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A robust method is presented for the segmentation of the full cerebral vasculature in 4-dimensional
(4D) computed tomography (CT). The method consists of candidate vessel selection, feature extraction,
random forest classification and postprocessing. Image features include among others the weighted
temporal variance image and parameters, including entropy, of an intensity histogram in a local region
at different scales. These histogram parameters revealed to be a strong feature in the detection of
vessels regardless of shape and size. The method was trained and tested on a large database of 264
patients with suspicion of acute ischemia who underwent 4D CT in our hospital in the period January
2014 to December 2015. Five subvolumes representing different regions of the cerebral vasculature
were annotated in each image in the training set by medical assistants. The evaluation was done

on 242 patients. A total of 16 (<8%) patients showed severe under or over segmentation and were
reported as failures. One out of five subvolumes was randomly annotated in 159 patients and was used
for quantitative evaluation. Quantitative evaluation showed a Dice coefficient of 0.91 + 0.07 and a
modified Hausdorff distance of 0.23 £ 0.22 mm. Therefore, robust vessel segmentation in 4D CT is
feasible with good accuracy.

Vessel segmentation in medical imaging is the cornerstone of many applications. For example, in acute ischemic
stroke which is caused by a disturbance of blood supply to the brain, segmentation of the cerebral vasculature is
important for improved visualization and for the detection and quantification of vessel occlusions, stenoses and
for the evaluation of collateral flow. Vascular occlusions in the proximal segments of the intracranial arteries are
targets for endovascular thrombectomy, that is, the mechanical removal of the clot which has been shown to
improve patient outcome when performed within, or possibly even beyond, 6 hours after onset of symptoms’.
Other applications include detection and characterization of vascular malformations or aneurysms and local
arterial input function selection for perfusion analysis.

The task of vessel segmentation has led to a vast amount of literature in the past decades®*. Related work on
cerebral vasculature has focused solely on the accuracy of finding the vessel boundaries; none have demonstrated
that their proposed method works on large number of patients that are seen in everyday clinical practice. In
Table 1, an overview is shown of related work on cerebral vessel segmentation.

Most methods use centerline tracking, active contours or a combination of both*, with parameters set at a
global level to represent both large and small vessels. Tracking based approaches will have difficulty achieving the
desired level of robustness on full brain vessel segmentation. These methods require some form of initialization,
as intensity values vary along the vessel. In CT Angiography (CTA) intensity values naturally drop to the values of
background tissue, which is around 20 to 40 HU for cerebral white and grey matter, at that point marked as par-
tial volume voxels. However, in the proximal intracranial arteries, the internal carotid artery (ICA) and vertebral
artery, intensity values of 200 to 500 HU and higher can be measured (Fig. 1). In addition, nonnatural variations
caused by pathology, such as vessel occlusions and arteriovenous malformations, or imaging artifacts, resulting
from the presence of clips or stents, have a major influence on the continuity of the intensity along the vessels
(Fig. 2). Therefore, this may even pose a challenge for tracking based methods with adaptive properties.
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Author Method Modality N Anatomy | Reference
Flasque et al.* Centerline modeling and tracking MRA 0 fullbrain | n/a

Passat et al.> Atlas registration and hit-or-miss transform MRA 50 full brain | Passat et al.*!
Hassouna et al.* 3D markov rand. field and max. pseudo likelihood est. | TOF-MRA 1 fullbrain | wooden phantom
Yan et al.® Capillary geodesic active contour MRA 0 CoW Lorigo et al.**
Law et al.® Variance-based edge detection TOF-MRA |0 CoW n/a

Gao et al ]ei‘},(apﬁcat&t)ign maximization modeling and curve TOF-MRA 10 CoW manual

Wang et al7 f})l’trsel:}s1 (t’lllé'eshold and Gumbel distribution based TOF-MRA 10 CoW manual

Robben et al.'™ Cascade classifier and directed graph evaluation TOF-MRA 50 CoW Bogunovic et al.*®
Manniesing et al.* Bone masking and levelset CTA 10 CoW manual

Schaap et al.*’ Bayesian tracking of tubular model CTA 28 ICA manual
Hernandez et al.*! Non-parametric geodesic active regions CTA,3DRA | 10 CoW manual

Schaap et al.' Coronary artery centerline extraction (challenge) CTA 24 coronaries | manual
Hameeteman et al.' | Carotid bifurcation detection (challenge) CTA 41 ICA manual

Kirisli et al.? Coronary artery stenosis detection (challenge) CTA 30 coronaries | manual

Kiros et al.'>' Multiscale dictionary learning (challenge participant) | CT 20 lung VESSELS12
Mendrik et al.’® Global threshold on area under intensity curve 4D CT 20 2?)?;,” manual

Our method" Random forest classifier with local histogram features | 4D CT 159 | fullbrain | manual

Table 1. Overview of related work on cerebral vessel segmentation and vessel challenges, grouped per modality.
The number of patients indicate the number of patients used in the quantitative evaluation. "Used pattern
recognition in their methods.

Another problem encountered in segmentation of the cerebral vasculature is the area of the skull base. In this
region the ICA, the jugular bulb and soft bone tissue are close to each other with similar intensities between these
structures. Vessel pathologies (e.g. calcifications and aneurysms) often appear in the skull region compared to
other parts in the brain’. Region based approaches that find the vessel boundaries directly without first centerline
tracking®, may have difficulties in this area as well.

CT is the primary imaging modality in an emergency setting because of its short acquisition time and because
of the fewer contraindications compared to magnetic resonance (MR). Furthermore, CT has a high diagnostic
value in the acute phase of stroke, due to its high sensitivity to hemorrhages and vascular pathology’~’. Modern
CT scanners are capable of acquiring contrast-enhanced 4D CT images with high spatial and temporal resolution
at large coverage, enabling visualization of the contrast dynamics at submillimeter resolution of the full brain. A
4D CT acquisition is less critical concerning timing of the peak arterial enhancement compared to conventional
3D CTA.

In this work we consider vessel segmentation in 4D CT. Only one related vessel segmentation method was
found in 4D CT, which was based on fixed thresholding of a global intensity histogram. Another approach
towards vessel segmentation is a method based on pattern recognition. This way local differences of vessel shape
and intensity can be learned, which makes it less prone to discontinuities of the vessels e.g. due to the presence
of pathologies or foreign objects. In addition, a pattern recognition method requires no explicit seed points for
initialization, as opposed to tracking based methods.

Pattern recognition based approaches have hardly been used for vessel segmentation. One reason may be the
difficulty of establishing a reliable reference standard. A precise manual delineation of the tortuous small vessels
is difficult and time-consuming. Two related works have been found based on pattern recognition: on vessel seg-
mentation in MR angiography (MRA)! and on vessel segmentation in lung CT'2. The latter achieved a top rank
in the VESSEL12 challenge!® demonstrating the potential of such an approach.

In this work, we present a pattern recognition approach for segmentation of the complete cerebral vasculature
in 4D CT. The proposed method emphasizes robustness and should be capable of handling patient data typically
seen in everyday clinical practice. The method also emphasizes completeness over accuracy in defining the vessel
boundaries by including the segmentation of the smaller vessels more distally in the vascular tree. Obtaining
accurate boundary segmentations is easier starting from the complete cerebral vasculature than the other way
around. Furthermore, completeness of the segmentation is more important, because the desired accuracy of the
lumen boundary is dependent on the subsequent application.

Results

Observer Variability. Table 2 shows the quantitative evaluation of the inter-observer variability, intra-ob-
server variability and the performance of the method in comparison to each observer for a subset of five 4D CT
images. DSC is Dice similarity coefficient', HD is Hausdorff distance'*, MHD is modified HD'¢, 95% HD is
95™ percentile HD, CMD is contour mean distance'” and AVD is absolute volume difference. The DSC for the
inter-observer variability was 0.75 & 0.06. The method scored higher, although this difference is only significant
in observer 1. A boxplot graphical overview is shown in Fig. 3 where the center line indicates the median value,
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Figure 1. Coronal view of a temporal maximum intensity projection visualizing part of the middle cerebral
artery including the M1, M2 and M3 segments. Intensity differences from proximal to distal in a nonaffected
vessel can reach up to 450 HU and higher. Vessel occlusions, vessel wall calcifications, collateral flow, clip and
stent artifacts have a large influence on the continuity of intensity values along the vessel.

Figure 2. Examples of difficulties encountered in vessel segmentation. From left to right: Skull base region,
arteries and veins surrounded by hyperdens bony structures in their course through the skull base, which
renders difficulties in separating them from each other; patient with coils placed at the anterior communicating
artery; patient with ventricular shunt causing a linear artifact in the left cerebral hemisphere.

the box edges depict the 25 and 75" percentiles. The whiskers show the extremes at 1.5 inter-quartile range
excluding the outliers, indicated as +.

Qualitative Evaluation. Visual inspection of all segmentations (n = 242) revealed a total of 16 failures
(<8%). In 8 patients this failure was the result of severe motion artifacts in multiple volume acquisitions unac-
counted for by the registration of the 4D CT or due to beam hardening artifacts during the acquisition. This
resulted in a high intensity variation over time leading to erroneous segmentation. An example of this is shown in
Fig. 4. These 16 failures were not considered for quantitative evaluation. Smaller movement artifacts outside the
cranial cavity (e.g. eye or jaw movement) posed no problem for the method.

The vast majority of the vessel segmentations were evaluated as excellent (Fig. 5). Presence of foreign objects
or severe trauma proved no difficulty for the method nor resulted in over segmentation. Figure 6 shows a patient
with foreign objects implanted as a result of surgical intervention. The skull base region is known to be the most
difficult region for vessel segmentation. This region holds the ICA and a network of small veins intertwined sur-
rounding the ICA, making distinguishment difficult. This region of interest in cerebral vessel segmentation was
segmented in detail (Fig. 7).

Quantitative Evaluation. The segmentations were compared with the reference standard provided by the
manual annotations for quantitative evaluation. The same metrics as described in Section Observer Variability
have been used. The results of the quantitative evaluation for 143 4D CT images are summarized in Table 3. The
overall results and results per subvolume are presented. Subvolume 1 included the ICA, the CoW and the middle
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DSC 0.75 £+ 0.06 0.88 £ 0.04 0.89 = 0.02° 0.84 4 0.09
HD (mm) 17.98 £2.01 11.72 £2.03 20.34 £2.35 16.21 4 3.80
MHD (mm) 0.61 £ 0.10 0.15 4 0.03 0.76 +0.12 0.28 £ 0.11
95% HD (mm) | 7.57 & 3.07 0.86 £ 0.43 9.414+2.22 5.59 £3.45
CMD (mm) 0.78 £ 0.14 0.20 £ 0.03 0.8540.13 0.354+0.13
AVD (%) 4449 +£18.46 |4.31+3.50 14.49 + 3.50" 24.16 £ 26.66

Table 2. Quantitative evaluation of inter-observer variability, intra-observer variability and method versus
each observer independently (n=5), reported as mean =+ standard deviation. p-values were computed with a
paired sample t-test between the inter-observer variability and proposed method for each evaluation measure.
Indicates a significant difference (p-value < 0.05, i.e. less than 5% chance that the samples have identical
averages).
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Figure 3. Boxplot of the Dice similarity coefficient calculated for the inter-observer variability, intra-observer

variability and the proposed method versus each observer independently.

cerebral artery (MCA), subvolume 2 was defined in the frontal area including the anterior cerebral artery (ACA),
subvolume 3 and 4 were defined left and right in the brain including the M2 and M3 vessel segments, and finally
subvolume 5 at the parieto-occipital included the transverse sinus and the superior sagittal sinus.

A boxplot graphical summary of the DSC score and the MHD is shown in Figs 8 and 9 respectively. Overall,
the sensitivity, specificity, and accuracy of cerebral vasculature segmentation reported for all 143 patients were
0.938, 0.997 and 0.995 respectively.

Discussion

In this work we have presented a method for full cerebral vessel segmentation in 4D CT using a pattern recog-
nition framework with minimal pre- and postprocessing. The results show that the method correctly handles
foreign objects without losing segmentation accuracy. Furthermore, our method is able to segment vessels of
different sizes at different locations.

The presented method requires no tracking or active contours as these may be unable to handle the disconti-
nuities in the vessels due to steno-occlusive disease, vessel wall pathology, calcification, or artifacts resulting from
foreign objects. In addition, natural intensity differences throughout the vascular system in the brain may pose
problems for these approaches. Intensity variations limit the application of global parameters and may require
extra user input if the method depends on a manual chosen starting point.

The novelty of our method lies in two distinct features. First, the WTV image, which represents the intensity
variance in temporal direction. This feature reduces the dimensionality of the image data and is highly sensitive
to contrast variation over time. It is therefore very suitable for the visualization and detection of vessels in 4D CT.
In addition, in contrast to approximated measures as the area under the curve, the WT'V is parameter free and
independent of the temporal distance between the volumetric acquisitions of the 4D CT protocol. The second
feature is the use of the parameters (mean, standard deviation, mode and entropy) of a local intensity histogram
to train the classifier. By analyzing the contrast variation in a histogram in a subvolume, each vessel, regardless
of size, can be detected by the profile represented in the parameters of the histogram. The local histogram fea-
tures are preferable to global thresholds as smaller vessel segments may be under segmented or missed as they
fall below the global threshold dominated by the large vessels. By comparing vessel intensity to its immediate
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Figure 4. Axial view of three consecutive temporal acquisitions in a patient with beam hardening and motion
artifacts in a single 4D CT acquisition and the resulting Weighted Temporal Variance (WTV) image (right).

Figure 5. Left to right sagittal, coronal and axial view of a 3D rendering of the segmentation of two different
patients.

surrounding this can be avoided, as even the smallest vessels containing contrast agent have a higher intensity
than the environment.

The method used pre- and postprocessing steps. The candidate vessel selection preprocessing step prior to the
classification removes voxels which do not show any contrast variation over time. Removing these voxels reduces
the computation time without losing possible vessel voxels.

One postprocessing step removed small objects from the segmentation result. The component size constraint
of 25 voxels translates to 2.3 ;L. These small objects mainly occurred outside the cranial cavity around the facial
area of the patient, due to noise, or eye or jaw movement during the acquisition.

Another postprocessing step was applied to compensate for under segmentations in large vessels. Under seg-
mentation can occur in the main supplying arteries and main draining veins (e.g. the ICA and the transversus
sinus). A reason for this under segmentation is a high blood flow causing high contrast variations over time.
These high flows may not be captured by the 19 patients in the training set, resulting in holes in the segmentation.
Although the classifier was trained with only 19 partially annotated patients, the method already performed well
with this limited representation of the full population. Extra training sets can be added from patients with various
arterial and venous flow speeds to capture a wider range in contrast variation to further increase the robustness
of the method.

The inter-observer variability demonstrates the difficulty in the definition of the vessel border. The low
inter-observer variability DSC of 0.75 4 0.06 can be explained by the small size of the distal intracranial vessels. A
vessel in this region can amount to merely two or three voxels in diameter. With a low component size the DSC is
then easily affected. A 95% HD of 7.57 & 3.07 mm is reported, which translates to a few voxels on both sides of the
vessel, indicating that there is discrepancy on the definition of the exact border of the vessel. An exact definition
of the vessel boundary is difficult because of the partial volume voxels. Also, what appears as vessel boundaries
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Figure 6. Axial, coronal, sagittal view and 3D rendering (clock-wise, from top-right) in a patient with a
ventricular shunt. Overlay in red depicting the vessel segmentation results.

in the image is influenced by other factors including the injection rate of the contrast agent, the CT acquisition
protocol, cardiovascular condition of the patient, and window width and level settings.

The proposed method has proven to be robust by evaluating on a large database comprised of 242 patients
with foreign objects and image artifacts found in everyday clinical practice. The failures found were a result of
insufficient intra-patient registration or as a result of acquisition artifacts resulting in loss of diagnostic value.
Image artifacts caused by surgical intervention (e.g. clip, coil or drain) posed no problem for the method and did
not result in under or over segmentation. Only severe movement between temporal acquisitions that has not been
mitigated by the intra-patient registration showed to be a problem for the method. Smaller movement outside the
cranial cavity only proved to be a problem in a small set of patients. The intra-patient registration registers bone
tissue in each time point to the first time point. Soft tissues as the eyes and nose are not registered and can cause
motion artifacts after the registration. Although our method handles minor soft tissue movements without any
problems, severe movement of the jaw and nose may result in over segmentation.
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DSC 0.91 £ 0.07 0.91 £ 0.06 0.91 £0.08 0.90 £ 0.08 0.92 4 0.07 0.93 +0.07
HD (mm) 8.05 & 3.46 8.74 +3.20 7.64 +2.82 7.20 £2.56 7.14 £281 10.20 - 4.85
MHD (mm) 0.23 +0.22 0.30 £ 0.25 0.22£0.21 0.26 +0.24 0.18 +0.16 0.20 +0.22
95% HD (mm) | 1.32 £+ 1.67 2.14£2.06 133+ 1.76 1.49+1.73 0.93 +1.16 0.82 +£1.27
CMD (mm) 0.26 +0.24 0.37 £0.30 0.23£0.21 0.27 +0.24 0.20 £ 0.17 0.28 £0.27
AVD (%) 14.17 £18.90 | 11.51 +13.80 |14.96+22.26 |19.48 +23.06 |11.83+13.53 |11.76 +17.11
Sensitivity 0.938 0.931 0.946 0.941 0.897 0.966
Specificity 0.997 0.995 0.998 0.998 0.998 0.997
Accuracy 0.995 0.992 0.997 0.996 0.994 0.996

Table 3. Quantitative evaluation of the segmentation results overall (n = 143) and per subvolume, reported as
mean =+ standard deviation. DSC is Dice similarity coeflicient, HD is Hausdorff distance, MHD is modified HD,
95% HD is 95™ percentile HD, CMD is contour mean distance and AVD is absolute volume difference.
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Figure 8. Boxplot of the DSC. The overall results are represented by the first bar (n = 143). The results per
subvolume are shown in the remaining bars.
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Figure 9. Boxplot of the MHD. The overall results are represented by the first bar (n=143). The results per
subvolume are shown in the remaining bars.

Accurate and complete vessel segmentation in different brain regions is shown by the results in Table 3. The
different subvolumes contained vessels of varying sizes, both arterial and venous. The DSC score showed similar
results regardless of different subvolume evaluation region, which further supports the claim of independence
towards vessel size or location. The MHD showed a distance similar to or smaller than the voxel spacing of
0.43 mm for all subvolumes combined as well for individual subvolumes, indicating a segmentation accurate to
or below a single voxel. The method was not explicitly evaluated for topological consistencies, instead, we used
similar evaluation measures as were used in some of the larger vessel segmentation challenges'$-%.
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Figure 10. Left to right: First time point of 4D CT acquisition, WTA, and WTV. The WTV is highly sensitive to
contrast changes over time making it a promising feature for vessel segmentation.

Figure 11. 3D rendering of approximate locations of the five subvolumes. The subvolumes cover the MCA,
CoW and parts of the distal and posterior circulation.

Temporal information, in combination with contrast agent, is important for vessel segmentation as is reflected
by the WTV feature. The added value of 4D CT with improved evaluation of intracranial hemodynamics comes
at a cost, as a 4D CT protocol is associated with a higher radiation dose. Although 4D CT imaging is not com-
mon practice, applications of 4D CT are expanding?'. We expect 4D CT to become a single acquisition for stroke
workup as it contains both noncontrast CT and CTA information?*-*%. These modalities might be reconstructed
from a 4D CT acquisition, resulting in a reduction of acquisitions and radiation dose. In addition, studies suggest
that 4D CT can be acquired at half the dose of standard clinical protocol?, further reducing the radiation dose
for the patient.

Although the images for this study were acquired with a high-end 320-row detector scanner, the voxel based
classification method is not constrained to a specific image size nor images from scanners with a different number
of detectors.

To the best of our knowledge this is the largest quantitative and qualitative evaluation reported for vessel seg-
mentation in general. Robust cerebral vessel segmentation in 4D CT has not been performed on a similar scale.

In conclusion, we presented a method using candidate selection combined with a RF classifier trained with local-
ized histogram features to segment a full cerebral vasculature. The method provides accurate and robust vessel seg-
mentation on large amounts of everyday clinical data and forms the cornerstone of many subsequent applications.

Methods

We propose a three step approach: first, coarse candidate vessel detection, then application of a random forest
(RF) classifier®® using local and global image features and finally postprocessing to ensure full and smooth con-
nectivity. The RF classifier is a supervised learning method that enables the learning of the background and the
properties of vessels with different sizes and intensities. In addition, RF enables the learning of foreign objects or
image artifacts which may be present in the data through a number of decision trees. The method was developed
using the Insight Segmentation and Registration (ITK)" library.

Candidate Selection. The candidate vessel voxels were selected from the temporal variance image weighted
to the exposures of the individual time points to maximize the signal to noise ratio. This WTV image is sensitive
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Figure 12. Schematic overview of study data.

to contrast variation and is described in Section Image Features. A threshold of y+ 1.50 was applied, with mean,
(t and standard deviation, o calculated from the intensity histogram of the WTV.

Image Features. The image features used to train the classifier were the Weighted Temporal Average (WTA),
WTYV, local histogram features, the distance to the intracranial cavity, the eigenvalues of the Hessian system and
To. Each of these features will be discussed in the following sections.

Weighted Temporal Average. 'The first image feature is the temporal average image. The image noise differs per
time point, because the volumetric acquisitions are acquired with different exposures settings. To achieve the
highest signal to noise ratio, assuming that quantum noise is the dominating source of image noise in CT, which
is the case for acquisition protocols used in standard clinical practice, the individual time points were weighted
according to their individual exposure (E;). The resulting feature is called the Weighted Temporal Average®”:

T
WTAx,y,z = Zwi : Ix,y,z,i
i=0 1)

E with 3 .E; the sum of all exposures over all time

>.E

i

with the weight factor of each time point given by w, =

points.

Weighted Temporal Variance. Similar as to the WTA, the temporal variance can be calculated with a weighted
quadratic difference to the WTA. The WT'V holds the largest contrast between tissue containing contrast agent
and background tissue (Fig. 10) and is given by:

T
WTVx,y,z = szi . (WTAx)%Z — Ix)},yz,,')z @
i=0

Local Histogram Features. 'To capture local image properties such as varying vessel intensity values, an intensity
histogram is computed within a 5 x 5 x 5and 9 x 9 x 9 neighborhood in the WTV image. The following histo-
gram parameters were included: the mean, standard deviation, mode and the entropy given by
E= =3p, - log)(p, + ¢€), with p; the probability of intensity i, and € =0.0001 to prevent zero-logarithm
calculation.

Distance to Intracranial Cavity. An intracranial cavity mask is calculated and used as distance feature. The cra-
nial cavity contains all soft tissues and cerebrospinal fluid, including the meninges, cerebrum and ventricles,
cerebellum and brain stem. The cavity mask was created by a multi-atlas registration with label fusion followed by
a geodesic active contour levelset refinement of the segmentation®. The internal carotid arteries and jugular veins
are located outside of the intracranial cavity mask. These will be missed if the cavity mask is added as a binary
feature, therefore the Euclidean distance to the border of the intracranial cavity mask was computed. Distances
from inside the mask to the border were denoted as negative distances, distances from outside the mask to the
border were denoted as positive distances.
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Hessian. The eigenvalues of the Hessian system are calculated on the WT'V at four different scales on an evenly
distributed range from 0.5 to 2.0 mm.

T, 'The 4D CT acquisition contains 19 volumetric acquisitions. The first time point volume was selected to
represent the tissue with minimal contrast. This volume was used in the feature set as T,

Classifier. An RF classifier is applied to the candidate vessel voxels. The RF classifier was trained with 100 trees
and a maximum tree depth of 30.

Postprocessing. After the RF classification two postprocessing steps were applied. First, a connected com-
ponents (26-neighborhood) analysis was carried out, discarding components smaller than 25 voxels to remove
background noise. Second, morphological hole filling with a 3 x 3 x 3 kernel size was carried out for 10 iterations
to fill the center of some larger vessels such as the ICA in the event of under segmentation by the classifier.

Materials

Patient Data. This retrospective study was approved by our local institutional review board and the require-
ment for informed consent was waived. In total, 264 consecutive patients (age: 68y £ 15.0, male: 149 (55.6%))
with suspicion on acute ischemic stroke who were admitted to the emergency department of our academic hos-
pital, between January 1st 2014 and December 31st 2015, were retrospectively collected for this study. Exclusion
criteria were severe motion artifacts resulting in loss of diagnostic value (n = 3). This was determined from the
radiology report provided by the radiologist on call at time of admission. Image acquisition was done on a 320-
row Toshiba Aquilion ONE CT scanner (Toshiba Medical Systems Corporation, Japan). The protocol consisted
of 19 whole brain volume acquisitions starting with a single high dose acquisition at 200 mAs 5 seconds after
contrast injection, followed by 13 scans every 2 seconds at 100 mAs, followed by 5 scans every 5 seconds at 75
mAs. Each volumetric acquisition was made at 80kV at 0.5 seconds rotation time with 16 cm z-coverage. A dose
of 80 ml Iomeron is injected in the antecubital vein at the start of the first acquisition. Image reconstruction was
done with a smooth reconstruction kernel (FC41), resulting in image sizes of 512 x 512 x 320 voxels with voxel
sizes of 0.43 x 0.43 x 0.5 mm. All temporal volumes were rigidly registered to the first time point to resolve any
patient movement during the acquisition.

Volumetric Cluster Annotation and Segmentation Tool (VCAST). Annotating vessels in 3D is a
laborious and difficult task because of their small sizes and the presence of partial volume voxels, and because
vessels meander through the different orthogonal planes. To facilitate the annotation process, a dedicated 3D
annotation tool called volumetric cluster annotation tool was developed®”. VCAST supports interactive region
growing and super voxel grids overlaid on the input image to let the user assign or reject vessel labels to clusters of
voxels at multiple scales. Additional functionalities include the ability to define subregions confining the region
growing algorithm, a 3D rendering of the topological information of the annotations and a colour map defining
connected regions with the same colour. Annotations were done on the WTA because of its maximal signal
to noise ratio and on the WTV because of its high sensitivity to contrast voxels. Observers were able to switch
between these reconstructions for optimal interaction.

Reference Standard. Annotating the full cerebral vasculature is too labour intensive and not required,
because many vessel segments have similar appearances and intensities. Therefore, annotations were carried out
in five subvolumes representing different parts of the vasculature, as shown in Fig. 11.

Observers were asked to annotate high confidence vessel voxels in these subvolumes, thereby focusing more
on the completeness of the vasculature and less on the accuracy of the vessel boundaries at a single voxel level. In
the training dataset (n=19) all five subvolumes were annotated in each patient. In the testing dataset (n=159)
one of the five subvolumes was randomly selected per patient for annotation. These annotations were carried out
by two medical assistants, supervised by an experienced neuroradiologist (FJAM).

Evaluation Measures. The segmentations were compared with the reference standard provided by the
annotations using the following measures: sensitivity, specificity, accuracy, DSC, HD, MHD, 95% HD, CMD,
and AVD. The MHD is defined as the maximum value of the mean distance calculated between two objects. The
CMD is defined as the mean distance between the segmentations along their boundary voxels. The sensitivity,
specificity, and accuracy were calculated within the annotated subvolume on a voxel basis. The mean and standard
deviation was taken over all patients for the other measurements. These evaluation measures are similar to the
measures used in some vessel segmentation challenges'$-%.

The goal of our method is to robustly segment a complete cerebral vasculature. To that end, the focus of the
evaluation will not be around the border of vessel lumen. Therefore, the lumen boundaries are excluded in the
final evaluation by dilating the manual annotations by 1 voxel (3 x 3 x 3 kernel). Applying this boundary mask
will only boost the specificity of the algorithm in regions where exact definitions of the vessels border is difficult,
but it will not affect the sensitivity.

Experiments
A schematic overview of the acquired imaging data and the experiments described below is shown in Fig. 12.

Training and Validation. The annotation of the training set provided positive samples from 5 subvolumes
within 19 patients. A random subset of 10% of the annotated vessel voxels was used as positive samples to train the
classifier. A dataset of the same size as the positive data set was randomly sampled from all nonannotated voxels
within the subvolumes. These voxels served as background. The RF classifier was optimized using leave-one-out
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crossvalidation within the training set. The accuracy of the receiver operator characteristics (ROC) analysis and
visual inspection of the output was used to determine the optimal operating point.

Observer Variability. A subset of 5 patients randomly selected from the training set were annotated by
both trained observers. The same subset was annotated by one observer once again after a waiting period of
two weeks. All evaluation measures described in Section Evaluation Measures were reported for the inter- and
intra-observer variability. Quantitative evaluation of observer variability was performed on the full annotation
without excluding boundary voxels. Because the annotation sets consisted of five nonconnected subvolumes the
distance evaluation measures were first calculated per subvolume, then combined between subvolumes according
to their measurement. That is, the mean for CMD and the maximum for HD, MHD, and for 95% HD. Finally, the
mean and standard deviation per evaluation measure were taken over all patients and reported.

Qualitative Evaluation. The robustness was verified by imposing minimal exclusion criteria on the test
data set, thus resembling clinical practice. All vessel segmentations were initially inspected to assess failures.
Failure was reported in cases of severe under or over segmentation. In addition, the entire branch network of the
cerebral structure was investigated for completeness.

Quantitative Evaluation. The completeness of vasculature was assessed by quantitatively evaluating differ-
ent parts of the cerebral structure in a large number of patients. The quantitative evaluation was performed on one
of five randomly annotated subvolumes. These subvolumes were defined in a similar region as with the training
data, described in Section Results under Quantitative Evaluation.
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