate result. Now, the transition on a data item d 
involves first sending the item to . The interesting case is when  gives output. The stack 

s that it returns contains the value a given by f as well as the previous intermediate result b 
that we pushed on the stack. From these we can compute the next intermediate result σ(b, a), 

which we place again on the stack in order to restart .

Map-Collect—Suppose that the predicate φ : D → Bool specifies the synchronization 

elements, K is a finite set of keys, κ : D → K extracts a key from an element, f describes 

the per-key processing, and r : RE〈D〉 is the rate of output that we want to enforce. In Figure 

3 we describe the compilation of h = map-collect(φ, κ, f, r). Each state of  is a pair: 

the first component is a key-indexed map of states of , and the second component is a 

state of . The implementation of the function next is noteworthy. If the data item is a 

synchronization element, then it is propagated to all key-threads. If the data item specifies a 

key, then it is propagated only to the key-thread that it is meant for. The rate determines 

when to collect the outputs of the key-threads. When the rate accepts, then we collect in a 

relation the outputs of all key-threads that have available output. A crucial optimization that 

we have implemented is the collapsing of key-threads that have only seen synchronization 

elements so far, hence these threads have identical state.

Theorem 7: Let f be a query which involves only finite sets of keys for the occurrences of 

map-collect in it. Then, the streaming algorithm  that implements f (as described in 

Figure 3) satisfies the following:
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1. Assume that the values of the basic types appearing in f require unit space to be 

stored. Then,  requires space that depends only on the size of f, independent 

of the length of the stream.

2. Suppose additionally that the basic operations that appear in f require unit time 

to be performed. Then, the processing time per element for  depends only on 

the size of f, and is independent of the length of the stream.

Remark 8 (Map-Collect): When the map-collect construct is used at the top level of a 

query, it is easy to implement key-based partitioning so that the space requirements are |K| · 

(space needed for f), where K is the set of keys appearing in the stream. The situation is 

much more complicated when map-collect is nested beneath several regular operators, 

because then the evaluation algorithm has to explore the possibility of matching it against 

several (possibly overlapping) subsequences of the stream. Putting a constant bound (on the 

length of the input stream) on the several concurrent possibilities of matching a nested map-

collect hinges on the carefully chosen typing restrictions of Figure 1.

The assumptions of Theorem 7 for the basic types and operations are satisfied by standard 

constant-size data types: unsigned and signed integers, booleans, characters, floating-point 

numbers. For such types Theorem 7 guarantees the compilation of a query into an efficient 

streaming algorithm. However, if the types appearing in the query involve unbounded data 

structures (such as sets, maps, multisets, and so on), then the total space and time-per-

element accounting has to account for the storage and manipulation of these complex data 

structures. The literature on database systems addresses the problem of efficient processing 

with relational data structures (e.g., for selecting, filtering, joining, etc.), and this issue is 

orthogonal to our investigations. Theorem 7 assures us that even when computing with 

relational data structures, the parsing of the stream and the combination of the intermediate 

results incur very little additional computational overhead.

4.1 Approximation

Theorem 7 states space and time guarantees for our evaluation algorithm that are applicable 

only when the basic data values have a constant-size encoding, and the basic operations can 

be computed in constant time. One very important statistic that does not fit these 

assumptions is median, the computation of which requires recording multisets of values 

(hence, linear space is required). We will see that using approximation we can overcome this 

barrier. It is known that an exact computation of the median of a stream of n positive integers 

requires Ω(n) space [31]. So, any small space computation of median must allow some error. 

We get around this barrier by using the idea of a geometric discretization of the range of 

possible values, and rounding down each element in the stream to its nearest discrete value.

At a high level, the idea is to use a data structure of approximate histograms, which maintain 

counts for the discretized values. This idea applies to all real numbers (negative, zero, and 

positive), but for the sake of simplicity we assume that the range is (0, +∞). We first choose 

an approximation constant ε ∈ (0, 1). For x ≥ 1, define its ε-approximation as apx(x) = (1 + 

ε)i, where i = ⌊log1+ε x⌋. For x ∈ (0, 1) we put apx(x) = (1 + ε)−i−1, where i = ⌊log1+ε(1/x)⌋. 

Mamouras et al. Page 18

Proc ACM SIGPLAN Conf Program Lang Des Implement. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For x ∈ (0, ∞), the inequality apx(x) ≤ x ≤ apx(x)(1 + ε) holds. The implies, for example, 

that if ε = 0.01 then the approximation error is at most 1% of the actual value.

Our streaming algorithm for computing median queries maintains a summary , which is 

an integer-indexed array of counts (for discretized values). For an integer i, the entry  is 

the count of values in the interval [(1+ε)i, (1+ε)i+1) that we have seen so far. From this 

summary, any rank query can be answered approximately with relative error ε. Suppose that 

U is the largest value and L is the smallest (positive) value appearing in the stream. For 

asymptotic analysis, we assume w.l.o.g. that U ≫ 1 and L ≪ 1. Then, the array  requires 

log1+ε U + log1+ε L−1 ≤ ε−1. log2(U/L) entries.

We write Mε( V) for the type of ε-approximate histograms over scalars V, and ∅ε for the 

empty histogram. We support the operations insε : Mε( V)× V→Mε( V) for value insertion 

and mdnε : Mε( V) → V for obtaining the approximate median. Choosing between exact or 

approximate computation amounts to simply using the appropriate data structure. The 

approximation guarantees are given concisely as follows:

Theorem 9—For every nonempty sequence w of scalars, we have that 〚 fε-apx〛w ≤ 

〚 fexact〛w ≤ (1+ε) · 〚 fε-apx〛w, where

Assuming that constant space is enough for storing the size of the stream, the space used by 

the evaluation algorithm for fε-apx is linear in ε−1 and in log(U/L), where U (L) is the largest 

(smallest) absolute value appearing in the stream.

When the computation of medians is mixed with other numerical operations, providing a 

global approximation guarantee is more subtle. If we restrict attention to non-negative 
numbers and the numerical operations +, min, max, avg and mdnε, then the guarantees of 

Theorem 9 can be lifted to all queries involving these operations. However, adding an ε-

approximately computed positive number and an ε-approximately computed negative 

number can result in unbounded relative error for the result.

Another useful computation that benefits tremendously from approximation is sliding-

window event counting (described in §3.1). To count the number of events exactly, it can be 

shown that space linear in the size of the window is necessary. The work of [25] shows that a 

(1+ε)-approximate estimate can be obtained using space that is linear in ε−1 and logarithmic 
in the size of the window. We have incorporated the approach of [25] in our implementation.

5. Experiments

We have implemented StreamQRE as a Java library in order to facilitate the easy integration 

with user-defined types and operations. Our implementation covers all the core combinators 
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of Figure 1, and provides optimizations for the derived operations (stream filtering, 

mapping, windowing, event counting, etc.). We have already discussed in Remark 6 that our 

implementation of sliding windows does not use the expensive encoding of §3.1, but instead 

allows the use of efficient algorithms for the manipulation of the window. The data structure 

of approximate histograms and the algorithm for approximate event counting, as described 

in §4.1, are also supported.

The goals of our experimental evaluation are the following: (1) examine if the language 

constructs of StreamQRE are sufficiently expressive and flexible to describe useful stream 

transformations on realistic workloads, (2) check whether our compilation procedure 

produces efficient code that can achieve high performance, and (3) evaluate whether 

approximation can provide substantial space benefits for some realistic but expensive 

computations.

We have chosen the widely used Yahoo and NEXMark benchmarks [22, 43], which describe 

realistic workloads and suggest complex and useful queries. We evaluate StreamQRE by 

comparing it against three other streaming engines: RxJava [3], Esper [2] and Flink [1]. We 

have picked these popular engines because they offer rich sets of high-level stream 

manipulation operations, and they all have actively maintained open-source implementations 

in Java that can be deployed on a single machine (in fact, on a single JVM).

Figure 5 lists some useful stream transformations and the engines that directly support them. 

For the QREs of [11], no implementation was given. The streaming operations marked with 

- in Figure 5 can be encoded using the core regular constructs, but an efficient engine would 

require additional optimizations, especially for the expensive windowing operations. The 

operations (2)–(6) from Figure 5 are used in every query of both benchmarks, while a few of 

the queries require time-based tumbling/sliding windows. As we will discuss later, the 

regular constructs of StreamQRE prove especially useful for some of the queries of 

NEXMark. Finally, we use the features (11) and (12) of StreamQRE to program two queries 

inspired from the patient monitoring example of §2.

Yahoo Benchmark

The Yahoo Benchmark [22] specifies a stream of advertisement-related events for an 

analytics pipeline. It specifies a set of campaigns and a set of advertisements, where each ad 

belongs to exactly one campaign. The static map from ads to campaigns is computed ahead-

of-time and stored in memory. Each element of the data stream is of the form ( userId, 

pageId, adId, eventType, eventTime), indicating the interaction of a user with an 

advertisement, where eventType is one of { view, click, purchase}. The component 

eventTime is the timestamp of the event.

Query Y1

The basic benchmark query (described in [22]) computes, at the end of each second, a map 

from each campaign to the number of views associated with that campaign within the last 

second. For each event tuple, this involves a lookup to determine the campaign associated 

with the advertisement viewed. The reference implementation published with the Yahoo 
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benchmark involves a multi-stage pipeline: (a) stage 1: filter view events, (b) stage 2: project 

the ad id from each view tuple, (c) stage 3: lookup the campaign id of each ad, (d) stage 4: 

compute for every one-second window the number of events (views) associated with each 

campaign. The query involes key-based partitioning on only one property, namely the 

derived campaign id of the event.

Query Y2

We extend the Yahoo benchmark with a more complex query. An important part of 

organizing a marketing campaign is quantifying how successful ads are. We define success 
as the number of users who purchase the product after viewing an ad for it. Our query 

outputs, at the end of every second, a map from campaigns to the most successful ad of the 

campaign so far, together with its success score.

NEXMark benchmark

The Niagara Extension to XMark benchmark (NEXMark) [43] concerns the monitoring of 

an on-line auction system such as eBay. Four kinds of events are recorded in the event 

stream: (a) Person events, which describe the registering of a new person to the auction 

system, (b) Item events, which mark the start of an auction for a specified item, (c) Close 

events, which mark the end of an auction for a specified item, and (d) Bid events, which 

record the bids made for items that are being auctioned.

Every event contains the field ts, which is the timestamp of when the event occurred. Every 

new auction event (of type Item) specifies an initial price initPrice for the item, the 

duration dur of the auction, and the category to which the item belongs. Every bid event 

contains the bid increment, that is, the increment by which the previous bid is raised. So, to 

find the current bid for an item we need to add the initial price of the item together with all 

the bid increments for the item so far. We have chosen five queries, which are minor variants 

of some of the queries of the NEXMark benchmark: (N1) Output at every auction start or 

close the number of currently open auctions. (N2) Output at every auction close the average 

closing price of items sold so far. (N3) Output at every auction close the average closing 

price of items per category. (N4) Output every 10 minutes the highest bid within the last 10 

minutes. (N5) Output every 10 minutes the item with the most bids in the last 24 hours.

Queries N2 and N3 involve identifying for every item a pattern-based window that spans all 

events relating to the auction for that item. These windows are naturally specified by the 

regular pattern Item· Bid*· Close. The constructs of StreamQRE are very well suited for 
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this purpose, whereas the encoding of these queries in RxJava, Esper and Flink is arguably 

awkward and error-prone.

Results

Figure 6 summarizes the throughput results for the queries of the Yahoo and NEXMark 

benchmark. Every experiment was repeated 100 times and we report the arithmetic mean, 

together with an error bar that indicates the standard deviation of the samples. All 

experiments were run on a typical contemporary laptop, with an Intel Core i7-4710HQ CPU 

running at 2.5 GHz and with 12 GB of RAM (Windows 8.1 with Oracle JDK 1.8.0_111-

b14). Both StreamQRE and RxJava, which are relatively lightweight libraries, achieve 

significantly higher throughputs for these sequential workloads than Esper and Flink. 

Moreover, StreamQRE is two to four times faster than RxJava for all queries. Both the 

Yahoo and NEXMark benchmarks specify random stream generators that create 

timestamped events. In order to get meaningful throughput measurements, we have modified 

the stream generators so that the event generation is not throttled. This means that event 
time, i.e. the time dimension of the timestamps, is not the same as real time. The queries 

describe the computations in event time, so we can “replay” the execution at higher actual 

speeds.

Approximation

To measure the benefit of approximation we have implemented a random stream generator 

for the patient monitoring example of §2, and have written the following two queries in 

StreamQRE: (P6) Report at the end of every day, the median over all previous days of the 

count of measurements per day. (P7) Report at every new event arrival, the number of 

atypical measurements, i.e. those that exceed a threshold T, that have occurred over the last 

W events, where we vary the size W of the sliding window.

We report the results in Table 1: the throughput is in million events per second, and the space 

usage is in 1000 bytes. We have computed queries P6 and P7 using both an exact and 

approximate evaluation algorithm. We set the approximation constant at ε = 0.01, which 

means that the approximate results have relative error at most 1%. For query P7 we vary the 

window size from 104 to 107 elements. Memory usage was measured by serializing the 

evaluator state using Java’s default serializer. Note that for both queries P6 and P7, the 

approximate evaluator consumes significantly less memory than the exact query evaluation 

algorithm. For query P7, the approximate evaluator is generally slower than the exact 

evaluator, because the processing of each element requires the updating of a small but 

complicated data structure [25]. However, for a massive sliding window of 107 elements the 

exact query becomes noticeably slower, because memory starts becoming scarce. For query 

P6, the approximate evaluator is slightly faster than the exact evaluator, in spite of the 

overhead of performing floating-point arithmetic to maintain approximate histograms. For 

both P6 and P7, the actual error in output is less than the stated threshold limit of 1%. In 

summary, if small errors are permissible in the computation, then approximate QRE 

evaluation has the potential to significantly reduce memory usage by an exponential.
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Why regular parsing?

We have already mentioned that regular patterns facilitate the implementation of N2 and N3. 

The ability to extract pattern-based windows of interest from a stream and compute 

incrementally with their elements distinguishes StreamQRE from other engines. For 

example, for the patient stream of §2, we can easily extract episodes with at least one 

extreme measurement and return the average of the measurements after the last occurrence 

of an extreme one. Programming such realistic queries in RxJava, Esper or Flink would be 

extremely cumbersome.

6. Related work

Streaming databases

There is a large body of work on streaming database languages and systems such as Aurora 

[5], Borealis [4], STREAM [14], and StreamInsight [7, 18]. The query language supported 

by these systems (for example, CQL [15]) is typically a version of SQL with additional 

constructs for sliding windows over data streams. This allows for rich relational queries, 

including set-aggregations (e.g. sum, maximum, minimum, average, count) and joins over 

multiple data streams. Such SQL-based languages are, however, severely limited in their 

ability to express properties and computations that rely on the sequence of the events such 

as: sequence-based pattern-matching, and numerical computation based on list-iteration 

when the order of the data items is significant (e.g., average of piecewise-linear 

interpolation). In contrast, our query language allows the combination of relational with 

sequence-based operations, which poses unique technical challenges that are not addressed 

in the aforementioned works. Of particular relevance are engines such as IBM’s Stream 

Processing Language (SPL) [34, 45], ReactiveX [3], Esper [2] and Flink [1], which support 

user-defined types and operations, and allow for both relational and stateful sequential 

computation. However, none of these engines provides support for decomposing the stream 

in a regular fashion and performing incremental computations that reflect the structure of the 

parse tree, a useful and challenging feature (especially when combined with key-based 

partitioning) that is central in our work. Another aspect not addressed in any of the 

aforementioned systems is approximate query evaluation with strong guarantees, for 

example approximate medians and approximate event-counting over sliding windows. Our 

use of synchronization elements bears resemblance to the punctuations of [36, 44], which 

are used to trigger the closing of windows. The setting here is much more general since we 

allow arbitrary regular patterns of synchronization elements.

Complex Event Processing (CEP)

The literature on CEP [20, 21, 23, 32, 33, 48, 49] is concerned with the recognition of 

complex patterns over streaming data. The patterns are typically given as queries that 

resemble regular expressions or as automata-based models. In some of these proposals a 

pattern can depend on the evolution of values: for example, a pattern where the price of a 

stock is constantly increasing. While CEP languages offer powerful event-selection 

capabilities, they cannot express the hierarchical computations that StreamQRE specifies.
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String transformations

The language of StreamQRE is closely related to automata- and transducer-based 

formalisms for the manipulation of strings. There have been several recent works on the 

subject [10, 13, 24, 29, 35]. The current work draws especially from [11], where the 

language of Quantitative Regular Expressions (QREs) is proposed. It is a language based on 

regular expressions, intended for describing simple numerical calculations over streaming 

data. There are several crucial differences between [11] and the current work. The most 

important one is that we consider here relational structures and operations, including an 

explicit construct map-collect for building relations by partitioning the stream on keys 

and collecting the outputs of the sub-streams. The map-collect combinator presents 

significant new challenges, both for defining its semantics and for efficient type-checking 

and evaluation (Remarks 5 and 8). The lack of such a construct from the QREs of [11] 

implies that the benchmark queries of §5 are inexpressible. Another important technical 

difference between the present work and [11] is that our iteration scheme is based on list-

iteration (the fold combinator), as opposed to a complicated parameter-passing scheme 

involving variables and algebraic terms. This makes the language much simpler and easier to 

use. Moreover, it enables efficient evaluation using small stacks of values, as opposed to the 

arithmetic terms of [11], which require some kind of compression that is dependent on the 

nature of the primitive operations. Using approximation, we also handle here the challenging 

median operation, as well as sliding-window event counting [25].

Streaming algorithms

Our work addresses issues of streaming computation that are complementary to the 

algorithmic questions that are tackled by the work on data stream algorithms. The seminal 

paper of Alon, Matias and Szegedy [8] on the streaming computation of frequency moments 

gave enormous momentum to the area and spawned a lot of subsequent research. See [39] 

for a broad exposition of the area. Of particular relevance is the work on the approximate 

computation of quantile queries (see [30] for a survey). The goal is to return an element of 

rank r, and the ε-approximation relaxation is that the algorithm is allowed to return an 

element of rank  satisfying the guarantee: , where n is the length of the 

stream. For our application, even if we had an element of rank r − 1 or r + 1 (exactly 

adjacent to r), its value could be arbitrarily far from the exact value. This means that the 

above approximation notion is not appropriate for our work. Instead, we want an ε-

approximate answer that is guaranteed to be close in value to the exact answer. Much of the 

work within the streaming algorithms literature has focused on approximating specific 

functions in small space, whereas we investigate here is a wide class of queries with 

hierarchical nesting of several numerical operations, and we provide a general framework 

for dealing with such queries.

7. Conclusion

We have introduced the StreamQRE language, a high-level formalism for processing 

streaming data. Our query language integrates two paradigms for programming with 

streams: streaming relational languages with windowing constructs, and state-machine-

based models for pattern-matching and performing sequence-aware computations. We have 
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presented a small but powerful core language, which has a formal denotational semantics 

and a decidable type system. The expressiveness of the language has been illustrated by 

encoding common patterns and programming significant examples. A compilation procedure 

has been described that translates a query into a streaming algorithm with precise space and 

time usage guarantees. We have also shown how to incorporate efficient approximation 

algorithms in our framework, e.g. for computing the median of a collection of numbers and 

for counting the number of events occurring over large windows of time. A Java 

implementation of StreamQRE has been provided, and it has been evaluated using two 

benchmarks: Yahoo [22] and NEXMark [43].
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Figure 1. 
Streaming Quantitative Regular Expressions (QREs): Syntax and denotational semantics 

with streaming functions.
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Figure 2. 
Partitioning a stream into several parallel sub-streams according to a key (letter in box).
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Figure 3. 
Compilation for atomic queries, quantitative iteration, and quantitative concatenation.
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Figure 4. 
Compilation for key-based partitioning queries.
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Figure 5. 
Some of the features and stream transformations supported by StreamQRE, RxJava, Esper 

and Flink.
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Figure 6. 
Yahoo and NEXMark benchmarks: results for the queries Y1, Y2, and N1–N5 (from left to 

left). Every bar chart shows the throughput (in millions of events per second) for 

StreamQRE (Q), RxJava (R), Esper (E) and Flink (F).
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	Organization
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	3. The StreamQRE Language
	In this section we introduce the formal syntax and semantics of the core StreamQRE language. Figure 1 summarizes the formalism, which we will use to program several common stream transformations, such as stream filtering, projection, and windowing. Several detailed examples that illustrate the use of StreamQRE can be found in [12].Basic types & operations—Since our query language combines regular expressions with quantitative operations, we first choose a typed signature which specifies the basic data types and operations for manipulating them. We fix a collection of basic types, and we write A, B, … to range over them. This collection contains the type Bool of boolean values, and the unit type Ut whose unique inhabitant is denoted by def. It is also closed under the cartesian product operation × for forming pairs of values. Typical examples of basic types are the natural numbers Nat, the integers Int, and the real numbers R. We also fix a collection of basic operations on the basic types, for example the k-ary operation op : A1 × ⋯ × Ak → B. The identity function on D is written as idD : D → D, and the operations π1 : A × B → A and π2 : A × B → B are the left and left projection respectively. We assume that the collection of operations contains all identities and projections, and is closed under pairing and function composition. We write !A : A → Ut for the unique function from A to Ut.Predicates—For every basic type D, we fix a collection of atomic predicates, so that the satisfiability of their Boolean combinations is decidable. We write φ : D → Bool to indicate that φ is a predicate on D, and we denote by trueD : D → Bool the always-true predicate. The requirement for decidability of satisfiability for predicates is necessary for the query typing rules that we will present later. The satisfiability checks can be delegated to an SMT solver [26].Example 1: For the example stream of monitored patients described in §2, the data type DP is the tagged (disjoint) union:where PID is the set of patient identifiers, T is the set of timestamps, and V is the set of scalars for the measurements.Relational types and operations—We consider relation types of the form Rel(A), where A is a basic type. The elements of Rel(A) are multisets over A. To express the well-known operations select, project and join from relational algebra [6], it suffices to consider the operation of cartesian product and the higher-order functions map and filter.We also consider standard set-aggregators of relational query languages (e.g., sum, count, minimum, maximum, average), which we model as operations of type 
Rel(A) → A. We write 
Map〈K, V〉 for the subtype of 
Rel(K × V) which consists of (partial) maps from K to V.Symbolic Regexes—For a type D, we define the symbolic regular expressions over D [46], denoted 
RE〈D〉, as
where φ ranges over predicates on D. The concatenation symbol · is sometimes omitted, i.e. we write rs instead of r · s. The expression r+ (iteration at least once) abbreviates r · r*.We interpret an expression r : 
RE〈D〉 as a set 〚r〛 ⊆ D* of strings over D. We put 〚φ〛 = {d ∈ D | φ(d)} is true}, and this extends to all expressions in the usual way.The notion of unambiguity for regular expressions [19] is a way of formalizing the requirement of uniqueness of parsing. The languages L1 and L2 are said to be unambiguously concatenable if for every word w ∈ L1 · L2 there are unique w1 ∈ L1 and w2 ∈ L2 with w = w1w2. The language L is said to be unambiguously iterable if for every word w ∈ L* there is a unique integer n ≥ 0 and unique wi ∈ L with w = w1 ⋯ wn. The definitions of unambiguous concatenability and unambiguous iterability extend to regular expressions in the obvious way. Now, a regular expression is said to be unambiguous if it satisfies the following: (1) r, s are disjoint for every subexpression r ⊔ s, (2) r, s are unambiguously concatenable for every subexpression rs, and (3) r is unambiguously iterable for every subexpression r*.Observation 2: Suppose r and s are unambiguous symbolic regexes over D. Let Σ be the set of truth assignments for the base predicates of r and s. Assuming that satisfiability of the predicates can be decided in unit time, the problems
1.Are r and s disjoint?2.Are r and s unambiguously concatenable?3.Is r unambiguously iterable?4.Is r contained in s?are decidable in polynomial time in |r|, |s|, |Σ| [19, 26, 40]. In particular, checking weather a regular expression is unambiguous can be done in polynomial time.Remark 3Witnesses of Ambiguity: Consider the computation: “summarize a patient episode with at least one high-risk measurement”. This computation is analogous to the regex-matching problem: “identify sequences over a and b with at least one occurrence of b”. The regex (a⊔b)*b(a⊔b)* is very natural to write, but is ambiguous. The procedure for checking unambiguity (see Observation 2) can flag it as ambiguous, and it can also give a minimum-length trace witnessing the ambiguity: the sequence bb can be parsed in two ways, either as ε · b · b or as b · b · ε. Generally, this procedure can pinpoint both the ambiguous subexpression and the smallest examples that prove ambiguity. For the given example, the expression is equivalent to the unambiguous a*b(a + b)*.Streaming functions: The basic semantic object in our calculus is a partial map f of type D* ⇀ C (we use the arrow ⇀ to indicate partiality), where D is the type of the input elements and C the type of the outputs. We call these objects streaming functions. They describe general transformations of unbounded streams by specifying the output f(w) (if any) on the stream w seen so far. For example, suppose we want to describe a filtering transformation on streams of scalars of type 
V, where only the nonnegative scalars are retained and the negative ones are filtered out. The streaming function f : 
V* ⇀ 
V that describes this transformation is defined on the sequences {v1v2 … vn | n ≥ 1 and vn ≥ 0} and the value is the last scalar of the sequence, i.e. the current item.Streaming Queries: We now introduce formally the language of Streaming Quantitative Regular Expressions (QREs) for representing stream transformations. For brevity, we also call these expressions queries. A denotational semantics will be given in terms of streaming functions. The denotations satisfy the additional property that their domains are regular sets over the input data type. The rate of a query 
f, written 
R(
f), is a symbolic regular expression that denotes the domain of the interpretation of 
f, that is, the set of stream prefixes for which 
f is defined:〚
R(
f)〛= dom(〚
f〛). We say that a sequence w of data items matches the query 
f if it belongs to dom(〚
f〛). The definition of the query language has to be given simultaneously with the definition of rates (by mutual induction), since the query constructs have typing restrictions that involve the rates. We annotate a query 
f with a type 
QRE〈D,C〉 to denote that the input stream has elements of type D and the outputs are of type C. The full formal definition of the syntax and semantics of streaming queries is given in Figure 1. The decidability of type checking is established in Observation 2.Example 4Rate of a Query: In the patient monitoring example, the statistical summary of a patient’s measurements should be output at the end of each day, and thus, depends only on the types of events in a regular manner. The rate in this case is the regular expression ((
B · 
M* · 
E)* · 
D)*.Atomic queries: The basic building blocks of queries are expressions that describe the processing of a single data item. Suppose φ : D → 
Bool is a predicate over the data item type D and op : D → C is an operation from D to the output type C. Then, the atomic query
atom(φ, op) : 
QRE〈D, C〉, with rate φ, is defined on single-item streams that satisfy the predicate φ. The output is the value of op on the input element. It is common for op to be the identity function, and φ to be the always-true predicate. So, we abbreviate the query 
atom(φ, idD) by 
atom(φ), and 
atom(trueD) by 
atom().Iteration: Suppose the query 
f : 
QRE 〈D, A〉 describes a computation that we want to iterate over consecutive non-overlapping subsequences of the input stream, in order to aggregate the produced values (of type A) sequentially using an aggregator op : B × A → B. More specifically, we split the input stream w into subsequences w = w1
w2 … wn, where each wi matches 
f. We apply the computation 
f to each of the wi, thus producing the output values a1
a2 ⋯ an with ai = 〚
f〛wi. Finaly, we combine these results using the list iterator left fold with start value init ∈ B and aggregation operation op : B × A → B by folding the list of values a1
a2 ⋯ an. This can be formalized with the combinator fold : B × (B × A → B) × A* → B, which takes an initial value b ∈ B and a stepping map op : B × A → B, and iterates through a sequence of values of type A:

for all sequences γ ∈ A* and all values a ∈ A. For example, 
fold(b, op, a1a2a3) = op(op(op(b, a1), a2), a3).The query 
h = 
iter(
f, init, step) : 
QRE〈D, B〉 describes the computation of the previous paragraph. In order for 
h to be well-defined as a function, every input stream w that matches 
h must be uniquely decomposable into w = w1w2 …wn with each wi matching 
f. This requirement can be expressed equivalently as: the rate 
R(
f) is unambiguously iterable.These sequential iterators can be nested imparting a hierarchical structure to the input data stream facilitating modular programming. In the single-patient monitoring stream, for example, we can associate an iterator with the episode nodes to summarize the sequence of measurements in an episode, and another iterator with the day nodes to summarize the sequence of episodes during a day.Combination and application: Assume the queries 
f and 
g describe stream transformations with outputs of type A and B respectively that process the same set of input sequences, and op is an operation of type A × B → C. The query 
combine(
f, 
g, op) describes the computation where the input is processed according to both 
f and 
g in parallel and their results are combined using op. Of course, this computation is meaningful only when both 
f and 
g are defined on the input sequence. So, we demand w.l.o.g. that the rates of 
f and 
g are equivalent. This binary combination construct generalizes to an arbitrary number of queries. For example, we write 
combine(
f, 
g, 
h, op) for the ternary variant. In particular, we write 
apply(
f, op) for the case of one argument.Quantitative concatenation: Suppose that we want to perform two streaming computations in sequence on consecutive non-overlapping parts of the input stream: first execute the query 
f: 
QRE〈D, A〉, then execute the query 
g: 
QRE〈D, B〉, and finally combine these two intermediate results using the operation op : A×B → C. More specifically, we split the input stream into two parts w = w1w2, process the first part w1 according to 
f with output 〚
f〛w1, process the second part w2 according to 
g with output 〚
g〛w2, and produce the final result op(
f(w1), 
g(w2)) by applying op to the intermediate results. The query 
split(
f, 
g, op) : 
QRE〈D, C〉 describes this computation. In order for this construction to be well-defined as a function, every input w that matches 
split(
f, 
g, op) must be uniquely decomposable into w = w1w2 with w1 matching 
f and w2 matching 
g. In other words, the rates of 
f and 
g must be unambiguously concatenable. The binary 
split construct extends naturally to more than two arguments. For example, the ternary version would be 
split(
f, 
g, 
h, op).Global choice: Given queries 
f and 
g of the same type with disjoint rates r and s, the query 
or(
f, 
g) applies either 
f or 
g to the input stream depending on which one is defined. The rate of 
or(
f, 
g) is the union r ⊔ s. This choice construction allows a case analysis based on a global regular property of the input stream. In our patient example, suppose we want to compute a statistic across days, where the contribution of each day is computed differently depending on whether or not a specific physiological event occurs sometime during the day. Then, we can write a query summarizing the daily activity with a rate capturing good days (the ones without any significant event) and a different query with a rate capturing bad days, and iterate over their disjoint union.Key-based partitioning: The input data stream for our running example contains measurements from different patients, and suppose we have written a query 
f that computes a summary of data items corresponding to a single patient. Then, to compute an aggregate across patients, the most natural way is to partition the input stream by a key, the patient identifier in this case, supply the corresponding projected sub-streams to copies of 
f, one per key, and collect the set of resulting values. In order to synchronize the per-key computations, we specify a predicate φS : D → 
Bool which defines the synchronization elements. The rest of the elements, which satisfy the negation ¬φS, are the keyed elements. We typically write K for the set of keys, and κ : D → K for the function that projects the key from an item (the value of κ on synchronization items is irrelevant). For the patient input data type of Example 1 we choose: φS = 
D(i.e., φS(x) is true when x is a day marker) and K = 
PID. The partitioning ensures that the synchronization elements are preserved so that the outputs of different copies of 
f are synchronized correctly (for example, if each 
f outputs a patient summary at the end of the day, then each sub-stream needs to contain all the end-of-day markers). Note that the output of such a composite streaming function is a mapping T : 
Map〈K, C〉 from keys to values, where C is the output type of 
f and T(k) is the output of the computation of 
f for key k. This key-based partitioning operation is our analog of the map-reduce operation [27, 28].The details of this construction are subtle, and we have to introduce more notation to present the semantics precisely. We describe the partitioning of the input stream using terminology from concurrent programming. For every key k, imagine that there is a thread that receives and processes the sub-stream with the data items that concern k. This includes all synchronization items, and those keyed data items x for which κ(x) = k. So, an item satisfying ¬φS is sent to only one thread (as prescribed by the key), but an item satisfying φS is sent to all threads. See Figure 2 for an illustration of the partitioning into sub-streams. For a sequence w of data items, we write Keys(w) to denote the set of keys that appear in w, and w|k for the subsequence of w that corresponds to the key k. Each thread computes independently, and the synchronization elements are used for collecting the results of the threads. We specify a symbolic regular expression r : 
RE〈D〉, which enforces a rate of output for the overall computation. For example, if r = (((¬
D)* · 
D)2)* then we intend to have output every other day. The rate should only specify sequences that end in a synchronization item.Suppose 
f : 
QRE〈D, C〉 is a query that describes the per-key (i.e., per-thread) computation, and r is the overall output rate that we want to enforce. Then, the query
describes the simultaneous computation for all keys, where the overall output is given whenever the stream matches r. The overall output is the map obtained by collecting the outputs of all threads that match. W.l.o.g. we assume that the rate of 
f is contained in r, and that it only contains streams with at least one occurrence of a keyed data item. This can be expressed as the regex inclusion 
, which is equivalent to 
. The rate r should only depend on the occurrence of synchronization elements, a requirement that can be expressed syntactically:
for some expression s : 
RE〈D〉, where the only predicate that s is allowed to contain is φS. We write s[ψ/φ] to denote the result of replacing every occurrence of φ in s with ψ. When r satisfies this condition we say that it is well-formed w.r.t. φS. For example, if s = 
D* (indicating output at every day marker) and φS = 
D, then r = s[(¬φS)* φS/φS] = ((¬
D)*
D)* is well-formed w.r.t. φS. All these restrictions that we have imposed on the rates do not affect expressiveness, but are useful for efficient evaluation and type-checking.Remark 5: The operation of key-based partitioning raises significant challenges for the efficiency of type-checking. In the context of pure regex matching, one could consider either an existential or a universal notion of key-based partitioning: 
The expression 
partition∃(κ,r) accepts nonempty words w with w|k ∈ 〚r〛, where k is the key of the last element of w. Similarly, the expression 
partition∀(κ; r) accepts nonempty words w with w|k ∈ 〚r〛 for every key k that appears in w. Notice that 
partition∃(κ; r) is the standard construct of disjoint partitioning used in streaming systems (see, for example, the “partition-by” clause in the languages of [49] and [33]). Unfortunately, these natural notions of partitioning and matching give rise to decision problems (such as nonemptiness and unambiguity) that are not easy to compute. The introduction of synchronization elements for the 
map-collect construct of StreamQRE is meant to solve this problem by enforcing a rate of output that depends only on the occurrence of synchronization elements in a regular way. This simplifies the description of the domain of a 
map-collect query, and the typing checks become easy.Streaming composition: A natural operation for query languages over streaming data is streaming composition: given two streaming queries 
f and 
g, 
f ≫ 
g represents the computation in which the stream of outputs produced by 
f is supplied as the input stream to 
g. Such a composition is useful in setting up the query as a pipeline of several stages. We allow the operation ≫ to appear only at the top-level of a query. So, a general query is a pipeline of ≫-free queries. At the top level, no type checking needs to be done for the rates, so we do not define the function 
R for queries 
f ≫ 
g. With streaming composition we can express non-regular patterns, such as a sequence of increasing numbers.The semantics of streaming composition involves a lifting operator on streaming functions. For a function f : D* ⇀ * C we define the partial lifting lift(f) : D* ⇀ C*, which generates sequences of output values. The domain of lift(f) is equal to the domain of f, but lift(f) returns the sequence of all outputs that have been emitted so far.
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	4. Compilation Algorithm
	In this section we will describe the compilation of a query f: QRE〈D, C〉 into a streaming algorithm that computes the intended function. Before presenting the compilation procedure, we should describe more precisely the streaming model of computation. The input stream is a potentially unbounded sequence of elements, and a streaming algorithm computes by consuming the elements of the stream in order, as they become available. The input stream is read incrementally in one pass, which means that past input elements cannot be accessed again. A streaming algorithm  consists of: (1) a possibly infinite state space S, which is the set of all possible internal configurations of the algorithm (i.e., its memory), (2) an initial state init ∈ S, and (3) a transition function next : S × D → S × C, which consumes the next input element, mutates the current state, and produces an output.We say that the streaming algorithm  implements the query f: QRE〈D, C〉 if for every input w ∈ D*: the output of  after consuming w is equal to 〚 f〛w (when defined), and equal to nil when 〚 f〛w is undefined. The space and time requirements of a streaming algorithm are typically given as functions of the size n of the stream consumed so far, and possibly also in terms of other significant parameters of the input (e.g., range of numerical values).The goal of the compilation procedure is to generate an algorithm that uses a small amount of space and processes fast each newly arriving element. Ideally, both the space and time requirements are independent of the length of the data stream. Conceptually, the computation of 〚 f〛w, where f is a query and w is an input stream, amounts to evaluating an expression tree that is of size linear in the length of w. This expression tree mirrors the parse tree that corresponds to the the rate of f, so one crucial challenge is the online computation of the split points in the stream to match the pattern. Suppose we process the query split( f, g, op) on w1w2w3w4, where the prefixes w1 and w1w2 match f and the subsequences w2w3 and w3w4 match g. After having seen the prefix w1w2, we need to maintain the parallel computation of two expression trees, since f has matched twice. The insight is that the number of these parallel computations is bounded and depends only on the size of the query (see also [10] and [11]). The computation of 〚 f〛w involves, however, more than just parsing: to compute efficiently the intermediate expression trees, they must have a compact representation. Indeed, the intermediate results can be represented by stacks of values, whose size is bounded by the size of the query. This is a crucial part of establishing the efficiency of the proposed evaluation algorithm.Generalized evaluation problem—We proceed now with some technical details of our approach. In order to define the compilation procedure by recursion on the structure of the query f : QRE〈D, C〉, we have to generalize the problem. Let Stack be the type of finite stacks that can contain any value of any basic type, and [] be the empty stack. We assume that Stack is equipped with the following standard operations:and the operation getTopA : Stack → A∪{nil}, which maps a stack to the value on the top of it (or nil if the stack is empty). Instead of just input streams d1d2d3 … of data items, we consider streams that also contain non-consecutive occurrences of stacks. For example, s1 d1 d2 d3 s2 d4 d5 s3 d6 d7 d8 … is such a stream. Informally, we think that every stack item marks the beginning of a thread of execution that processes all the data items that follow. Our example stream involves the parallel threads shown on the left. We want an algorithm that simulates the parallel computation of f on the threads. The output on a thread s w must be defined when 〚 f〛w is defined, and it has to be equal to the stack s.push(〚 f〛w). In order for the overall output to be well-defined, we require that at most one active thread gives output. We say that a sequence w ∈ (D∪Stack)* is well-formed for f if for every prefix of w there is at most one thread for which 〚 f〛 is defined. So, we describe for every query f an algorithm that solves this generalized problem on well-formed inputs from (D ∪ Stack)*.There are four components to specify: the state space Statef, the initial state initf, the function startf that consumes stack items, and the function nextf that consumes data items (elements of D). Figures 3 and 4 show this construction (by recursion on f) for the base queries and the constructs iteration, concatenation, and map-collect. We write  to denote the streaming generalized evaluation algorithm for f. The other constructs are easier to handle, and hence omitted.Split—To see why this generalization of the problem is necessary, let us consider the evaluation of h = split( f, g, op) on a single thread [] d1 d2 d3 d4 d5 d6 d7 d8. The algorithm , described in Figure 3, forwards every data item to both  and . Suppose that there are two prefixes of the input that match f: d1 d2 d3 and d1 d2 d3 d4 d5, for which  reports outputs a1 and a2 respectively. Recall that all queries are unambiguous, therefore it is not possible for both suffixes d4 d5 d6 d7 d8 and d6 d7 d8 to match g. We use the stacks of values as a mechanism to propagate the intermediate results of the computations. For our particular example stream, the evaluator  ensures that the sequence of items fed to  is d1 d2 d3 [a1] d4 d5 [a2] d6 d7 d8. This means that  has to simulate the concurrent evaluation of multiple suffixes of the data stream. After reading the stream, suppose  accepts the suffix d6 d7 d8 and reports the value b2 = 〚 g〛d6d7d8. The output of  is then [b2, a2], that is, the result of pushing the value b2 on the stack [a2] that started the accepting thread. Finally,  uses the output stack [b2, a2] to compute the answer op(a2, b2). This stack-based mechanism of propagating values is crucial for matching the outputs of f and g and computing the final value.Atomic—It is instructive to see how the query atom(φ, op) is implemented in order to satisfy the contract of the generalized evaluation problem. The crucial observation is that there should only be output on consecutive occurrences of the form s d, where s is a stack and d is an item that satisfies the predicate φ. To achieve this, we have to record the stack s given with a start(s) invocation, and with the following next(d) invocation we return the stack s.push(op(d)) as output. As seen in Figure 3, the state space of the algorithm consists of elements L(in), where in is the stack that initiated the current thread of execution. The initial state is L( nil), since in the beginning there is no active thread. The function start sets the stack for the active thread, and returns nil because the empty sequence ε does not match the query atom(φ, op). The transition function next checks if there is an active thread and if the current item d satisfies the formula φ. If so, it returns the active stack after pushing the result on it.Iteration—Consider now the generalized evaluation algorithm for iter( f, b0, σ), shown in Figure 3. The state space consists of elements I(child), where child is a state of . The initial state is I(initf), where initf is the initial state of . The idea of the algorithm is to use the stack to store the intermediate results of the aggregation. When starth is invoked with the stack s, we propagate the start call to the algorithm for f with the stack s.push(b0), since the initial value b0 is the first intermediate result. Now, the transition on a data item d involves first sending the item to . The interesting case is when  gives output. The stack s that it returns contains the value a given by f as well as the previous intermediate result b that we pushed on the stack. From these we can compute the next intermediate result σ(b, a), which we place again on the stack in order to restart .Map-Collect—Suppose that the predicate φ : D → Bool specifies the synchronization elements, K is a finite set of keys, κ : D → K extracts a key from an element, f describes the per-key processing, and r : RE〈D〉 is the rate of output that we want to enforce. In Figure 3 we describe the compilation of h = map-collect(φ, κ, f, r). Each state of  is a pair: the first component is a key-indexed map of states of , and the second component is a state of . The implementation of the function next is noteworthy. If the data item is a synchronization element, then it is propagated to all key-threads. If the data item specifies a key, then it is propagated only to the key-thread that it is meant for. The rate determines when to collect the outputs of the key-threads. When the rate accepts, then we collect in a relation the outputs of all key-threads that have available output. A crucial optimization that we have implemented is the collapsing of key-threads that have only seen synchronization elements so far, hence these threads have identical state.Theorem 7: Let f be a query which involves only finite sets of keys for the occurrences of map-collect in it. Then, the streaming algorithm  that implements f (as described in Figure 3) satisfies the following:1.Assume that the values of the basic types appearing in f require unit space to be stored. Then,  requires space that depends only on the size of f, independent of the length of the stream.2.Suppose additionally that the basic operations that appear in f require unit time to be performed. Then, the processing time per element for  depends only on the size of f, and is independent of the length of the stream.Remark 8 (Map-Collect): When the map-collect construct is used at the top level of a query, it is easy to implement key-based partitioning so that the space requirements are |K| · (space needed for f), where K is the set of keys appearing in the stream. The situation is much more complicated when map-collect is nested beneath several regular operators, because then the evaluation algorithm has to explore the possibility of matching it against several (possibly overlapping) subsequences of the stream. Putting a constant bound (on the length of the input stream) on the several concurrent possibilities of matching a nested map-collect hinges on the carefully chosen typing restrictions of Figure 1.The assumptions of Theorem 7 for the basic types and operations are satisfied by standard constant-size data types: unsigned and signed integers, booleans, characters, floating-point numbers. For such types Theorem 7 guarantees the compilation of a query into an efficient streaming algorithm. However, if the types appearing in the query involve unbounded data structures (such as sets, maps, multisets, and so on), then the total space and time-per-element accounting has to account for the storage and manipulation of these complex data structures. The literature on database systems addresses the problem of efficient processing with relational data structures (e.g., for selecting, filtering, joining, etc.), and this issue is orthogonal to our investigations. Theorem 7 assures us that even when computing with relational data structures, the parsing of the stream and the combination of the intermediate results incur very little additional computational overhead.
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