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Abstract

The present covariance based outlier detection algorithm selects from a candidate set of feature 

vectors that are best at identifying outliers. Features extracted from biomedical and health 

informatics data can be more informative in disease assessment and there are no restrictions on the 

nature and number of features that can be tested. But an important challenge for an algorithm 

operating on a set of features is for it to winnow the effective features from the ineffective ones. 

The powerful algorithm described in this paper leverages covariance information from the time 

series data to identify features with the highest sensitivity for outlier identification. Empirical 

results demonstrate the efficacy of the method.

I. Introduction

Biomedical and health informatics advances of the recent past have contributed to the 

production of personal health care data, data which has the potential to deliver many 

healthcare benefits, such as personalized precision medicine [1], better signal to noise ratio 

or further medical insights. To fully realize these benefits, effective and automated analytical 

tools to process and understand this data are required [2].

Outlier detection is one important type of data analysis that can figure into any phase of an 

analysis pipeline [3]. In some cases, outlier detection is a critical pre-processing step such as 

in a bio-signal or bio-imaging analysis. In other cases, outliers are events of interest in their 

own right, such as when an aberrant point might signal a patient entering into a critical state 

that requires immediate attention. Having outlier detection algorithms that yield near 

instantaneous results, possess high sensitivity and operate automatically are necessary to 

bridge data outputs from biomedical technologies and individuals they are designed to assist.

In this paper we propose an outlier detection algorithm that leverages covariance information 

and data feature selection. Leveraging covariance matrices for outlier detection makes 

intuitive sense because covariance communicates variability and outliers show different 

patterns of variability than the normal data [4]. Examining this variability over observation 

in a time stream facilitates the separation of signal from noise. This paper presents details of 

the algorithm, including how valid features can be extracted and selected from the data 

automatically for effective outlier detection. Experimental simulations and results 
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demonstrate that one can use covariance information in the time series to test selected 

features for accurately identifying outliers.

II. Method

The covariance based outlier detection algorithm, diagrammatically shown in Fig. 1, extends 

our multivariate Voronoi outlier detection approach [5] through a powerful feature selection 

procedure. Each of these steps is now discussed in more detail.

Step 1 — Feature extraction

Features have the capacity to be more informative than the data itself [6]. Without loss of 

generality, suppose the original data are multivariate time series with n observations and p 
columns of variables. Feature vectors of length n can be extracted from the multivariate time 

series data. The 13 example feature vectors in this study are overviewed in Table 1; but there 

is no limit to the number and type of features one could use.

Features 3, 4, 5 and 6 require first fitting a parametric autoregressive (AR) time series model 

whereas Features 7, 8, 9 and 10 are the model free analogues which operate just on the raw 

data. Features 11 and 12 are closely related to the time series data. Features 1, 2 and 13 are 

binary indicator vectors derived based on the Multivariate Least Trimmed Squares estimator 

[7, 8], an important classical statistical method for outlier detection.

All features except F13 implement a leave one out approach. For a given feature, its statistic 

is first computed on all data except the first observation. The first observation is added back, 

the second observation is removed and the statistic is computed again. This process is 

repeated for all observations, yielding a n × 1 vector for each feature. If an observation is 

influential (i.e. outlier), removing it will lead to a less extreme feature value than leaving the 

observation in the data. At each time point, the features are calculated based on the 

following descriptions.

F3 and F7 are the inverse determinant of the covariance, 1/det(S), where S is the covariance 

matrix at the current time point. F3 is based on the covariance matrix after fitting an 

autoregressive (AR) time series model, and F7 uses the raw data covariance only.

F4 and F8 are the inverse of the trace of the covariance, 1/tr(S). F4 is calculated after fitting 

an AR model, and F8 is based on the raw data.

F5 and F9 derive from the correlation matrix, R, which is a scaled version of the covariance 

matrix at the current time point. F5 requires first fitting an autoregressive model, and F9 is 

from raw data: 1/det(R).

F6 and F10 are the inverse product of the variance terms,

(1)
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where σt is the variance at the current time point for variable i. F6 is AR model based and 

F10 is the corresponding model free version.

F11 sums across the absolute value of the time series for each observation:

(2)

where yi represents the original time series observation at the current time point for variable 

i.

F12 fits an AR model and then sums across the squared residuals for each observation:

(3)

where ri is the residual after fitting the AR model.

F13 is the MLTS, which is a robust statistical method for fitting an AR model while 

handling outliers [7, 8]. It finds h observations (out of n) whose covariance matrix has the 

lowest determinant. At each iteration, a subset of randomly selected observations of size h is 

taken and the mean T1 and the covariance matrix S1 are computed to determine the distance 

d for each observation:

(4)

where superscript t denotes matrix transpose. The distances from (4) are sorted from 

smallest to largest, and the h smallest are retained as h2. From h2 a new mean T2 and 

variance/covariance matrix S2 are computed. The relationship expressed in (5) now holds:

(5)

These steps are repeated until the smallest overall determinant is obtained and this subset is 

the outlier free set of F13 with indicator value 0. The observations outside this subset are 

assigned with F13 indicator value 1.

F1 is identical to F13 except that F1 implements the leave one out approach. F2 is identical 

to F1, except the values obtained in equation (5) are compared to a chi-square distribution 

(χ2) distribution with q degrees of freedom for a given p-value, where q is defined as pk +1, 

and k is the estimated autoregressive model order. This chi-square distribution represents a 

particular assumption about the error in the data [8]. If the calculated distance in equation 

(4) is less than the corresponding chi-square critical value, the observation at the current 

time point is retained as outlier free for feature F2 with indicator value 0. Otherwise, F2 with 

indicator value 1 is assigned.
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Step 2 — Order statistics computation

For each feature vector, order statistics are computed. The sorting operation happens on the 

feature vector, so the maximum value is listed first and the minimum value is last. The 

observations corresponding to each feature value are shuffled according to the order 

statistics of the feature value. Once the order statistics are computed for all feature vectors, 

the order sorted feature vectors now encode outlier predictions. The largest feature value is 

most likely to be an outlier. Two features can theoretically have different statistical or 

mathematical underpinnings but could still make identical predictions. In this case, those 

features are redundant. Steps 3, 4 and 5 proceed iteratively.

Step 3 — Fixing outlier in order

For a given feature vector, the observation under consideration that is predicted to be an 

outlier is corrected by interpolating with the adjacent observations in the un-sorted data.

Step 4 — Log ratio of covariance determinants

After the predicted outlier has been corrected through interpolation, the determinant of the 

covariance matrix is computed. A determinant can be geometrically interpreted as a volume, 

where a larger relative volume reflects data with more extreme values. A log of the ratio 

between the current determinant and the determinant from the 1-step back interpolation is 

computed. If this ratio is unchanging, this suggests no further outliers are present. But as 

long as the ratio is decreasing this suggests the feature continues to identify outliers.

Step 5 — Convergence check

After each interpolation, and computing the log ratio of the covariance determinant 

described in Step 4, convergence is checked. If the log ratio of the determinants approaches 

0 (the theoretical minimum), or some small value like .05 which is more reasonable in 

practice, the feature has identified all of its predicted outliers. If the log ratio of the 

determinants is not 0 (or close to it), then the algorithm repeats steps 3, 4 and 5. The number 

of iterations to reach convergence (excluding the current iteration) determines the number of 

outliers predicted by that feature.

Step 6 — Outlier detection with feature selection

Plotting the convergence (i.e. the determinant of the covariance after fixing the candidate 

outlier) for all features over the iterations will yield different patterns. Good features will 

have log ratios that drop quickly (because they are accurately predicting and correcting 

outlying observations), have a sharp bend and then level off at a constant value near 0. In 

fact, the iteration at which the bend occurs is the number of outliers detected by a given 

feature. Poor features take more iterations to converge, or will not obtain near 0 log ratios.

III. Experiments and Results

25 multivariate time series data sets of 5 variables and 100 observations were generated for 

each of the 15 outlier conditions. The 15 conditions were all combinations of 5, 10 or 15 

outliers with magnitudes of 1, 2, 3, 4 or 5. Each multivariate time series was simulated from 
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an AR(2) process with standard normal Gaussian noise. For each outlier condition and for 

each feature, a receiver operating characteristic (ROC) curve was constructed by using 

convergence thresholds ranging from 0 to 1, with a step size of .01.

Table II presents a summary of these ROC results. The entries of Table II were computed by 

taking the maximum and average of the ratio of the true positive rate (TPR) divided by the 

false positive rate (FPR). Larger values are better. Within a condition, we see variability 

across features. For instance, F2 has a max of 26 whereas F1 has a max of 1097. We also see 

variability within a feature, as we consider 5, 10 or 15 outliers. Generally speaking, good 

features will have large values within a column, relative to other columns and demonstrate 

consistency across outlier conditions. Magnitudes differ within a column because different 

outlier conditions have differing levels of detection difficulty, for example, it is much easier 

to identify 10 outliers with magnitude 5 as compared to 5 outliers of magnitude 1.

Fig. 2 plots the log of the results in Table II, but adds two lines for the overall average across 

all 15 outlier conditions for the maximum and average. The lines representing the maximum 

always have larger values than the lines representing the average; but generally the max and 

average have a similar pattern for all feature vectors. Features with larger values (whether 

the maximum or average) are better at detecting outliers - like F1 and F3 - whereas features 

with smaller values - like F2 and F11 - do a poor job of identifying outliers. This figure also 

shows that it is more difficult for any feature - good or poor - to identify more outliers. We 

see that higher maximum or average values are obtained for 5 outliers and smaller values for 

the 15 outlier condition.

Fig. 3 shows the number of outliers identified by each feature vector for 5, 10 and 15 outlier 

conditions. If a feature predicted 5 outliers, then it should have its plot symbol at 5. For F4 

and F6, we see that it accurately predicts 5, 10 or 15 outliers for each of those conditions. 

But F2 fails because it predicts 5 outliers (or fewer) for all 3 outlier conditions.

Fig. 4 shows the covariance of the determinant at each iteration for F1, F2, F5 and F6. Fig. 5 

is the accompanying ROC plot for those same features. These features showcase the range of 

variability in feature vectors — 2 good and 2 poor. In Fig. 4, good features like F1 and F6 

reach a bend quickly and level off close to 1 because this is the determinant of the 

covariance for an autoregressive model with Gaussian normal noise. Poor features, like F2 

and F5 have a different pattern. F2 does not drop as quickly and only reaches the floor about 

halfway through the dataset, which would indicate that feature predicted half the 

observations as outliers. F5 seems to start as a good feature because it drops off fairly 

quickly; but notice that it levels off at a higher point on the y-axis than F1 and F6, which 

implies that it may have not identified all the outlier points. It is the combination of the 

iteration number of where the bend occurs and the curves proximity to 1 once it levels off 

that determine the number of outliers and if convergence was reached.

The corresponding ROC curves in Fig. 5 show the good features (F1 and F6) with high 

TPRs whereas the poor features (F2 and F5) have low TPRs when they are compared at the 

same FPRs. F6 performs well most likely due to the leveraged covariance information in the 

data. F5 is a standardized version of the covariance matrix. For outlier detection, variance 
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may be critical. Suppressing it makes the feature unlikely or unable to predict outliers 

effectively. The pattern of results in Fig. 5 demonstrates that our covariace based mehtod can 

simultaneously selct a good set of candidate featuure vectors and, from that candidate or 

effective set, accurately predict outliers.

IV. Conclusions

Many outlier detection algorithms are effective insofar as one has prior knowledge about 

their data and the outliers. But for some applications, this assumption is not possible. Our 

covariance based outlier detection algorithm presented here is effective and powerful 

because it allows a user to specify any number and type of features from the data and the 

algorithm will determine which features are best and, from that set of good features, 

correctly identify the number of outliers in the data. Future work could include developing 

the corresponding counterpart of the method in frequency domain, and testing out the 

approach on real application data, etc.
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Figure 1. 
Covariance based outlier detection with feature selection.
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Figure 2. 
Maximum and average values for 3 outlier conditions (5, 10 or 15 outliers) and all outlier 

conditions (thick line). x-axis is the labels of features vectors. y-axis is the log of the ratio of 

the TPR over the FPR. (This figure plots the log of the values in Table II.)
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Figure 3. 
Number of outliers identified by each feature vector. x-axis is the label of feature vectors and 

y-axis is the identified number of outliers.
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Figure 4. 
Convergence plot for F1, F2, F5 and F6. x-axis is observation (or iteration) and the y-axis is 

the determinant of the covariance matrix.
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Figure 5. 
ROC plot for F1, F2, F5 and F6. x-axis is FPR and y-axis is TPR.
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TABLE I

Feature Labels and description

Feature Description

F1 Multivariate Least Trimmed Squares

F2 Reweighted Multivariate Least Trimmed Squares

F3 Model based determinant of covariance matrix

F4 Model based trace of covariance matrix (i.e. sum of variances)

F5 Model based determinant of correlation matrix

F6 Model based product of variances

F7 Model free determinant of covariance matrix

F8 Model free trace of covariance matrix (i.e. sum of variances)

F9 Model free determinant of correlation matrix

F10 Model free product of variances

F11 Sum of absolute value of time series observations

F12 Model based sum of squared residuals

F13 Literature based Multivariate Least Trimmed Squares [7]
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