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Abstract

Interpretation of screening tests such as mammograms usually require a radiologist’s subjective 

visual assessment of images, often resulting in substantial discrepancies between radiologists’ 

classifications of subjects’ test results. In clinical screening studies to assess the strength of 

agreement between experts, multiple raters are often recruited to assess subjects’ test results using 

an ordinal classification scale. However, using traditional measures of agreement in some studies 

is challenging due to the presence of many raters, the use of an ordinal classification scale and 

unbalanced data. We assess and compare the performances of existing measures of agreement and 

association as well as a newly developed model-based measure of agreement to three large-scale 

clinical screening studies involving many raters’ ordinal classifications. We also conduct a 

simulation study to demonstrate the key properties of the summary measures. The assessment of 

agreement and association varied according to the choice of summary measure. Some measures 

were influenced by the underlying prevalence of disease and raters’ marginal distributions and/or 

were limited in use to balanced data sets where every rater classifies every subject. Our simulation 

study indicated that popular measures of agreement and association are prone to underlying 

disease prevalence. Model-based measures provide a flexible approach for calculating agreement 

and association and are robust to missing and unbalanced data as well as the underlying disease 

prevalence.

Keywords

Agreement; Association; Cohen’s kappa; Ordinal classification; Weighted kappa

*Corresponding author, Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, 
MA 02118, USA. 

Conflict of Interest
We have no conflict of interest to report.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Ann Epidemiol. Author manuscript; available in PMC 2018 October 01.

Published in final edited form as:
Ann Epidemiol. 2017 October ; 27(10): 677–685.e4. doi:10.1016/j.annepidem.2017.09.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Studies of agreement between expert raters are often conducted to assess the reliability of 

diagnostic and screening tests. Many screening and diagnostic test results are classified 

using an ordered categorical scale. For example, radiologists use the BI-RADS (Breast 

Imaging Reporting and Data System) scale to classify breast density from mammography 

screenings. BI-RADS is an ordinal classification scale with four categories ranging from A 

(almost entirely fatty) to D (extremely dense) to reflect increasing breast density [1]. 

Measures of agreement and association provide useful summaries for ordinal classifications. 

Measures of agreement focus on assessing the levels of exact concordance (i.e. where raters 

assign the exact same category to a subject’s test result), while measures of association also 

take into account the degrees of disagreement among raters’ classifications. For example, the 

level of disagreement is higher between two raters who each independently classify the same 

mammogram into categories A and D respectively, compared to the level of disagreement 

between two raters who each independently classify the same mammogram into categories 

A and B. Measures of association are sometimes considered as weighted measures of 

agreement in which higher weight (“credit”) is assigned to pairs of raters’ classifications that 

are more similar.

Cohen’s kappa statistic is a popular summary measure of agreement, but is limited to 

assessing agreement between two raters’ ordinal classifications [2,3]. However, various 

extensions of Cohen’s kappa that provide summary measures of agreement (and association) 

among multiple raters have been developed. These include Fleiss’ kappa for multiple raters 

[4], the intra-rater correlation coefficient, also known as the ICC [5], and weighted (and 

unweighted) kappas by Meilke et al. [6] Despite the availability of these extended measures, 

many agreement studies report the average or the range of pairwise Cohen’s kappas and 

weighted kappas when assessing the agreement and association respectively among more 

than two raters [7–12]. This can lead to complexities in interpretation and is infeasible in 

studies with a large number of raters.

A model-based approach can flexibly accommodate ordinal classifications of many expert 

raters and can provide a comprehensive summary agreement measure. Results can be 

extended to the general populations of raters and subjects. Nelson and Edwards [13,14] 

recently proposed a population-based measures of agreement and association for ordinal 

classification. Their model-based approach is based on the observed agreement between 

raters (where raters assign a subject’s test result to the same category) from a generalized 

linear mixed model (GLMM), while minimizing the impact of chance agreement (where 

raters assign the same category to a subject’s test result due to pure coincidence). Their 

approach produces easily interpretable single summary measures of agreement and 

association over all raters’ classifications, and unbalanced and missing data can be flexibly 

accommodated [14]. Furthermore, Cohen’s kappa and its variants have several 

vulnerabilities including susceptibility to extreme prevalence of the underlying disease rate 

(where prevalence is defined as the probability of being classified into each disease 

category) while the model-based approach is robust to these effects. Although restricted to 

small number of raters, other model-based approaches based on the generalized estimating 

equations (GEE) also provide summary measures of agreement and association [15]. In 
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contrast, Nelson’s model-based approach is applicable to small (at least three) and large 

numbers of raters.

In this paper, we demonstrate how various agreement and association measures can be 

applied in three real large-scale screening test studies, each based on incorporating many 

raters’ ordinal classifications. Specifically, we apply average pairwise weighted and 

unweighted Cohen’s kappas, Fleiss’ kappa, ICC, Mielke’s weighted and unweighted kappa 

for multiple raters, and Nelson and Edwards’ model-based measures of agreement and 

association to three clinical screening test studies of breast cancer, uterine cancer and skin 

disease. The rest of the paper is constructed as follows: In section 2, we provide a brief 

description of some of the existing summary measures of agreement and association. In 

section 3, we demonstrate how these summary measures can be implemented in three 

screening test studies and present results from a simulation study. Finally, in section 4, we 

provide a discussion and recommendations.

2. Methods

2.1. Measures of agreement

The conventional interpretation of an agreement or association measure according to Landis 

and Koch [16] is as follows; < 0.00 indicate poor agreement, 0.00–0.20 indicate slight 

agreement, 0.21–0.40 indicate fair agreement, 0.41–0.60 indicate moderate agreement, 0.61–

0.80 indicate substantial agreement, and 0.81–1.00 indicate almost perfect agreement.

2.1.1. Cohen’s kappa—Cohen’s kappa [2] is a popular measure of agreement between a 

pair of raters classifying I subjects into C categories adjusting for chance agreement, i.e. the 

chance probability that two raters independently classify subjects into the same category by 

pure coincidence [2]. The general formula of Cohen’s kappa is

where p0 is the proportion of observed agreement between the two raters and pc is the 

proportion of chance agreement. The statistic ranges from −1 to 1 where 1 indicates 

complete agreement, −1 indicates complete disagreement, and 0 indicates agreement that is 

no better than chance. Cohen’s kappa is easy to compute and is widely used in agreement 

studies. However, it has been noted to be vulnerable to extreme prevalence of the underlying 

disease rate and the marginal distribution of raters (raters’ tendencies to classify the test 

results in a certain way) [17]. Because Cohen’s kappa is designed for measuring the 

agreement between two raters, many authors report the average or the range of the 

kappa statistics computed from each possible pair of raters when a study involves multiple 

raters (J > 2) [7–12]. However, such range or average of many kappa statistics can be 

complicated and difficult to interpret, and is impractical in studies with a large number of 

raters, say J ≥5. In R [28], the psych package can be used to compute Cohen’s kappa and in 
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SAS (SAS Institute Inc. Cary, NC), the FREQ procedure has options to compute Cohen’s 

kappa.

2.1.2. Fleiss’ kappa—Fleiss extended Scott’s pi statistic [18] to account for the case of 

more than two raters classifying multiple subjects using a scale with more than two 

categories [4]. Fleiss’ kappa is also a function of observed agreement corrected for chance 

agreement. Let I be the total number of subjects, K be the number of ratings for each subject 

and C be the number of categories in the ordinal classification scale. Also, let nic be the 

number of raters who assign the ith subject to the cth category. Then, Fleiss’ kappa is 

defined as

where .

A formula to calculate the corresponding variance of Fleiss’ kappa is also available [19]. 

Due to a multiplicative factor of the sample sizes of raters and subjects on the denominator 

of this formula, the variance yields disproportionately small values, consequently producing 

an extremely narrow 95% confidence interval for Fleiss’ kappa, and increasingly so for large 

sample sizes of raters and subjects. Fleiss’ kappa ranges from 0 to 1 where 0 indicates no 

agreement and 1 indicates perfect agreement. Fleiss’ kappa is straightforward to compute 

but is limited to balanced data where each subject’s test result is classified by the same 

number of raters [20], which can be problematic in many real life studies where the ratings 

of some subjects test results are missing. Similar to Cohen’s kappa, Fleiss’ kappa is also 

vulnerable to extreme prevalence of the underlying disease rate. To compute Fleiss’ kappa in 

R, the irr package can be used and in SAS, there is a user-written macro, MKAPPA [21].

2.1.3. Model-based kappa statistic—The model-based kappa statistic, which is based 

on a generalized linear mixed model (GLMM) was recently introduced by Nelson and 

Edwards [13]. Suppose, we have a sample of J (j = 1, …, J) raters each independently 

classifying a sample of I (i = 1, …, I) subjects using an ordered classification scale with C (c 
= 1, …, C) categories. We denote the rating on the ith subject’s test result classified by the 

jth rater into the cth category as Yij = c. An ordinal GLMM with a probit link and a crossed 

random effect structure can be used to model the cumulative probability that a subject’s test 

result, Yij, is classified as category c or lower. Then the probability that a subject’s test result 

is classified as category c can be computed by

(1)

where Φ is the cumulative distribution function of the standard normal distribution, α0, …, 

αc are the thresholds that estimate the cutoffs between the C categories (with α0 = −∞ and 
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αC = +∞), and ui and vj are random effects for each subject and each rater respectively. The 

subject random effect, ui, represents the heterogeneity of the subjects’ test results and is 

distributed normally with mean 0 and variance . The rater random effect, vj represents the 

heterogeneity of the raters’ tendencies to classify test results and is also distributed normally 

with mean 0 and variance . A large positive value of ui indicates a test result that is more 

likely to be classified into a higher disease category. A large positive value of vj indicate a 

rater who liberally classifies subjects into higher disease categories.

Due to recent advances in statistical software, fitting an ordinal GLMM with a probit link 

and crossed random effects has become relatively straightforward. We used the ordinal 
package in R, in particular, the clmm function, which is one of the software packages that 

can be used to fit such forms of GLMMs efficiently and quickly [22]. Once the model is 

fitted, we can use the parameter estimates obtained for (α0, …, αC, ) to compute the 

model-based kappa statistic (κm) as follows

This model-based kappa statistic appropriately corrects for chance agreement and takes 

values between 0 and 1, interpreted in a similar way to Fleiss’ kappa where 0 indicates 

agreement no better than chance and 1 indicates perfect agreement among the raters. The 

variance, calculated using the delta method, is

where  and . Further details regarding 

κm and var(κm) can be found in Nelson and Edwards [13].

There are several advantages in using a model-based measure of agreement over simpler 

summary statistics. One is the ability to accommodate missing or unbalanced data, a 

common occurrence in large-scale studies when not every subject is rated by each rater [23]. 

Another is the option to include covariates in the GLMM to evaluate the effects of raters’ or 

subjects’ characteristics (such as rater experience or subject age) on agreement and to 
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calculate summary measures of subgroups of raters and subjects [24]. Currently, three 

packages in R (ordinal, lme4, and MCMCglmm) can be used to fit ordinal GLMMs with 

crossed random effects. In SAS, the GLIMMIX procedure can be used for classification 

scales with two categories only. We provide the R code to compute the model-based 

measures of agreement and association using the estimates from the GLMM as 

supplementary material.

2.2. Measures of association

For ordinal classifications, measures of association are often preferred to, or used in 

conjunction with measures of (exact) agreement. Association measures take into 

consideration the level of disagreement among the raters with stronger credit given to pairs 

of raters’ classifications which concur more closely. Figure 1 depicts the difference between 

agreement and association. In measuring agreement, only exact concordance in 

classifications by raters is considered (any discordant classifications receive no “credit”) 

[Figure 1a]. In measuring association, exact concordance between raters receives highest 

“credit” while classifications that differ by one scale receive the second highest “credit and 

classification that differ by two scales receive the third highest “credit”, etc. [Figure 1b] As a 

result, the association measure is typically larger than the agreement measure. In the 

example depicted in Figure 1, the Cohen’s kappa for agreement between the two raters is 

0.40 while the Cohen’s weighted kappa for association is 0.65.

2.2.1. Cohen’s weighted kappa—In 1968, Cohen introduced a weighted kappa, which 

is the proportion of weighted observed agreement corrected by chance agreement [25]. The 

general form of the statistic is similar to the unweighted version:

where p0w is now the weighted proportion of observed agreement and pcw is the weighted 

proportion of chance agreement. Typically, quadratic weights (also referred to as squared 

error weights) or linear weights (also referred to as absolute error weights) are used with 

lower “credit” assigned to pairs of ratings in high discordance [26]. The quadratic weights 

and linear weights take the form wrs = 1−(r−s)2/(C−1)2 and wrs = 1−|r−s|/(C−1) respectively 

where C is the total number of categories and r and s are the category levels (r,s = 1, …, C). 

Many authors compute the average pairwise weighted kappas when more than two raters are 

involved in a study. Cohen’s weighted kappa can also be computed using the psych package 

in R and the FREQ procedure in SAS.

2.2.2. Intraclass correlation coefficient (ICC)—The intraclass correlation coefficient 

(ICC) is a measure of association that can accommodate many raters’ ordinal classification 

derived from the components of an analysis of variance (ANOVA) model. There are several 

versions of the ICC depending on the design and the purpose of the study [5]. In this paper, 

we focus on the version which assumes that each subject is classified by the same set of 

raters who were randomly selected from a larger pool of raters (Case 2 in Shrout and Fleiss 
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[5]). The ICC based upon this assumption requires fitting a two-way ANOVA model where 

raters are considered as random:

where Yij is the rating given to subject i (i = 1, …, I) by rater j (j = 1, …, J), μ is the overall 

population mean of the ratings, ai is the difference between μ and the mean ratings of the ith 

subject, bj is the difference between μ and the mean ratings of the jth rater, (ab)ij is the 

difference between the jth rater’s typical ratings and his or her rating given on the ith 

subject, and eij is the random error of the jth rater’s rating on the ith subject. This model 

produces the following three sources of variation; between subjects sum of squares (df = I – 
1), between raters sum of squares (df = J – 1) and an error sum of squares (df = (I – 1)(J – 
1)). The mean squares used to compute the ICC are; mean squared sum of squares between 

subjects (MSB), mean squared sum of squares between raters (MSJ) and mean squared error 

(MSE). The ICC is given by

The ICC ranges from 0 to 1Koo and Li provide an interpretation for ICC as the following: 

<0.5 indicate poor reliability, 0.5–0.75 indicate moderate reliability, 0.75–0.9 indicate good 

reliability, and >0.90 indicate excellent reliability [27]. For more detail, see Shrout and 

Fleiss [5]. The ICC has been demonstrated to be equivalent to Cohen’s weighted kappa with 

quadratic weights for the case of two raters [3,26,28]. The ICC can be easily calculated 

using most statistical software packages including the irr package in R and the official 

INTRACC macro in SAS.

2.2.3. Weighted kappa by Mielke and Berry—Mielke et al. published a weighted 

kappa statistic for multiple judges using an ordinal classification scale [6]. Their method 

relies on constructing a contingency table with J dimensions, where J is the number of 

independent raters. Suppose we have a sample of J = 3 raters (rater X, rater Y, and rater Z) 

each independently classifying subjects into an ordered scale with C=4 categories. We can 

construct a 3-dimensional contingency table where each cell frequency, nijk, corresponds to 

the number of subjects that were classified as the dimensional position by the first, second, 

and third rater. The first step in computing the weighted kappa is to sum up all the cell 

frequencies in this contingency table, denoted by N. The next step is to compute the 

marginal frequency for each row, column and slice of the contingency table. Let Xi, Yj, and 

Zk denote the marginal frequency of the ith row, jth column and kth slice respectively. Then, 

the weighted kappa introduced by Mielke is given by
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where wijk is the linear or quadratic weight assigned to each cell for i = 1, …, C, j = 1, …, C, 
k = 1, …, C, with wijk = |i −j| + |i−k| + |j−k| for linear weights and wijk = (i −j)2 + (i−k)2 + (j
−k)2 for quadratic weights. By assigning binary weights (wijk = 0 if i = j = k and 1 

otherwise), the weighted kappa reduces to an unweighted version for measures of 

agreement.

Mielke et al. also demonstrated an approach to compute the exact variance of the weighted 

kappa statistic, which is computationally very intensive [29]. The above formula can be 

extended to cases with J > 3 raters. The method is conceptually simple and does not require 

fitting a complicated statistical model. However, when J is large (J > 4 or 5), the 

computation of Mielke et al.’s weighted kappa becomes unwieldy because the number of 

dimensions of the contingency table increases exponentially with J (dimension = CJ).

2.2.4. Model-based kappa statistic for association—Nelson and Edwards also 

introduced a model-based measure of association by incorporating weights (quadratic or 

linear) that place more emphasis on categories that are closer than categories that are far 

apart. The formula for the weighted kappa, κma, and its variance var(κma) can be found in 

Appendix I and full details can be found in Nelson and Edwards [14]. R code is available as 

supplementary material to efficiently and quickly calculate this measure of association.

3. Results

We now demonstrate the use of these existing summary measures to assess the strength of 

agreement and association between many raters in three diverse medical studies. We used 

the psych package in R to compute Cohen’s kappa and the irr package in R to compute 

Fleiss’ kappa and the ICC [30]. For the Nelson approaches, we used the clmm function in 

the ordinal package in R to obtain the parameter estimates for the GLMM, then used our 

own R script to compute the measures of agreement and association. The R script for fitting 

a sample of the data set from one of the examples (Example Three, Holmquist) is provided 

as supplementary material online. We show

3.1. Example One (AIM)

The Assessing and Improving Mammogram (AIM) study is a large-scale cancer screening 

study conducted by the Breast Cancer Surveillance Consortium (BCSC) where a sample of 

130 mammograms was obtained from six breast imaging registries in the United States [31]. 

A total of 119 radiologists each classified 109 mammograms from the sample of 130 

mammograms into a four-level BI-RADS density assessment scale [31]. The BI-RADS 

density scale classifies breast density into four ordinal groups ranging from least to most 

dense:

A. Almost entirely fatty

B. Scattered fibroglandular densities

C. Heterogeneously dense

D. Extremely dense
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Mammographic breast density is an important risk factor for breast cancer. Multiple studies 

have shown that women with dense breasts have at least a slight increased risk of developing 

breast cancer [9–12]. Furthermore, mammographic breast density is linked to decreased 

mammographic sensitivity because small malignant lesions are difficult to detect in subjects 

with high breast density [8,10].

Various agreement measures applied to the AIM study are presented in Table 1, including 

the average pairwise Cohen’s kappa, Fleiss’ kappa, Nelson and Edwards’ (abbreviated as 

Nelson’s in this section) model-based measure for agreement, and average pairwise 

weighted Cohen’s kappa, the ICC, and Nelson’s model-based measure for association. Due 

to the large number of raters (J = 119), we were unable to apply Mielke et al.’s weighted 

(and unweighted) kappa to this data set. The average pairwise Cohen’s kappa and Fleiss’ 

kappa yielded similar agreement measures (0.438 and 0.434 respectively) [Table 1]. Based 

on these two measures, there was moderate agreement among raters [16]. The 95% 

confidence interval (CI) for Fleiss’ kappa was extremely narrow due to the large sample of 

subjects and raters for this data set (I = 109, J = 119) which leads to a disproportionately 

small standard error term for Fleiss’ kappa. Nelson’s model-based approach produced a 

kappa estimate that was slightly lower than the average pairwise Cohen’s kappa and Fleiss’ 

kappa indicating slightly decreased agreement among raters (0.388).

All of the association measures were larger than any of the agreement measures which 

usually occurs because credit is also assigned for discordant pairs of classifications. 

Estimates of the average pairwise weighted Cohen’s kappa and the ICC both indicated a 

substantial association [16] between the radiologists (0.726 and 0.721 respectively). 

Nelson’s model-based approach yielded a much smaller measure of association (0.587) 

compared to the other two approaches. In this data set, not all subjects were rated by J = 119 

raters. Therefore, we had to use a subset of 84 subjects who were classified by all 119 raters 

(66.2% of all subjects) in order to compute Cohen’s kappa, Fleiss’ kappa and the ICC. 

Nelson’s model-based measures of agreement and association when applied to this subset of 

subjects were identical to the second decimal place to their corresponding measures when 

applied to the entire data set. The probability of disease for the AIM study was moderately 

low with 15%, 43%, 31% and 11% of the classifications falling in the four ordinal categories 

of increasing breast density.

3.2. Example Two (Gonin and Lipsitz)

Faust et al. describe a dermatology index of disease severity (DIDS) used to classify the 

severity of inflammatory skin disease [32]. DIDS is composed of five ordinal categories with 

increasing disease severity:

1. No evidence of clinical disease

2. Limited disease

3. Mild disease

4. Moderate disease

5. Severe disease

Mitani et al. Page 9

Ann Epidemiol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Twelve raters (seven dermatologists and five staff including residents and nurses) were 

recruited to assess 38 subjects. An interesting feature of this study is that each rater 

classified only a small subset of the 38 subjects inducing missing/incomplete data. The 

resulting data set, presented in Gonin et al. [15] in its entirety, is highly sparse. Cohen’s 

kappa, Fleiss’ kappa, the ICC and Mielke’s method all require data to be balanced (each 

subject is rated by the same number of raters), thus could not be used to assess agreement 

and association for this study. Motivated by this data set, Gonin et al. developed a model-

based weighted kappa statistic based on the generalized estimating equations which 

considers each rater as a “fixed” effect and is thus limited to a small to moderate number of 

raters [15]. The measure of association reported in their paper, 0.868 (95% CI = 0.751–

0.932), is comparable to the result obtained using Nelson’s model-based approach for 

measure of association, 0.878 (0.841, 0.915) [Table 2] reflecting almost perfect agreement 

and association [16] between raters’ classifications of the subjects’ skin condition using the 

DIDS scale. This is an example where only model-based measures of agreement and 

association can be applied due to the highly unbalanced nature of the data set. The 

probability of a subject’s test result classified into the more severe disease categories were 

high with 11%, 14%, 9%, 34% and 33% of the classifications falling in the five ordinal 

categories of increasing severity of inflammatory skin disease.

3.3. Example Three (Holmquist)

In an earlier study, Holmquist et al. investigated the variability in agreement of the 

classification of carcinoma in situ of the uterine cervix [33]. Seven pathologists each 

independently classified 118 histological slides into one of five ordinal categories of 

increasing disease severity:

1. Negative

2. Atypical squamous hyperplasia

3. Carcinoma in situ

4. Squamous carcinoma with early stromal invasion

5. Invasive carcinoma

This data set is regarded as a classic example to evaluate agreement between multiple raters 

each classifying a sample of subjects’ test results according to an ordinal classification scale 

[34]. It serves as an ideal data set because each of the 118 subjects’ histological slides is 

rated by each of the seven raters, providing a balanced (or complete) data with a relatively 

small number of raters (J = 7). We were able to apply all methods to this optimal data set 

(subset shown in Appendix II). All agreement measures ranged between 0.127 and 0.366 

indicating slight to fair agreement [16]between the seven pathologists. [Table 3] Again, 

average pairwise Cohen and Fleiss’ kappa produced comparable estimates (0.366 and 0.354, 

respectively). Mielke’s method produced a much lower estimate of agreement (0.127) and 

Nelson’s model-based approach produced an estimate (0.266) that was lower than Cohen’s 

and Fleiss’ kappas but higher than Mielke’s indicating poor agreement among the seven 

pathologists. The weighted Cohen’s kappa, ICC and weighted Mielke’s method all yielded 

comparable measures of association (0.657, 0.644, and 0.647 respectively), indicating 
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substantial association [16] between the seven pathologists, while Nelson’s model-based 

method yielded a lower estimate (0.509), a similar pattern observed in Example One. In their 

paper, Mielke et al. provided an example of calculating the exact variance for the case of 

three raters [29]. However, the formula was too unwieldly to extend to the case of seven 

raters and hence we omit the 95% CI for Mielke’s methods. The probability of a subject’s 

test result classified into a higher diseased category in the Holmquist study was small (i.e. 

28%, 28%, 32%, 8%, and 4% of the classifications in the five ordinal categories of 

increasing disease severity), reflecting a low prevalence of cervical cancer in this sample of 

subjects.

In the following section, we describe a simulation study aimed to explain the varying 

agreement and association measures observed in the three studies.

3.4. Simulation study

3.4.1 Motivation—To better understand why the different existing summary measures of 

agreement and association vary across approaches, we conducted a simulation study to 

explore the performance of each approach. We randomly generated 1000 data sets for each 

simulation scenario. For each simulated data set, we generated random effects for 250 

subject 100 raters from N(0, 5) and N(0, 1) distributions respectively. Following Equation 

(1), we used the cumulative distribution function of the standard normal to generate the 

probability of each subject being assigned to category c for c=1, …, 5. Using these 

probabilities, the classification of each subject’s test result was randomly assigned into one 

of the c=1, …, 5 categories. We simulated seven scenarios where each scenario varied by the 

underlying prevalence of the disease ranging from low prevalence of disease with 80% of 

subjects in category 1 and 5% in category 5, to high prevalence of disease with 5% of 

subjects in category 1 and 80% of subjects in category 5. The prevalence for each of the 

seven scenarios are listed in Table 4. The following measures of agreement and association 

were calculated for each simulated data set: the average pairwise Cohen’s kappa, Fleiss’ 

kappa and Nelson’s model-based measure for agreement, and the average pairwise Cohen’s 

weighted kappa (with quadratic weights), the ICC, and Nelson’s model-based measure (with 

quadratic weights) for association. Mielke’s method was not applied due to the large number 

of raters (J=100).

3.4.2. Simulation results—Simulation results are presented in Figure 2, where Figures 

2a and 2b depict the mean measures of agreement and association respectively based on the 

1000 simulated data sets for each approach.

Figure 2a depicts the mean measures of agreement over the 1000 simulated data sets from 

average Cohen’s kappa, Fleiss’ kappa and Nelson’s model-based approach as the prevalence 

of disease increases from low (fewer subjects classified with disease) to high (many subjects 

classified with disease). Nelson’s model-based approach remained unchanged and was 

robust to varying disease prevalence. The other two measures of agreement (Cohen’s kappa 

and Fleiss’ kappa) overestimated the agreement for more extreme levels of prevalence 

compared to Nelson’s model-based approach [Figure 2a]. The three agreement measures 
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were most similar in the scenario with medium disease prevalence where the probability of 

disease was equally distributed across the five classified categories.

Figure 2b depicts the mean measures of association over the 1000 simulated data sets from 

Cohen’s kappa, ICC and Nelson’s model-based approach as the prevalence of disease 

increases from low to high. Nelson’s model-based measure for association was also 

unaffected by the changes in level of disease prevalence whereas the average Cohen’s 

weighted kappa and the ICC were impacted by the underlying disease prevalence and 

generally overestimated the association regardless of the prevalence level compared to 

Nelson’s approach. [Figure 2b] However, the three association measures were most similar 

when the prevalence was extreme (both highest and lowest prevalence). We also computed 

the coverage probabilities for Nelson et al’s model-based measure of association based upon 

the simulation study. The results are presented in Appendix III. We observe that when 

disease prevalence is extreme (low or high), coverage probabilities for Nelson’s model-

based method were below the expected 95%. When the disease prevalence is even across the 

categories, the coverage probabilities were close to 95%. The coverage probabilities for the 

Cohen’s kappas and Fleiss’ kappa could not be computed because these are usually 

considered to be strictly data-driven statistics for assessing agreement and association [35]. 

To provide some insight of the performance of Cohen’s kappas and Fleiss’ kappa, we 

present the distributions of the 1,000 simulated agreement and association values in the 

Supplementary material online.

3.4.3. Conclusions based on the simulation study—The simulation study provided 

valuable insight into possible reasons for the range of values of the agreement and 

association measures across the different approaches in each of the three studies described in 

Sections 3.1–3.3. In a manner consistent to the simulation study results, the average Cohen’s 

kappa and Fleiss’ kappa applied to Holmquist data were larger than that of Nelson model-

based measure of agreement. This can be attributed to the low prevalence of disease in the 

Holmquist study [Table 3]. Although not as extreme as one of our simulation scenarios, the 

Holmquist data set indicated a low prevalence with 28%, 28%, 32%, 8%, and 4% of the 

classifications in the five ordinal categories of increasing disease severity.

The probability of disease for the AIM study was also moderately low with 15%, 43%, 31% 

and 11% of the classifications in the four ordinal categories of increasing breast density. 

Based on the results from the simulation study, the low disease prevalence in the AIM study 

possibly explains why the model-based approaches yielded lower measures of agreement 

and association compared to the other approaches [Table 1].

4. Discussion

Strong agreement and association between expert raters’ subjective classifications of test 

results are essential components of effective diagnostic and screening tests. However, many 

studies report variability in agreement and association [7–9,11]. In this paper we 

demonstrate how various summary measures of agreement and association can (or cannot) 

be applied to three real large-scale screening test studies where an ordinal classification 

scale is used by expert raters to subjectively classify each subject’s disease condition. In 

Mitani et al. Page 12

Ann Epidemiol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each study we examined, there were noticeable discrepancies between the measures of 

agreement and association. An important limitation of the more commonly used measures of 

agreement and association (Cohen’s kappa, Fleiss’ kappa, and the ICC) is that they cannot 

be applied to unbalanced data sets where not all raters classify each subject. This was most 

apparent in the Gonin data set where no two raters classified the same set of subjects 

resulting in extremely sparse data. For the AIM data set, we were able to apply the three 

aforementioned methods on a subset of the subjects that were classified by the same number 

of raters. On the other hand, Nelson and Edwards’ model-based agreement is robust to 

missing and unbalanced data and could be implemented in all three studies. Another 

advantage of Nelson and Edwards’ model-based approach is the option to include covariates 

in the GLMM. Although not demonstrated in this paper, the model-based approach can be 

used to compute the agreement (and association) among a subset of raters or a subset of 

subjects by including a rater- or subject-specific covariate in the GLMM. For example, by 

including a covariate that represents the experience level of the raters, we can compute the 

agreement (and association) among experienced raters and among inexperienced raters. See 

Nelson and Edwards for more details [14].

Mielke’s unweighted and weighted kappas were not suitable for large-scale studies 

involving many raters because the computation becomes too unwieldly with a large number 

of raters. For small-scale studies with five or fewer raters, Mielke’s method provides a 

reasonable measure of association, though, as an extension of Cohen’s kappa, is also prone 

to similar issues including prevalence and missing data.

We also showed, through simulation, that some of the more commonly used measures of 

agreement and association are susceptible to the disease prevalence level of the underlying 

disease. Under the simulation scenario with medium prevalence, average weighted Cohen’s 

kappa and the ICC overestimated the strength of association. Both Cohen’s kappa and 

Fleiss’ kappa have previously been noted to have issues such as the susceptibility to the level 

of prevalence [17]. Despite this, Cohen’s kappa remains a popular choice for assessing 

agreement, perhaps because it can easily be implemented due to the availability in most 

statistical software such as SAS and R. We observed through our simulation study that ICC 

was also susceptible to the prevalence level which is not surprising, given its equivalence to 

the weighted Cohen’s kappa for two raters. We also observed that Nelson and Edwards’ 

model-based approach was the most robust to the underlying disease prevalence, and 

generally provided reasonable 95% coverage probablities with some decreased coverage 

probability observed in Nelson and Edwards’ model-based measures of agreement and 

association when disease prevalence is extreme (Appendix III). The results from our 

simulation study demonstrated that some of the discrepancies observed between the various 

measures of agreement applied to the three examples may be attributed to the underlying 

disease prevalence.

Existing summary measures, Cohen’s kappa, Fleiss’ kappa and ICC, can easily be 

implemented in existing software packages including R and SAS. Nelson and Edwards’ 

model-based summary measure can quickly be calculated using R. In the supplementary 

materials, we provide the R code to compute the model-based agreement and association 
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measures for the Holmquist data set (Example Three). We anticipate that users will be able 

to apply the program to their own data set.

We recommend that researchers estimate the disease prevalence in their study by calculating 

the proportion of all test results assigned to each classification category. For agreement, if 

the test results are fairly evenly distributed over the classification categories, then each 

approach (Cohen’s kappa, Fleiss’ kappa, ICC, and Nelson and Edwards’ model-based 

summary measure) produces similar summary measures. If the subjects’ test results are 

unequally distributed across the ordinal categories, resulting in high or low disease 

prevalence, we recommend Nelson and Edwards’ model-based approach to measure 

agreement. When measuring association in large-scale studies, we would generally 

recommend the use of a model-based summary measure such as that developed by Nelson 

and Edwards to appropriately account for disease prevalence effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix I

Model-based kappa for association and its variance

As with agreement, the parameter estimates obtained from fitting the model

are (α0, …, αC, ).

Let  and  with  and . Also, let 

 be the values that minimize chance association. For pairs of classifications 

in the rth and sth categories respectively (r, s = 1, …, C) by two independent raters, we can 

define the quadratic weight as wrs = 1−(r−s)2/(C−1)2 and the linear weight as wrs = 1−|r
−s|/(C−1). Then,
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Where Φ and ϕ are the cumulative distribution function and the probability distribution 

function of the standard normal respectively.

where

R code to compute the association and its variance is available as supplementary materials.

Appendix II. Classifications of pathologists for Holmquist data set (118 

subjects and 7 raters)

Subject

Rater

A B C D E F G

1 4 3 4 2 3 3 3

2 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3

4 4 3 3 4 3 3 3
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Subject

Rater

A B C D E F G

5 3 3 3 3 3 3 3

6 2 1 2 1 1 1 1

7 1 1 1 1 2 1 1

8 3 3 2 3 2 2 3

… …

118 2 3 1 1 2 1 2

Appendix III

Table 1A

Simulation Estimates and Coverage Probability of Model-based Kappa Agreement

Simulation Scenario A (Used in 
manuscript)

Simulation Scenario B (Additionally 
conducted)

, True κm = 0.264 , True κm = 0.090

Prevalence of disease Model-based 
Kappa Agreement 

Estimate

Coverage Probability Model-based 
Kappa 

Agreement 
Estimate

Coverage Probability

Low
↓

0.256 0.831 0.090 0.933

0.262 0.903 0.091 0.931

0.264 0.929 0.091 0.943

Medium
↓

0.263 0.933 0.090 0.946

0.262 0.896 0.090 0.929

0.262 0.918 0.091 0.940

High 0.256 0.861 0.090 0.923

Table 1B

Simulation Estimates and Coverage Probability of Model-based Kappa Agreement

Simulation Scenario A (Used in 
manuscript)

Simulation Scenario B (Additionally 
conducted)

, True κm = 0.506 , True κm = 0.216

Prevalence of disease Model-based 
Kappa 

Association 
Estimate

Coverage Probability Model-based 
Kappa 

Association 
Estimate

Coverage Probability

Low
↓

0.495 0.866 0.216 0.933

0.503 0.937 0.218 0.930

0.506 0.944 0.218 0.943

Medium
↓

0.505 0.952 0.217 0.945

0.504 0.924 0.216 0.929
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Simulation Scenario A (Used in 
manuscript)

Simulation Scenario B (Additionally 
conducted)

, True κm = 0.506 , True κm = 0.216

Prevalence of disease Model-based 
Kappa 

Association 
Estimate

Coverage Probability Model-based 
Kappa 

Association 
Estimate

Coverage Probability

0.504 0.936 0.218 0.939

High 0.496 0.892 0.216 0.920
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Figure 1. 
Differences in weight (“credit”) assigned when measuring agreement vs. association
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Figure 2. 
Average summary measures over 1000 simulated data sets by varying prevalence of 

underlying disease
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Table 1

Agreement and association measures for the AIM data set

Measure Method Estimate (95% CI)

Agreement Average pairwise Cohen* 0.438 (0.309, 0.567)

Fleiss* 0.434 (0.432, 0.435)

Model-based Kappa 0.388 (0.350, 0.427)

Association Average pairwise weighted Cohen* 0.726 (0.641, 0.811)

ICC* 0.721 (0.661, 0.783)

Model-based Weighted Kappa 0.587 (0.543, 0.631)

*
Based on a subset of 84 subjects who were classified by all 119 raters.
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Table 2

Agreement and association measures on Gonin data set

Measure Method Estimate (95% CI)

Agreement Model-based Kappa 0.746 (0.699, 0.793)

Association Gonin method 0.868 (0.751, 0.932)

Model-based Weighted Kappa 0.878 (0.841, 0.915)
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Table 3

Agreement and association measures for the Holmquist data set

Measure Method Estimate (95% CI)

Agreement Average pairwise Cohen 0.366 (0.256, 0.476)

Fleiss 0.354 (0.331, 0.378)

Unweighted Mielke 0.127

Model-based Kappa 0.266 (0.204, 0.328)

Association Average pairwise weighted Cohen 0.657 (0.547, 0.767)

ICC 0.644 (0.575, 0.712)

Weighted Mielke 0.647

Model-based Weighted Kappa 0.509 (0.421, 0.598)
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