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Abstract

The MUC5B promoter polymorphism (rs35705950) has been associated with interstitial lung 

abnormalities (ILA) in white participants from the general population, it is not known if these 
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findings replicate and are influenced by ILA subtype. We evaluated the associations between 

MUC5B genotype and ILA in cohorts with extensive imaging characterization.

We performed ILA phenotyping and MUC5B promoter genotyping in 5,308 and 9,292 participants 

from the AGES-Reykjavik and COPDGene cohorts.

ILA were present in 7% of participants from AGES-Reykjavik, 8% of non-Hispanic Whites 

(NHW) from COPDGene and 7% of African-Americans (AA) from COPDGene. While MUC5B 
genotype was strongly associated (after correction for multiple testing) with ILA (odds ratio 

[OR]=2.1, 95% confidence interval [CI] 1.8, 2.4, P=1×10−26), there was evidence of significant 

heterogeneity between cohorts (I2=81%). When narrowed to specific radiologic subtypes, (e.g. 

subpleural ILA), MUC5B genotype remains strongly associated (OR=2.6, 95% CI 2.2, 3.1, 

P=10×10−30) with minimal heterogeneity (I2=0%). While there was no evidence that MUC5B 
genotype influenced survival, there was evidence that MUC5B genotype improved risk prediction 

for a possible UIP or UIP pattern in NHW populations.

The MUC5B promoter polymorphism is strongly associated with ILA and specific radiologic 

subtypes of ILA, with varying degrees of heterogeneity in the underlying populations.
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INTRODUCTION

Specific patterns of radiologic abnormalities on chest computed tomography (CT) scans 

(termed interstitial lung abnormalities [ILA])[1, 2], may represent an early or mild stage of 

pulmonary fibrosis or other interstitial lung diseases (ILD). Evidence in support of that 

hypothesis includes physiologic and clinical outcome data demonstrating that ILA are 

associated with measures of decreased pulmonary function[1–5] and exercise tolerance[6], 

an increased rate of respiratory symptoms[2] and death[7]. Further evidence linking ILA to 

pulmonary fibrosis includes the fact that the genetic polymorphism most consistently 

associated with idiopathic pulmonary fibrosis (IPF) (the minor allele of the single nucleotide 

polymorphism (SNP) rs35705950 in the promoter region of the mucin 5B [MUC5B] gene)

[8] is associated with ILA in the Framingham Heart Study (FHS)[2]. Despite the latter 

finding, it is not known whether the association between the MUC5B promoter 

polymorphism and ILA replicates and whether specific radiologic patterns affect the 

associations.

We hypothesized that MUC5B genotype would be associated with ILA; and that, these 

associations would depend on specific radiologic patterns of ILA. To test these hypotheses, 

we evaluated the association between ILA (and radiologic subtypes of ILA) and MUC5B 
genotype in participants from the Age Gene/Environment Susceptibility (AGES)-Reykjavik 

Study and in participants from the Genetic Epidemiology of COPD Study (COPDGene). 

Based on the results, additional analyses were performed to determine if MUC5B genotype 

would influence survival and if it could help to improve risk prediction for ILA.
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METHODS

Study Design

Protocols for participant enrolment in the AGES-Reykjavik study and COPDGene have been 

previously reported[1, 9, 10]. The AGES-Reykjavik study is a longitudinal birth cohort 

derived from the Reykjavik Study, which was established in 1967 and includes men and 

women born in Reykjavik, Iceland from 1907 to 1935 and are now followed by the Icelandic 

Heart Association[9]. Of the 5764 participants recruited from January 2002 to February 

2006, 5308 (92%) had both chest CT and genotypic information and were included in the 

analysis. COPDGene is a multicentre longitudinal study of smokers designed to identify the 

epidemiologic and genetic risk factors for chronic obstructive pulmonary disease (COPD). 

Participants were excluded from COPDGene if they had a history of known lung disease 

other than asthma, emphysema or COPD[10]. Of the 10,364 participants recruited between 

November 2007 and April 2010, 9,292 (90%) had both chest CT scans and genotypic 

information passing quality control and were included in the analysis (this number includes 

64 participants excluded from primary COPDGene analyses due to presence of 

bronchiectasis or ILD identified on chest CT scans after recruitment). Of the 9,292 

participants included from COPDGene, 6,134 (66%) were non-Hispanic whites (NHW) and 

3,158 (34%) were African-Americans (AA). Written informed consent was obtained from 

all participants, including consent for genetic studies. The institutional review boards of the 

Brigham and Women’s Hospital and participating centres approved this study.

Genotyping

All genotyping of the MUC5B promoter polymorphism (rs35705950) was done using 

TaqMan Genotyping Assays (Applied Biosystems)[2, 8].

Chest CT characterization

Methods for characterizing ILA in the initial 2508 participants from COPDGene and 

participants from AGES-Reykjavik have been previously described[1, 7], the same methods 

were used to characterize ILA in the remaining 6784 participants from COPDGene. Chest 

CT scans were evaluated by up to three readers (chest radiologists and pulmonologists) 

using a sequential reading method[11]. ILA were defined as specific non-dependent patterns 

of increased lung density including ground-glass, reticular abnormalities, diffuse 

centrilobular nodules, nonemphysematous cysts, honeycombing or traction bronchiectasis, 

affecting greater than 5% of any lung zone, (Figure 1). Chest CT scans with focal or 

unilateral ground-glass or reticular abnormalities, or patchy ground-glass abnormalities were 

considered indeterminate, (additional details in online supplementary material).

Next, to determine if the associations between ILA and MUC5B genotype were dependent 

on specific radiologic patterns, further imaging-based classification was performed on all 

scans with ILA present. First, ILA was classified by the presence, or absence, of definite 

fibrosis (defined as evidence of pulmonary parenchymal architectural distortion, such as 

traction bronchiectasis or honeycombing)[2, 5, 7] into two groups – ILA with definite 

fibrosis and ILA without fibrosis. Next, the scans with ILA were classified by consistency 

with a usual interstitial pneumonia (UIP) pattern (inconsistent, possible and UIP) according 
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to ATS/ERS/JRS/ALAT criteria[12]. Finally, chest CT scans with ILA were classified by the 

type and location of radiologic densities seen[1, 5] (online supplementary material and 

Figure 1). All ILA subtyping was performed by a consensus of at least three readers, who 

were blind to any participant specific information. Quantitative measures of emphysema 

(percentage of lung below 950 Hounsfield units) were measured with Airway inspector 

(www.airwayinspector.org)[13].

Statistical Analyses

All genetic analyses were performed using additive genetic models[8]. Logistic regression 

was used to assess the MUC5B SNP associations with ILA and ILA subtypes, and Cox 

proportional hazards models were used to analyze the time-to-mortality. In Cox models, all 

variables were assessed and none were found to violate the proportional hazards assumption. 

Multivariable models were adjusted for age, sex, and smoking behaviour (pack-years 

smoking). Mega analysis was performed by pooling the participant level data and P-values 

reported for the combined cohorts were corrected for multiple testing using a bonferroni 

correction. I2 values to assess heterogeneity between cohorts were calculated using the 

DerSimonian and Laird method[14]. To evaluate the ability of the MUC5B genotype to 

predict ILA (and ILA subtypes) we first evaluated clinical variables and risk factors for ILA 

based on prior literature[1, 2, 5, 7] and significant findings from our association analyses. 

Recursive partitioning using Hosmer-Lemeshow tests were used to assess goodness of fit for 

clinical variables (online supplementary material). Then receiver operating characteristic 

(ROC) curves were generated to obtain areas under the curve (AUC) and create c-statistics, 

and Wald tests assessed whether the addition of the MUC5B minor allele improved the 

ability to predict ILA. All analyses were performed using SAS version 9.4 (SAS Institute 

Inc, Cary, NC). All p-values were two sided and a level of 0.05 was considered statistically 

significant.

RESULTS

ILA Prevalence and Baseline Characteristics

The prevalence of participants with ILA, indeterminate ILA status and without ILA in the 

AGES-Reykjavik cohort[7] has been previously reported and the percentages were similar 

when subset to participants with genotypic information. In AGES-Reykjavik, ILA were 

present in 377 (7%), 3,209 (60%) did not have ILA and 1,722 (32%) had indeterminate ILA 

status (Table 1). In NHW participants from COPDGene 485 (8%) had ILA, 3,667 (60%) did 

not have ILA and 1,982 (32%) had indeterminate ILA status. In COPDGene AA participants 

223 (7%) had ILA, 1,728 (55%) did not have ILA and 1,207 (38%) had indeterminate ILA 

status (Table 1). In AGES-Reykjavik 4.4% (n=236) had possible UIP, 0.32% (n=17) had UIP 

and 2.4% (n=128) had definite fibrosis; in NHW participants from COPDGene, 3.4% 

(n=210) had possible UIP, 0.2% (n=12) had UIP and 1.6% (n=101) had definite fibrosis; and 

in AA participants from COPDGene 2.1% (n=66) had possible UIP, 0.09% (n=3) had UIP, 

and 0.8% (n=25) had definite fibrosis (online supplementary table 2).

The baseline characteristics in AGES-Reykjavik and COPDGene, stratified by race, are 

presented by the presence or absence of ILA in Table 1. Baseline characteristics of 
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participants with indeterminate ILA status, from COPDGene are presented in online 

supplementary table 1, and have been published previously in the AGES-Reykjavik cohort 

[7]. In all cohorts, participants with ILA were significantly older than those without ILA. In 

both AGES-Reykjavik and NHW’s from COPDGene, participants with ILA had greater 

pack-years of smoking and were more likely to be actively smoking, as compared to those 

without ILA, while in AA’s from COPDGene there were no differences associated with ILA 

in pack-years of smoking or current smoking status.

Interstitial Lung Abnormalities and the MUC5B promoter polymorphism

The minor allele frequency of the MUC5B promoter SNP (rs3570950) was 12.7% in AGES-

Reykjavik, 10.3% in NHW participants from COPDGene and 2% in AA participants from 

COPDGene (consistent with reported population diversity allelic frequency in dbSNP); the 

SNP was found to be in Hardy-Weinberg equilibrium in all cohorts. At least one copy of the 

MUC5B promoter polymorphism was noted in 44% (166 of 377), in 27% (131 of 485), and 

in 5% (12 of 223) of those with ILA in the AGES-Reykjavik, in NHW, and in AA 

participants from COPDGene, respectively. After adjustment for multiple testing, MUC5B 
genotype was strongly associated with ILA (Odds Ratio [OR] = 2.1, 95% Confidence 

Interval [CI] 1.8, 2.4, P=1×10−26, despite significant heterogeneity between cohorts 

(I2=81%), (Table 2).

The MUC5B Promoter Polymorphism and Radiologic Patterns of ILA

While there was some variability in the associations between the MUC5B promoter 

polymorphism and radiologic subtypes of ILA across cohorts; consistent patterns emerged. 

For example, after adjustment for covariates, despite moderate heterogeneity between 

cohorts (I2=59%), MUC5B genotype was consistently associated with definite fibrosis 

(OR=3.0, 95% CI 2.4, 3.7, P=8×10−22) compared to those without ILA, Table 2, Figure 1. 

There was also evidence that in addition to consistent association (or lack of) with MUC5B 
genotype, that when narrowed to specific radiologic phenotypes; there was minimal 

heterogeneity between cohorts. After adjustment for covariates, the MUC5B promoter 

polymorphism was consistently associated with a possible UIP pattern (OR=2.7, 95% CI 

2.3, 3.2, P=1×10−30), with essentially no between cohort heterogeneity (I2=1%), (Table 2, 

Figure 1). While, there was no evidence for an association with the MUC5B promoter 

polymorphism when ILA was limited to those with a centrilobular pattern (OR=0.91, 95% 

CI 0.63, 1.3, P=1.0, I2=15%), (Table 2, Figure 1). Additional results, subset to participants 

by age are presented in online supplementary tables 3 and 4.

The MUC5B Promoter Polymorphism and ILA Prediction

Based on the consistent associations between the MUC5B promoter polymorphism and ILA 

subtypes we sought to determine if knowledge of MUC5B genotype alone could predict 

definite fibrosis, and a possible UIP or a UIP pattern, on chest CT. In all cohorts, MUC5B 
genotype improved risk prediction for definite fibrosis (c-statistic 0.64, 95% CI 0.60–0.69, 

P<0.0001, c-statistic 0.57, 95% CI 0.52–0.62, P=0.0007, c-statistic 0.58, 95% CI 0.50–0.65, 

P=0.0005 in the AGES-Reykjavik, NHW, and in AA participants from COPDGene, 

respectively). In the NHW populations, MUC5B genotype improved risk prediction for 

having a possible UIP or UIP pattern (c-statistic 0.66, 95% CI 0.61–0.71, P<0.0001, c-
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statistic 0.60, 95% CI 0.57–0.63, P<0.0001 in the AGES-Reykjavik and in NHW 

participants from COPDGene, respectively), risk prediction was not improved in African-

Americans (c-statistic 0.52, 0.49–0.56, P=0.06 in AA participants from COPDGene), see 

Table 3, Figure 2.

Next, we sought to determine if carrying the MUC5B genotype would add to clinical 

characteristics and increase risk prediction for ILA subtypes. When added to models of best 

fitting clinical characteristics (age, sex, and pack-years of smoking), the MUC5B genotype 

improved risk prediction for definite fibrosis in AGES-Reykjavik (c-statistic 0.70 to 0.75, 

P=0.004 for comparison) but not in populations from COPDGene (c-statistic 0.76 to 0.76, 

P=0.22 for comparison, and c-statistic 0.70 to 0.73, P=0.34 for comparison, NHW, and in 

AA participants from COPDGene, respectively), (Table 3). When added to models of best 

fitting clinical characteristics, the MUC5B genotype improved risk prediction for having a 

possible UIP or UIP pattern in white populations (c-statistic 0.70 to 0.76, P=0.001 for 

comparison, and c-statistic 0.71 to 0.75, P=0.0008 for comparison in AGES-Reykjavik and 

in NHW’s from COPDGene, respectively) but not in AA participants from COPDGene (c-

statistic 0.70 to 0.70, P=0.50 for comparison), (Table 3 and Figure 2). Additional models for 

risk prediction are presented in Table 3 and online supplementary table 5.

Survival and the MUC5B Promoter Polymorphism

Finally, we sought to determine if the MUC5B promoter polymorphism influenced survival 

amongst participants with ILA. Over a median follow up time of 8.3 years [Interquartile 

Range (IQR) 4.8, 9.6], in AGES-Reykjavik, of the 378 participants with ILA, 210 (56%) had 

died. Of the participants with ILA from COPDGene with both mortality and genetic 

information available, over a median follow up time of 5.4 years (IQR 4.6, 6.1), 59 (15%) of 

the 399 non-Hispanic whites with ILA had died and 13 (8%) of the 165 African-Americans 

with ILA had died (none of the deaths in AA participants occurred in those with the 

MUC5B promoter polymorphism). There was no association between the MUC5B minor 

allele and survival (HR=1.0, 95% CI 0.8, 1.3, P=0.95, and HR=1.2, 95% CI 0.75, 2.0, 

P=0.41, in the AGES-Reykjavik and NHW participants from COPDGene, respectively). 

Similar results were seen when ILA was subset to include only those with various ILA 

subtypes.

DISCUSSION

This study adds important contributions to our understanding of the extent of the 

associations of ILA with the MUC5B promoter polymorphism (rs35705950), and to the 

origins of pulmonary fibrosis in general. First, this study replicates the association between 

MUC5B genotype and ILA[2]. Moreover, we found that the MUC5B promoter variant is 

associated with fibrotic ILA in African-Americans, a population with low allelic frequency 

of the rs35705950. Second, this study provides important information on the consistency of 

ILA subtypes associated with MUC5B genotype; specifically the evidence for consistent, 

and minimal heterogeneity, of associations between some overlapping ILA subtypes (e.g. 

subpleural ILA and possible UIP). Finally, although our study provides evidence that 

MUC5B genotype, in addition to clinical characteristics, may help to improve risk prediction 
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for important ILA subtypes (e.g. possible UIP or UIP patterns) in NHW populations, our 

study also demonstrates that MUC5B genotype will not likely be helpful in differentiating 

those with ILA who have better and worse survival.

The consistency of replication between the MUC5B genotype and ILA subtypes, provides 

further support to the growing evidence[2] that some chest CT imaging patterns can reliably 

identify a common phenotype that shares a genetic background noted in patients with IPF[8, 

15–17]. These findings, coupled with evidence that undiagnosed research participants with 

ILA are more likely to have physiologic decrements[1–4, 18], elevated fibrosis 

biomarkers[19, 20], when followed over time can experience imaging progression[5], 

accelerated lung function decline,[5] and an increased rate of mortality,[5, 7] all bolster the 

case that some subtypes of ILA likely represent an early and/or mild case of undiagnosed 

pulmonary fibrosis.

Although the pathogenic processes leading to pulmonary fibrosis that result from the 

MUC5B promoter polymorphism are not entirely understood, some steps in this process 

have been elucidated. Increasing copies of the minor allele of the MUC5B promoter 

polymorphism are associated with increased promoter activity[21] leading to increased 

expression of MUC5B in the lung in general[8, 22], and specifically in the bronchiolar 

epithelium[21]. In IPF patients, increased expression of cilium-associated genes (including 

MUC5B) is associated with increased amounts of honeycombing[23]. Although it remains 

unclear how increased expression of MUC5B results in pulmonary fibrosis, our findings add 

to those noted in IPF patients which demonstrate that increased MUC5B expression in the 

lung tends to result in a radiologic appearance dominated by subpleural reticular infiltrates 

and fibrosis both in patients with IPF[24] and in those with undiagnosed interstitial 

abnormalities.

To properly interpret these findings it is important to consider the characteristics of the study 

populations. We previously demonstrated an association between the MUC5B genotype and 

ILA in a white population from the FHS[2]. The AGES-Reykjavik cohort, although similar 

to the FHS in that it is also a general population sample of NHWs, is unique in that it is 

entirely comprised of older adults from a geographically and genetically isolated population 

from Iceland[25, 26]. In contrast, COPDGene includes a population of smokers with and 

without COPD, and excluded those known to have significant interstitial lung disease. 

Consistent replication in these populations, and the minimal between cohort heterogeneity 

seen with specific radiologic patterns, provides further evidence that the MUC5B promoter 

polymorphism confers a strong risk to develop a subpleural fibrotic process that can be 

detected in adults regardless of mitigating factors such as differences in geography and 

smoking prevalence. The MUC5B promoter polymorphism, although relatively common in 

European and American populations (with at least one copy occurring in ~20% of 

Europeans and in ~11% of Americans), is rare in African populations (~ 0.6%)[27]. The 

prevalence of having at least one copy of the minor allele of the MUC5B promoter 

polymorphism in AAs (which has not previously been reported) from COPDGene was 4%. 

Additional studies will be needed to understand the unique factors that contribute to an ILA 

prevalence of 7% in this population.
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Additionally, our findings demonstrate that MUC5B genotype improves risk prediction, 

particularly for detecting the presence of a possible UIP or UIP pattern among NHW 

populations. This finding is remarkable given the more modest improvements in risk that 

have been noted in multimarker genetic prediction models for established clinical disease 

entities such as breast cancer[28] and cardiovascular events,[29] and the lack of evidence 

that multimarker genetic profiles can improve risk prediction for subclinical 

atherosclerosis[30]. Our findings suggest that MUC5B genotype, in addition to important 

clinical variables, could be helpful in determining those most likely to develop an early stage 

of pulmonary fibrosis. In contrast, our findings do not suggest that MUC5B genotype will 

help to identify those with ILA who have an improved survival as has been noted in patients 

with IPF[31]. Instead our findings demonstrate that MUC5B genotype is important, but not 

the only, factor that can increase the risk for ILA (and ILA progression)[5] which when 

present, can lead to an increased rate of mortality[7].

This study has several limitations. First, although we were able to demonstrate similar 

associations between the MUC5B promoter polymorphism and specific radiologic subtypes 

of ILA in AAs from COPDGene, the smaller sample size and lower prevalence of the minor 

allele, may have limited the statistical power to demonstrate an improvement in risk 

prediction. Second, while MUC5B genotype is associated with a possible UIP pattern across 

all populations, the magnitude of this association is less than that observed in patients with 

clinically identified IPF[8, 16]. Finally, we cannot rule out the possibility that small sample 

size, within some ILA subtypes specifically, could have limited our statistical power to 

detect an association between MUC5B genotype and survival in subgroup analyses.

In conclusion, our study demonstrates that the MUC5B promoter polymorphism is 

associated with undiagnosed chest CT findings consistent with an early stage of pulmonary 

fibrosis. Our study also provides some specificity for the associations by demonstrating that 

MUC5B genotype is associated with subpleural ILA and a possible UIP pattern, but not with 

centrilobular predominant abnormalities. Additionally, the MUC5B genotype may help to 

predict the presence of specific subtypes of ILA on chest CT. Although it is not known if 

treating early stages of pulmonary fibrosis will help to prevent the accelerated pulmonary 

function decline[5] and early mortality[7] with which they are associated, the fact that 

MUC5B genotype may improve risk detection for a possible UIP pattern suggests a path 

forward.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Chest computed tomographic (CT) images depicting radiologic subtypes and the overlap 

between subtypes of interstitial lung abnormalities (ILA). In all panels the blue arrows point 

to areas of ILA without fibrosis, the red arrows point to areas of ILA with fibrosis, each 

panel (1–6) represents one participant. Panels 1–3 demonstrate patterns of ILA that are 

inconsistent with usual interstitial pneumonia (UIP), panels 4–5 demonstrate patterns of ILA 

that are possible UIP and panel 6 is a pattern of ILA that is consistent with UIP. Panel 1 

represents non-fibrotic, centrilobular predominant ILA, with an area zoomed in to highlight 

the centrilobular ground glass nodules. Panel 2 is non-fibrotic, mixed pattern of ILA, in 2A 

the blue arrow points to subpleural reticulation; in 2B the arrows demonstrate both 

subpleural and centrilobular ground glass. Panel 3 is fibrotic (see the red arrows in 3B), 

radiologic interstitial lung disease (ILD), that is inconsistent with UIP due to the pleural 

plaque (blue arrow) in 3A. Panel 4 is non-fibrotic, subpleural predominant ILA, blue arrows 

pointing to subpleural reticulation. Panel 5 is fibrotic, subpleural predominant ILA, with red 

arrows in both panels pointing to traction bronchiectasis. Panel 6 is fibrotic, radiologic ILD; 

red arrows highlight traction bronchiectasis and honeycombing.
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Figure 2. 
Receiver operator curves and bar graphs depicting interstitial lung abnormality (ILA), 

specifically possible and definite usual interstitial pneumonia (UIP) prediction, using 

baseline clinical information (age, sex and pack-years of smoking) and then with adding the 

MUC5B promoter polymorphism in each cohort. In the bar graphs the addition of MUC5B 
minor allele is for at least one copy of the minor allele.
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