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Gallic Acid Reduces Blood Pressure 
and Attenuates Oxidative Stress 
and Cardiac Hypertrophy in 
Spontaneously Hypertensive Rats
Li Jin1,2, Zhe Hao Piao3, Simei Sun1, Bin Liu3, Gwi Ran Kim1, Young Mi Seok4, Ming Quan Lin5, 
Yuhee Ryu1, Sin Young Choi1, Hae Jin Kee1 & Myung Ho Jeong1

Gallic acid (GA) has been reported to have beneficial effects on cancer, vascular calcification, and 
diabetes-induced myocardial dysfunction. We hypothesized that GA controls hypertension via oxidative 
stress response regulation in an animal model for essential hypertension. Spontaneously hypertensive 
rats (SHRs) were administered GA for 16 weeks. GA treatment lowered elevated systolic blood pressure 
in SHRs through the inhibition of vascular contractility and components of the renin-angiotensin II 
system. In addition, GA administration reduced aortic wall thickness and body weight in SHRs. In SHRs, 
GA attenuated left ventricular hypertrophy and reduced the expression of cardiac-specific transcription 
factors. NADPH oxidase 2 (Nox2) and GATA4 mRNA expression was induced in SHR hearts and 
angiotensin II-treated H9c2 cells; this expression was downregulated by GA treatment. Nox2 promoter 
activity was increased by the synergistic action of GATA4 and Nkx2-5. GA seems to regulate oxidative 
stress by inhibiting the DNA binding activity of GATA4 in the rat Nox2 promoter. GA reduced the 
GATA4-induced Nox activity in SHRs and angiotensin II-treated H9c2 cells. GA administration reduced 
the elevation of malondialdehyde levels in heart tissue obtained from SHRs. These findings suggest that 
GA is a potential therapeutic agent for treating cardiac hypertrophy and oxidative stress in SHRs.

Chronic hypertension adversely affects critical organs, such as brain, eyes, heart, and kidneys1. Hypertension is 
the most important determinant for left ventricular hypertrophy (LVH) and is a major risk factor for cardiovas-
cular diseases2. Echocardiography is the gold standard for evaluating left ventricular (LV) mass, cardiac function, 
wall thickness, and chamber size3. LVH prevalence varies with the severity of hypertension4.

For experiments on animals with hypertension, spontaneously hypertensive rats (SHRs) are widely used mod-
els that exhibit essential hypertension similar to that in humans5. Cardiac hypertrophy manifests at about 12 weeks 
of age in SHRs6. Various pathophysiologic factors contribute to hypertension development. For example, the 
activation of the renin-angiotensin-aldosterone system (RAAS), the production of vasoconstrictors, endothelial 
dysfunction, sodium intake, and oxidative stress play critical roles in hypertension7. In the human INTERSALT 
study, body mass index was significantly related to hypertension in men and women8. Obesity-induced LVH may 
be associated with concentric LV remodeling9,10. In the RAAS, angiotensin II has been reported to act on angio-
tensin II receptor (AT1) and elevate blood pressure11. In addition, angiotensin II induces cardiac and vascular cell 
hypertrophy, as well as hyperplasia12.

Cardiac hypertrophy and cardiac remodeling is associated with oxidative stress13. The nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase is a membrane-bound enzyme. NADPH oxidase (Nox) is composed 
of seven isoforms, including Nox1, Nox2, Nox3, Nox4, Nox5, Duox1, and Duox214. Nox family is a multicompo-
nent enzyme complex with two membrane-bound subunits (Nox and p22phox) and regulatory subunits. Under 
pathological conditions, the regulatory subunits, including p40phox, p47phox, p67phox, and Rac-1, translocate 
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from the cytosol to the plasma membrane15. Nox produces reactive oxygen species (ROS), in particular, superox-
ide anions and hydrogen peroxide16. ROS have been reported to play an important role in the pathophysiology 
of hypertension17. The activities of Nox1, Nox2, and Nox5 cause adverse effects, such as endothelial dysfunction, 
inflammation, and apoptosis, whereas Nox4 plays a protective role in the vasculature18. In hypertension, oxidative 
stress promotes endothelial dysfunction, inflammation, and vascular remodeling, as well as fibrosis, hypertrophy, 
and apoptosis19–21.

Although several efforts have been made to develop a novel antihypertensive drug, the number of patients 
with hypertension is still uncontrolled. Recently, natural compounds derived from plants or fruits have been 
shown to have beneficial or protective effects in various pathological diseases. Gallic acid (GA) is a polyphenolic 
compound found in grapes, mangoes, walnuts, green tea, and wine. It has been reported to have anti-diabetic, 
anti-bacterial, anti-inflammatory, anti-angiogenic, anti-oxidant, and anti-cancer activity22–26. Furthermore, it has 
been shown to have neuroprotective effects in rats27. GA prevents the changes in the activities of cardiac marker 
enzymes in isoproterenol-induced myocardial infarction rats28. GA attenuates vascular calcification through the 
BMP2-Smad1/5/8 signaling pathway suppression29, suggesting that GA may have a protective role in vascular 
diseases.

The effects of GA and the regulatory mechanisms by which GA regulates blood pressure in essential hyper-
tension are unknown. We investigated the effects of GA in SHR hearts by assessing LVH, oxidative stress-related 
gene expression, and ROS and Nox activity.

Materials and Methods
Animals and Blood Pressure.  All animal procedures were approved by the Animal Experimental 
Committee of Chonnam National University Medical School (CNU IACUC-H-2014-52) and carried out 
in accordance with the Guide for the Care and Use of Laboratory Animals (US National Institutes of Health 
Publications, 8th edition, 2011). Wistar-Kyoto (WKY, 4-week-old males, n = 16) rats and spontaneously hyperten-
sive rats (SHRs, 4-week-old males, n = 16), were purchased from SLC Co. (Shizuoka, Japan).

Rats were divided into three groups: WKY, SHR, and SHR+GA. WKY was used as the control. GA (G7384) 
was purchased from Sigma Life Science (St. Louis, MO, USA). The purity of GA was more than 97.5%. GA was 
dissolved in tap water to obtain a final concentration of 1% (1 g/100 mL). In SHRs, GA (1%) was administered 
from 8 till 24 weeks of age. On average, SHRs drank 320 mg of gallic acid per day. Animals were sacrificed at 24 
weeks of age.

Blood pressures were measured as described previously30. Briefly, systolic blood pressure was measured in 
awake rats by the tail-cuff method (Visitech Systems, BP-2000) and the average of at least 5 readings was calcu-
lated. Blood pressure and body weight was determined at 8, 12, and 24 weeks of age.

Echocardiography.  Echocardiography was performed, as described previously31. Two-dimensionally 
guided left ventricle (LV) M-mode images at the papillary muscle level, were obtained from the parasternal short 
axis view. LV interventricular septal thicknesses, and posterior wall thicknesses at the end of diastole and systole 
were measured from the M-mode images. LV fractional shortening (FS) was calculated as: FS = (LV end-systolic 
diameter [LVESD] − LV end-diastolic diameter [LVEDD])/LVEDD × 100).

H&E staining.  Heart tissues were fixed in 4% paraformaldehyde at room temperature, embedded in paraffin, 
and cut into 3-µm thick sections. To identify myocardium status, hematoxylin and eosin (H&E) staining was per-
formed. Sections were deparaffinized with xylene and rehydrated with graded alcohol. The slides were incubated 
with Gill’s hematoxylin V (Muto, Tokyo, Japan) for 5 min and then washed with tap water. Then, they were incu-
bated with 0.3% HCl for 5–7 min, dipped in Scott’s Bluing solution, and washed with tap water. The cytoplasm was 
stained with eosin Y for 2–3 min, and the slides were dehydrated and mounted using mounting solution (Canada 
balsam: xylene = 6:4).

Immunohistochemistry and arterial wall morphology.  For immunohistochemistry, the aorta sections 
were deparaffinized and pretreated for heat-induced antigen retrieval with citrate buffer. After blocking with 1% 
bovine serum albumin (BSA), the tissue sections were incubated with anti-SMA antibody (1:800; Santa Cruz, 
sc-130617) using the LSAB2 system-horseradish peroxidase (HRP) kit (DAKO, USA). A biotinylated secondary 
antibody (1:400) was added, followed by incubation with Vectastain ABC reagent and treatment with the peroxi-
dase substrate, 3,3ʹ-diaminobenzidine (DAB), until the desired staining intensity was obtained. Finally, the tissue 
samples were counterstained and mounted. The arterial wall thickness was analyzed using ImageScope (Leica 
Biosystems, USA).

Isometric tension measurement.  Male Sprague-Dawley rats were purchased from Orient Bio 
(Gyeonggi-do, South Korea). Thoracic aortas and mesenteric arteries were excised and immersed in ice-cold, 
modified Krebs solution (in mM: NaCl 115, KCl 4.7, CaCl2 2.5, MgCl2 1.2, NaHCO3 25, KH2PO4 1.2, and dex-
trose 10). Mesenteric arteries were the secondary branches of the main mesenteric trunk. The aortas and mesen-
teric arteries were cleaned of all connective tissue, soaked in Krebs-bicarbonate solution, and cut into four ring 
segments (3.5 mm in length), as described previously32,33. Some rings were denuded of endothelium by gently 
rubbing the internal surface with a forcep edge. Each aortic ring was suspended in a water-jacketed organ bath 
(6 ml) maintained at 37 °C and aerated with a mixture of 95% O2 and 5% CO2. Each ring was connected to an 
isometric force transducer (Danish Myo Technology, Skejbyparken, Aarhus N, Denmark). Rings were stretched 
to an optimal resting tension of 2.0 g or 1.0 g, which was maintained throughout the experiment. Each ring was 
equilibrated in the organ bath solution for 90 min before the experiment measuring the contractile response after 
the addition of 50 mM KCl. To determine the effect of gallic acid (GA) on the maintenance of vascular tension 
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Figure 1.  GA reduces blood pressure, vascular remodeling, and contraction in SHRs. (A) Systolic blood 
pressure in the three groups was measured at the indicated time points (n = 16 per group). Rats were 
administered GA from 8 weeks of age. Statistical analysis was performed by two-way ANOVA. ***P < 0.001 
versus control WKY at 8, 12, and 24 weeks. ###P < 0.001 versus SHR at 12 and 24 weeks. (B) Body weight 
was compared among the three groups at the indicated time points (n = 16 per group). Statistical analysis 
was performed by two-way ANOVA. *P < 0.05 and ***P < 0.001 versus WKY at 12 weeks and 24 weeks, 
respectively. ##P < 0.01 versus SHR at 24 weeks. (C) Transcript levels of AT1 and ACE1 mRNA were measured 
by quantitative RT-PCR using rat aortas from the WKY, SHR, and SHR plus GA (SHR+GA) groups. *P < 0.05 
versus WKY. #P < 0.05 and ##P < 0.01 versus SHR. (D) Representative immunoblots. ACE1 and AT1 protein 
levels were determined by western blot in rat aortas from the WKY, SHR, and SHR+GA groups (n = 6 per 
group). (E) Images of aorta sections immunostained with anti-smooth muscle α-actin (SMA) antibody. 
Yellow bar indicates the thickness of arterial wall. Scale bar, 100 µm. (F) Bar graph indicates aortic wall 
thickness in each group (n = 6). ***P < 0.001 versus WKY at 24 weeks. ###P < 0.001 versus SHR at 24 weeks. 
(G,H) Vasorelaxation induced by GA in the aorta (G) and mesenteric arteries (H) from rats (n = 4). GA was 
added cumulatively to elicit relaxation in U46619-treated aortic rings and mesenteric arteries. Relaxation is 
expressed as the percentage of the maximal contractile response to U46619. Open and filled circles represent 
endothelium-intact and endothelium denuded rat aortic rings, respectively.
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in rat endothelium-intact or endothelium-denuded aortic rings, vascular contractions were induced using the 
thromboxane A2 agonist, U46619 (30 nM, 20 min). When each contraction reached a plateau, GA was added 
cumulatively (10–3,000 µM) to elicit vascular relaxation.

Figure 2.  GA attenuates left ventricular hypertrophy in SHRs. (A) Representative M-mode echocardiogram 
of 24-week-old rats from the three groups. Red lines and yellow arrows indicate left ventricular septum and 
posterior wall thickness, respectively. (B–D) Echocardiographic parameters, including IVS, LVPW, LVESD, 
LVEDD, and FS were evaluated in rats from WKY, SHR, and SHR+GA groups (n = 8 per group). ***P < 0.001 
versus WKY at 24 weeks. ##P < 0.01 and ###P < 0.001 versus SHR at 24 weeks. (E,H and E) stain (scale bar, 
50 µm) was performed to evaluate myocyte size. (F) Cross-sectional areas of left ventricle were evaluated (n = 8 
per group). ***P < 0.001 versus WKY at 24 weeks. ###P < 0.001 versus SHR at 24 weeks.
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Western blot analysis and antibodies.  Western blots were performed, as described previously34. Protein 
lysates from the left ventricle (for Fig. 4B) or aorta (for Fig. 1D) were prepared with RIPA buffer (150 mM NaCl, 
1% Triton X-100, 1% sodium deoxycholate, 50 mM Tris-HCl, pH 7.5, 2 mM ethylenediamine tetraacetic acid 
(EDTA), 1 mM phenylmethylsulfonylfluoride (PMSF), 1 mM dithiothreitol (DTT), 10 mM Na3VO4, and 20 mM 
NaF) containing protease inhibitors. Proteins were separated by 10% SDS-PAGE and then transferred onto 
polyvinylidene difluoride (PVDF) membranes. The membranes were probed with the indicated antibodies 
and developed using Immobilon western blotting detection reagents (Millipore, Billerica, MA, USA). Bio-ID 
software was used to quantify protein expression (Vilber Lourmat, Germany). Anti-GAPDH (sc-32233) and 

Figure 3.  GA reduces expression of cardiac-specific transcription factors in SHRs and angiotensin II-treated 
H9c2 cells. (A–D) Transcript levels of GATA4, GATA6, Nkx2-5, and SRF were evaluated by RT-PCR, for 
the three groups, at 24 weeks (n = 14~16 per group). The transcript levels have been normalized to 18S and 
presented as a relative value. **P < 0.01 and ***P < 0.001 versus WKY. #P < 0.05, ##P < 0.01, and ###P < 0.001 
versus SHR. NS, not significant. (E,F), H9c2 cells were treated with either vehicle or GA (100 µM) for 9 h after 
exposure to angiotensin II (1 µM). The values are the mean ± SE of at least three independent experiments. (E) 
GATA4 and GATA6 mRNA were quantified using qRT-PCR. *P < 0.05 versus vehicle-treated cells. #P < 0.05 
versus angiotensin II-treated cells. NS, not significant. (F) Nkx2-5 and SRF transcript levels in H9c2 cells. NS, 
not significant.
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anti-AT1 (sc-1173) antibodies were purchased from Santa Cruz Biotechnology. Anti-Nox1 (GTX103888), -Nox2 
(GTX63960), -Nox4 (GTX121929), and -ACE1 (GTX100923) antibodies were purchased from GeneTex Inc. 
(Irvine, CA, USA).

RNA isolation and real-time PCR.  Total RNA was isolated using TRIzol reagent (Invitrogen Life 
Technologies), and 1 μg of RNA was used for reverse transcription reaction using TOPscript RT DryMIX 

Figure 4.  GA attenuates Nox2 expression in SHRs and angiotensin II-treated H9c2 cells. (A) The mRNA 
levels of Nox1, Nox2, and Nox4 were analyzed using qRT-PCR. The transcript levels have been normalized to 
18 S and presented as a relative value. ***P < 0.001 versus WKY. #P < 0.05 and ###P < 0.001 versus SHR. (B) 
Representative immunoblots. Nox1, Nox2, and Nox4 protein expression in rat hearts from the WKY, SHR, and 
SHR+GA groups, was determined using western blot analysis. GAPDH was used as the loading control. (C) 
The protein expression of Nox1, Nox2, and Nox4 was quantified by densitometry. ***P < 0.001 versus WKY. 
#P < 0.05 versus SHR. (D) The mRNA levels of Nox1, Nox2, and Nox4 were determined using H9c2 cells treated 
with the vehicle (control), with vehicle + Ang II (1 µM), or with Ang II (1 µM) + GA (100 µM) for 9 h. The values 
are the mean ± SE of at least three independent experiments. **P < 0.01 versus vehicle-treated cells. #P < 0.05 
versus angiotensin II-treated cells. NS, not significant.
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(Enzynomics, Daejeon, South Korea). Quantification of mRNA levels was done using SYBR Green PCR kit 
(Enzynomics, Daejeon, South Korea). Relative expression levels of the indicated genes were compared with that 
of 18S rRNA, using the 2−ΔΔct method. The primers used are shown in Supplementary Table 1.

Transfection.  H9c2 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS) plus 1 × antibiotic-antimycotic. Cells were incubated at 37 °C in 5% CO2. 
H9c2 cells were cultured for 15 to 25 passages. The pcDNA3-GATA4-HA, pcDNA3.1-GATA6-V5-His-Topo, 
pGCN-SRF-HA, or pcDNA3-Nkx2.5 construct was transfected into H9c2 cells using Plus and Lipofectamine 
reagent, according to the manufacturer’s guidelines. After 48 h of transfection, cells were harvested and Nox2 
mRNA levels were analyzed by qRT-PCR.

Promoter assay.  For the promoter assays, H9c2 cells were plated in 24-well plates and were transfected 
with pcDNA3-GATA4-HA or pcDNA3-Nkx2.5 in the presence of the pGL3‒Nox2 (‒541 bp) promoter luciferase 
construct and pCMV-β-galactosidase using Plus and Lipofectamine reagents (Invitrogen) according to the man-
ufacturer’s instruction. After overnight serum starvation (0.5% FBS DMEM), cells were exposed to GA (100 µM) 
for 24 h. After cell harvesting and extraction using reporter lysis buffer (Promega, USA), luciferase activities were 
measured (Promega, USA) and normalized against β-galactosidase activity as an internal control.

siRNA Transfection.  For gene knockdown, H9c2 cells were transfected with negative control siRNA or rat 
GATA4 siRNA (100 nM, Santa Cruz) using RNAiMAX reagent (Invitrogen, Massachusetts, USA), according to 
the manufacturer’s guidelines. After transfection, cells were serum starved (0.5% FBS DMEM) overnight, exposed 
to angiotensin (Ang) II (1 µM, EMD Millipore, Billerica, MA, USA) for 24 h, harvested, and Nox activity was 
determined as mentioned under.

Chromatin immunoprecipitation (ChIP) assays.  ChIP assays were performed as described previously31. 
Briefly, H9c2 cells were transfected with pcDNA3-GATA4-HA or empty vector using Plus and Lipofectamine 
reagents (Invitrogen). After serum starvation, cells were treated with GA (100 µM) for 6 h. The concentration of 
GA did not cause cytotoxicity to the H9c2 cells. Cells were cross-linked with 1% formaldehyde for 10 min. The 
sonicated chromatin was immunoprecipitated with HA or normal mouse IgG antibody overnight and collected 
with protein A-agarose/salmon sperm DNA beads. Purified DNA was performed using a SYBR green PCR kit, 
amplifying the four GATA binding factor sites in the Nox2 promoter (−419 ~ to −19). ChIP PCR primers used 
are shown in Supplementary Table 1.

Nitric oxide (NO) production assay.  NO level was measured using Griess assay. To determine serum NO 
levels, serum was separated from blood samples by centrifugation (3000 rpm for 7 min at 4 °C) and was stored 
at −80 °C, until assayed. Hundred microliters of serum was added into a 96-well plate and 50 µl of 1% sulfanil-
amide in 5% phosphoric acid was added followed by a 10-min incubation in the dark. Fifty microliters of 0.1% 
N-1-napthylethylenediamine dihydrochloride in water was added to the reaction for 10 min and absorbance was 
measured at 570 nm.

For heart NO determination, 50–200 µg protein was diluted in distilled water and deproteinized using 5% 
trichloroacetic acid (TCA). After centrifugation (13000 rpm for 20 min), the supernatant was used for NO 
evaluation.

NADPH oxidase (Nox) assay.  Heart tissues were homogenized using lysis buffer (20 mM KH2PO4, 1 mM 
ethylene glycol tetraacetic acid (EGTA), pH 7.0, 1 mM DTT, 1 mM PMSF, 0.5 mM Na3VO4, 5 mM NaF, and pro-
tease inhibitor cocktail). To measure superoxide production, 100-µg protein lysate was diluted in assay buffer 
(50 mM KH2PO4, 1 mM EGTA, 150 mM sucrose, pH 7.0). NADPH (100 µM) and lucigenin (10 µM) was added 
to the protein lysates in 96-well plates. Luminescence was measured over 10 min (Centro XS3 LB960 microplate 
luminometer, Berthold Technologies, Bad Wildbad, Germany). Buffer blank was subtracted from each reading 
and data are expressed as relative light units produced per minute per milligram of protein. For Nox activity in 
H9c2 cells, cells were serum starved (0.5% FBS DMEM) overnight and then co-treated with Ang II (1 µM) and 
GA (100 µM) for 24 h. Nox activity was measured as indicated above for heart samples.

Malondialdehyde (MDA) assay.  As an indicator of lipid peroxidation, we measured the levels of malon-
dialdehyde in rat heart tissue using thiobarbituric acid reactive substances (TBARS) according to the OxiSelect 
TBARS assay kit’s protocol (Cell Biolabs, Inc.). Heart tissue was homogenized with PBS containing butylated 
hydroxytoluene (BHT) on ice. After centrifugation at 10,000 g for 5 min, the supernatant was obtained. Lipid per-
oxidation assays were performed according to manufacturer’s protocol. MDA standards and samples were meas-
ured in duplicate. The level of MDA was determined spectrophotometrically using a UV-VIS spectrophotometer 
(Thermo Fisher Scientific, Finland) at 532 nm. MDA levels are expressed as nmol/mg of protein.

Statistical analyses.  Data are presented as the mean ± SE. Effects of rat strain and GA treatment on systolic 
blood pressure or body weight at different times (8, 12, and 24 weeks) were analyzed using a two-way ANOVA 
test. In these three groups, changes in systolic blood pressure or body weight according to time interval were 
analyzed using the Jonckheere-Terpstra trend test by SPSS version 22.0 software (SPSS, Chicago, IL, USA). All 
graphing was performed using GraphPad Prism version 5.03 software (GraphPad Software, San Diego, CA, USA), 
respectively.
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Figure 5.  GA attenuates GATA4/Nkx2-5-mediated Nox2 promoter activation in H9c2 cells. (A,B) The 
pcDNA3-GATA4-HA, pcDNA3.1-GATA6-V5-His-TOPO, pGCN-SRF-HA, or pcDNA3-Nkx2-5 constructs 
were transfected into H9c2 cells for 2 days. Nox2 mRNA levels were evaluated by quantitative RT-PCR. Data 
are presented as the mean ± SE with at least 4 independent experiments. *P < 0.05 versus empty vector. NS, 
not significant. (C) H9c2 cells were co-transfected with Nox2 promoter luciferase, β-galactosidase expression 
vector, empty vector, pcDNA3-GATA4-HA, or pcDNA3-Nkx2-5 construct. Nox2 promoter assay was 
performed. The values are the mean ± SE of at least five independent experiments. ***P < 0.01 versus empty 
vector. ###P < 0.001 versus pcDNA3-GATA4-HA or pcDNA3-Nkx2-5 transfection. Data are presented as 
the mean ± SE with at least 5 independent experiments. (D‒E) H9c2 cells were transfected with pcDNA3-
GATA4-HA and pcDNA3-Nkx2-5 and then incubated with GA (100 µM) for 24 h. The values are the mean ± SE 
of at least four independent experiments. ***P < 0.001 versus empty vector. ###P < 0.001 versus GA-treated 
group. Data are presented as the mean ± SE with at least 3 independent experiments. (F) For the ChIP assays, 
pcDNA3-GATA4-HA or empty vector was transfected into H9c2 cells. After treatment with GA (100 µM) for 
6 h, chromatin DNA complexes were immunoprecipitated by anti-HA antibody or normal mouse IgG. GATA 
indicates GATA binding site. ChIP Forward (F) and ChIP Reverse (R) indicate the PCR primer sets (−419 to 
−19). Schematic diagram shows the candidate GATA binding sites in the rat Nox2 promoter. Data are presented 
as the mean ± SE with at least 3 independent experiments.
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Results
GA Reduces Blood Pressure, Vascular Remodeling, and Contraction in SHRs.  To investigate 
whether GA regulates blood pressure in essential hypertension, we measured systolic blood pressure at 8, 12, and 
24 weeks in SHRs. GA was administered to SHRs for 16 weeks. Eight-week-old SHRs showed a significantly ele-
vated systolic blood pressure compared to WKY rats (165.6 ± 13.1 versus 123.4 ± 11.6 mm Hg; Fig. 1A). Twelve-
week-old SHRs presented higher systolic blood pressure compared to control WKY rats (185.0 ± 12.2 versus 
128.2 ± 10.4 mm Hg; Fig. 1A). GA-treated SHRs showed lower systolic blood pressure, compared to untreated 
SHRs, after four weeks of GA treatment (164.2 ± 2 versus 185.0 ± 12.2 mm Hg). Twenty-four-week-old SHRs 
showed the maximum systolic blood pressure compared to control WKY rats (200.1 ± 8.2 versus 128.5 ± 7.3 mm 
Hg; Fig. 1A). After 16 weeks of GA treatment, SHRs showed an even greater reduction in systolic blood pressure, 
compared with untreated SHRs (170.5 ± 15.8 versus 200.1 ± 8.2 mm Hg). In addition, we examined the changes 
in systolic blood pressure according to time point using the Jonckheere-Terpstra trend test. Changes in systolic 
blood pressure in WKY rats were not seen. However, a change in systolic blood pressure in SHRs was observed 
(p = 0.001).

To determine whether GA affects body weight, we measured body weights at the same time points at which the 
systolic blood pressure was measured. There was no significant difference in body weight between the groups at 8 
weeks. At 12 weeks, GA-treated SHRs had a lower weight than control WKY rats. However, SHRs and GA-treated 
SHRs showed a significant reduction in average body weight compared to WKY rats, at 24 weeks (Fig. 1B). 
Furthermore, the average body weight of GA-treated SHRs was significantly lower than that of untreated SHRs 
(381.4 ± 17.4 versus 405.9 ± 14.1 g). In addition, the Jonckheere-Terpstra trend test showed increasing body 
weight of three different rats according to the age (p = 0.000).

Renin-angiotensin-aldosterone system (RAAS) is an important hormone system that regulates blood pres-
sure35. We investigated angiotensin II type 1 receptor (AT1) and angiotensin converting enzyme (ACE1) mRNA 
levels in the aorta. Both AT1 and ACE1 mRNA levels were increased significantly in SHRs, compared to WKY 
rats, and this increase was completely abolished by GA treatment (Fig. 1C). Furthermore, GA treatment signif-
icantly reduced the increased transcript levels of AT1 in the heart and kidney cortex of SHRs (see Supplemental 
Fig. 1A,B). In addition, we observed similar results for AT1 and ACE1 protein levels in aortas (Fig. 1D). GA treat-
ment significantly reduced aortic ACE1 and AT1 protein levels in SHRs (see Supplemental Fig. 2).

We further investigated how gallic acid affected the response to angiotensin II treatment in rat aortic 
rings. Vascular constriction was obtained following angiotensin II treatment in gallic acid- or vehicle-treated 
endothelium-intact aortic rings. The tension is expressed as a percentage in relation to initial contractions in 
response to 50 mM KCl. Pretreatment with gallic acid (1.0 mM or 3.0 mM) inhibited the vascular contractility in 
response to angiotensin II (see Supplemental Fig. 3). Next, we examined arterial remodeling using immunohisto-
chemistry. As shown in Fig. 1E,F, the arterial wall was considerably thicker in SHRs, compared to WKY rats; the 
increased thickness was significantly reduced by GA treatment.

To further confirm the blood pressure-lowering effect of GA, we investigated vascular contractility in rat 
aortic rings and mesenteric arteries. GA treatment reduced U46619-induced vascular contractile response in 
both endothelium-intact and endothelium-denuded aortas (Fig. 1G). However, there was no difference between 
the responses in endothelium-intact and endothelium-denuded aortas, at each GA concentration tested (ED50 
(−log M) 2.96 ± 0.05 versus 2.91 ± 0.01, respectively; Supplementary Table 2). These results indicate that GA 
acts mainly on vascular smooth muscle cells, but not endothelial cells. Similar results were observed in mesen-
teric arteries. In the mesenteric arteries, the GA cumulative curve resulted in a similar relaxation response in the 
U46619 treatment (ED50 (−log M) 3.50 ± 0.06, Supplementary Table 2). To further identify whether GA relaxes 
vascular contraction through activation of the nitric oxide (NO) pathway, we pretreated endothelium-intact aor-
tic rings with NG-nitro-L-arginine methyl ester (L-NAME, 1.0, 10, or 100 µM) or vehicle for 30 min. GA was 
added cumulatively (0.01–3.0 mM) to induce relaxation when vascular contraction induced by U46619 (30 nM) 
reached a plateau. As shown in Supplemental Fig. 4, L-NAME did not block the vascular relaxation induced 
by GA in endothelium-intact aortic rings. The ED50 values were similar between L-NAME treatment groups 
(Supplementary Table 3).

GA Attenuates Left Ventricular Hypertrophy in SHRs.  SHRs manifest left ventricular hypertrophy36. 
We found that the total heart weight or left ventricular weight of SHRs was significantly greater than that of WKY 
rats (see Supplemental Fig. 5A,B). GA treatment in SHRs reduced the total heart weight to tibia length ratio (mg/
mm) or left ventricular (LV) weight to tibia length ratio (mg/mm). To further evaluate whether GA affects heart 
function and wall thickness in SHRs, we performed echocardiography. Figure 2A shows representative M-mode 
images. Interventricular septum (IVS) and left ventricular posterior wall (LVPW) thickness were significantly 
increased in 24-week-old SHRs, compared to that in WKY rats. The increased IVS and LVPW thickness were 
significantly reduced by GA administration (Fig. 2B). The end-systolic and end-diastolic dimensions of LV were 
not different among the three groups (Fig. 2C). In addition, fractional shortening (FS) was comparable among 
the three groups (Fig. 2D). To determine whether GA exerts its anti-hypertrophic effect at cellular levels, we per-
formed H&E staining to measure the cross-sectional myocyte size. The cross-sectional area was greater in SHRs, 
compared to that in WKY rats, and this increase was attenuated by GA treatment (Fig. 2E,F).

GA Suppresses Expression of Cardiac-Specific Transcription Factors in SHRs and Angiotensin 
II-Treated H9c2 Cells.  Cardiac enlargement can be regulated by cardiac-specific transcription factors37. To 
investigate the expression of cardiac-specific transcription factors, we performed quantitative RT-PCR using rat 
heart samples from the three groups: WKY, SHRs, and SHRs plus GA. We found that GATA4 and GATA6 mRNA 
levels were upregulated in SHRs, compared to WKY rats, and this upregulation was reduced by GA administra-
tion (Fig. 3A,B). We examined two more cardiac-specific transcription factors, Nkx2-5 and SRF. GA treatment 
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Figure 6.  GA regulates NO production and Nox activity in vivo and in vitro. (A) Nitric oxide (NO) production 
in serum was evaluated using Griess reagent. Data are expressed as means ± SE (n = 8 rats per group). NS, not 
significant. #P < 0.05 versus SHR. (B) NO production in heart tissues from WKY, SHR, and SHR+GA groups, 
was determined. Data are expressed as means ± SE (n = 8 rats per group). (C) Malondiadehyde (MDA) levels in 
the heart of WKY, SHR, and SHR+GA. Data are presented as the mean ± SE (n = 8 rats per group). **P < 0.01 
versus WKY. ##P < 0.01 versus SHR. (D) Nox activity in rat hearts from the WKY, SHR, and SHR+GA groups 
was measured by lucigenin chemiluminescence assay. Data are expressed as means ± SE (n = 8 rats per group). 
*P < 0.05 versus WKY. ##P < 0.01 versus SHR. (E) Nox activity was measured in H9c2 cells treated with 
angiotensin II (Ang II, 1 µM) or GA (100 µM) for 24 h. The values are the mean ± SE of at least four independent 
experiments. ***P < 0.001 versus vehicle group. ###P < 0.001 versus Ang II-treated group. (F) After GATA4 
siRNA transfection, H9c2 cells were incubated with Ang II (1 µM) to determine Nox activity. The values are 
the mean ± SE of at least three independent experiments. @P < 0.05 versus vehicle-treated siControl group. 
*P < 0.05 versus vehicle-treated siControl group. ###P < 0.001 versus Ang II-treated siControl group.
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significantly decreased the Nkx2-5 mRNA levels in SHR hearts (Fig. 3C). However, the reduction in the SRF 
transcript level by GA was not statistically significant (Fig. 3D). It has been reported to increase angiotensin II 
concentration in the blood plasma of SHRs38,39. We sought to determine whether the increased transcription 
factor levels in SHR hearts could be observed in angiotensin II-treated H9c2 cells. We observed similar results in 
H9c2 cells. The GATA4 transcript was upregulated in response to angiotensin II treatment and this increase was 
abolished by GA treatment (Fig. 3E). However, GATA6, SRF, and Nkx2-5 upregulation was not seen in angioten-
sin II-treated H9c2 cells (Fig. 3F).

GA Attenuates Nox2 Expression in SHRs and Angiotensin II-Treated H9c2 Cells.  NADPH oxi-
dase (Nox) produces reactive oxygen species (ROS), which are implicated in hypertension and cardiac hypertro-
phy40. Therefore, we examined whether Nox gene expression is upregulated in SHR hearts. We found that cardiac 
Nox1, Nox2, and Nox4 mRNA levels were significantly increased in SHRs, compared to WKY rats. This upregula-
tion was decreased by GA treatment (Fig. 4A). Next, we investigated Nox protein expression. As shown in Fig. 4B, 
Nox2 protein levels were increased in SHRs, compared to WKY rats. The increased Nox2 protein expression was 
significantly attenuated by GA treatment (Fig. 4B,C). However, there was no significant difference in Nox1 and 
Nox4 protein expression among the three groups, even though Nox4 protein levels showed a tendency to increase 
(Fig. 4B,C).

We then sought to determine whether the Nox upregulation seen in SHRs occurs in H9c2 cells treated with 
angiotensin II. Nox2 mRNA levels were upregulated in response to angiotensin II treatment (Fig. 4D). This upreg-
ulation was significantly abolished by GA treatment. However, Nox1 and Nox4 mRNA expression was unchanged 
after angiotensin II or GA treatment.

GA Attenuates GATA4-Mediated Nox2 Promoter Activation in H9c2 Cells.  To determine whether 
the expression of cardiac-specific transcription factors is related to the regulation of Nox2 in hypertension, H9c2 
cells were transfected with transcription factors, including GATA4, GATA6, Nkx2-5, or SRF. Forced transfection 
with GATA4, GATA6, SRF, or Nkx2-5 significantly increased their exogenous mRNA levels in H9c2 cells (see 
Supplemental Fig. 6). Forced expression of GATA4 significantly increased Nox2 mRNA levels, while GATA6 and 
SRF expression failed to induce it (Fig. 5A,B). However, Nkx2-5 seemed to increase Nox2 mRNA levels (Fig. 5B).

To determine whether Nox2 upregulation induced by transcription factors is regulated at the promoter level, 
we performed Nox2 promoter assay. Nox2 promoter has GATA-binding sequences. Transfection with GATA4 
significantly increased the activity of the Nox2 promoter (see Supplemental Fig. 7A), while Nkx2-5 did not sig-
nificantly increase it (see Supplemental Fig. 7B). However, GATA6 and SRF did not cause any increase in the 
Nox2 promoter activity (see Supplemental Fig. 7C,D). Therefore, we sought to determine the synergistic effect 
of GATA4 and Nkx2-5 on Nox2 promoter activity. Transfection with GATA4 increased Nox2 promoter activ-
ity about 2.5-fold, compared to transfection with the vector alone (Fig. 5C). Co-transfection with Nkx2-5 and 
GATA4 further increased the activity of the Nox2 promoter, compared to transfection with GATA4 or Nkx2-5 
alone (Fig. 5C, fourth bar). GA abolished the GATA4-mediated increase in Nox2 promoter activity (Fig. 5D). 
Furthermore, it also suppressed the synergistic effect of GATA4 and Nkx2-5 on Nox2 promoter activity (Fig. 5E). 
To investigate the regulatory mechanism by which GA downregulates Nox2 expression, we performed chroma-
tin immunoprecipitation (ChIP) assay. Rat Nox2 promoter has several GATA-binding sites. We used primers 
including four GATA-binding sites. The ChIP assay results suggest that GA treatment decreases the DNA-binding 
activity of GATA4 in the rat Nox2 promoter (Fig. 5F).

GA Recovers NO Production and Reduces MDA and Nox Activity in vivo and in vitro.  To deter-
mine oxidative stress in hypertension, we measured NO levels in the serum and heart, using Griess reagent. The 
serum levels of NO in WKY rats and SHRs were not different, but were increased significantly after GA treat-
ment (Fig. 6A). Although the NO levels in the heart showed a similar pattern, the increase was not statistically 
significant (Fig. 6B). In addition, we measured the content of malondialdehyde (MDA) in rat heart tissue. The 
MDA levels were significantly increased in SHRs compared to in the sham. The increase was reduced by GA 
treatment (Fig. 6C). To determine superoxide production in the heart tissues and H9c2 cells, we measured Nox 
activity using lucigenin-enhanced chemiluminescence. The Nox activity was significantly higher in SHR hearts, 
compared to that in WKY rat hearts; this increase was abolished by GA treatment (Fig. 6D). GA also suppressed 
angiotensin II-induced Nox activity in H9c2 cells (Fig. 6E). To further investigate whether GATA4 can medi-
ate angiotensin II-induced Nox activity, we knocked down GATA4 and measured Nox activity in response to 
angiotensin II. Transfection with GATA4 siRNA successfully reduced the endogenous GATA4 mRNA level (see 
Supplemental Fig. 8). Nox activity was increased by angiotensin II treatment, and this increase was abolished by 
transfection with GATA4 siRNA (Fig. 6F).

Discussion
GA has been shown to prevent streptozotocin-induced hyperlipidemia, hypertension, and LVH22. However, the 
mechanism behind the beneficial effects of GA remains unknown. In this study, we demonstrate that long-term 
administration of GA reduces hypertension, LVH, and oxidative stress in animal model of essential hypertension.

The regulatory mechanism by which GA affects blood pressure in the vasculature may be explained in several 
ways. First, GA regulates the components of RAAS. AT1 mRNA levels are downregulated by GA treatment in the 
aorta, heart, and kidney cortex of SHRs. Similarly, GA reduced the enhanced ACE1 mRNA levels in SHR aortas. In 
addition, GA administration resulted in the reduction of AT1 and ACE1 protein expression in SHR aortas. This is 
consistent with a previous study reporting GA-mediated inhibition of ACE1 and anti-hypertensive effect in SHRs41. 
Second, GA exerts relaxation of vascular contraction in both a large conduit vessel (aorta) and small resistance 
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vessels (mesenteric arteries). Third, GA-mediated weight loss may be implicated in the reduction of blood pressure. 
Weight reduction leads to lowered blood pressure. Our findings warrant further research; however, a recent study has 
demonstrated that an angiotensin II receptor antagonist (telmisartan) induces weight loss via the angiotensin-(1–7)/
Mas-dependent pathway42. Fourth, GA reduces the increase in aortic wall thickness induced in SHRs.

We observed beneficial effects of GA in essential hypertension. GA ameliorated LVH, as determined by 
echocardiography. In addition, by measuring the cross-sectional area, we found that GA treatment signifi-
cantly diminished enlarged cardiomyocyte size. The anti-hypertrophic effect of GA in SHRs is supported by 
our previous paper, indicating that GA prevents β-adrenergic agonist-induced cardiac hypertrophy31. Another 
paper presented similar results showing that GA decreased the increased heart weight to body weight ratio on 
streptozotocin-induced diabetic rats22. Cardiac-specific transcription factors are closely implicated in cardiac 
hypertrophy43. In this study, we found that GA decreased the increased mRNA levels of GATA4, GATA6, SRF, 
and Nkx2-5 induced in SHRs. The GATA4 mRNA level was also induced in response to angiotensin II treatment 
in H9c2 cells. These findings imply that the reduction of cardiac hypertrophy by GA is associated with GATA4 
downregulation. Indeed, GATA4 overexpression induces cardiac hypertrophy in vivo and in vitro44, suggesting 
GATA4 is an important hypertrophic regulator.

Oxidative stress plays an important role in hypertension. Notably, MDA level, which is a marker of oxidative 
stress, was increased in the hearts of SHRs compared to those of control rodents. Treatment with GA reduced 
MDA levels in heart tissue. NADPH oxidase (Nox) is related to reactive oxidase stress (ROS) in activated RAAS. 
Furthermore, Nox activity was increased in SHR hearts and angiotensin II-treated H9c2 cells and was reduced 
by GA treatment. Similarly, Nox activity was increased in SHR aortas compared with those in WKY rats45,46. The 
cardiac transcription factor GATA4 was involved in the reduction of Nox activity by GA treatment.

Nox1 and Nox4 are expressed in vascular smooth muscle cells, whereas Nox2 and Nox4 are highly expressed 
in endothelial cells47. Similar to previous reports, our results show enhanced Nox1, Nox2, and Nox4 mRNA levels 
in SHR hearts48–50. Chabrashvili T et al. reported that p47phox mRNA levels are higher in SHR kidneys than in 
WKY rats51. Nox4 mRNA expression has been shown to be higher in the basilar artery in SHRs52. The differences 
between our results and those of previous studies appear to have been caused by the use of different organs (heart, 
kidney, and artery) and animals of varying ages for experiments.

In the present study, GA treatment reduced cardiac Nox1, Nox2, and Nox4 transcript levels, and attenuated 
cardiac Nox2 protein expression in SHRs. However, we are unable to explain the discrepancy observed between 
Nox mRNA and protein expression. We found that angiotensin II increases the mRNA levels of Nox2, but not 
Nox1 or Nox4, in H9c2 cells. These results suggest that Nox2 plays a more important role than the other Noxs in 
mediating oxidative stress response in cardiomyocytes. Nox2 is activated by G-protein-coupled receptor agonists, 
such as angiotensin II or endothelin-153, as well as aortic banding in pigs54. Relevant to Nox2 in cardiomyocytes, 
Nox2 expression was increased in human cardiomyocytes after acute myocardial infarction55. In the present 
study, essential hypertension induces cardiac hypertrophy, which is closely involved in upregulation of Nox2.

Therefore, we focused on the role of Nox2 in hypertension. Transcriptional regulation of Nox1 is mediated by 
the direct binding of GATA-binding factor to the Nox1 promoter56. Here, we investigated whether cardiac Nox2 
expression is regulated by cardiac-specific transcription factors, including GATA4, GATA6, SRF, and Nkx2-5. 
Interestingly, Nox2 upregulation was induced by the synergistic action of GATA4 and Nkx2-5. A possible mech-
anism is that Nkx2-5 overexpression increased the GATA4 mRNA levels in H9c2 cells in a dose-dependent man-
ner (see Supplemental Fig. 9). Consistent with our results, an adenovirus expressing Nkx2-5 has been shown to 
increase GATA4 promoter activity in vitro57. Even though we have not demonstrated a direct association between 
Nkx2-5 and GATA4, there is some evidence to suggest that Nkx2-5 physically interacts with GATA458. A poten-
tial regulatory mechanism by which GA regulates Nox2 expression is that it interferes with the binding of GATA4 
to the Nox2 promoter DNA.

A limitation of the current study is that the GA concentration used in the cell cultures is not precisely corre-
lated with chronic doses observed in vivo. Despite long-term oral administration of GA to SHRs, systolic blood 
pressure was not restored to that of control WKY rats. Thus, other mechanisms may be involved in the reduction 
of blood pressure by GA treatment of SHRs. GA was reported to have diuretic activity in Wistar albino rats59. 
Even though we observed body weight loss in GA-treated SHRs compared to SHRs, we did not examine urine 
volume in the present study. Therefore, we cannot rule out the possibility of a diuretic action of GA in the regu-
lation of blood pressure.

A pharmacological inhibitor (KN-93) of the calcium/calmodulin-dependent kinase (CaMKII)60 and trans-
genic expression of CaMKII peptide inhibitor in VSMC have been reported to attenuate hypertension after angi-
otensin II infusion by controlling baroreceptor function61. Moreover, CaMKII delta expression was increased 
in SHRs with cardiac hypertrophy62. We have evidence that GA downregulates CaMKII expression in SHRs 
(accepted article, Journal of Cellular and Molecular Medicine). Therefore, we speculate that another mechanism 
exists for the regulation of blood pressure by GA. We need to investigate the relevance of CaMKII to voltage-gated 
Ca2+ channels that control vascular tone.

Sympathetic nervous system activation increases and maintains blood pressure7. Epigallocatechin-3-O-gallate 
(EGCG), an ester of epigallocatechin and gallic acid, attenuates hypertension and circulating norepinephrine 
levels induced by SHRs63. Therefore, we cannot eliminate the relevance of GA to the regulation of the sympathetic 
nervous system in hypertension. Hypertension is a very complex disease and its pathophysiological mechanisms 
are diverse. Therefore, we did not investigate this in detail in the current study, as pointed out above.

In summary, we have demonstrated that GA lowers systolic blood pressure and LVH in rats with essential 
hypertension, and that it inhibits cardiac Nox2 expression and the Nox2-induced oxidative stress response 
through the knockdown of GATA4 or by interfering with the DNA-binding activity of GATA4. We suggest that 
GA is a novel promising therapy for the treatment of cardiovascular diseases, including hypertension and cardiac 
hypertrophy.
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