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Abstract

Introduction Over-the-counter analgesics such as parac-

etamol and ibuprofen are among the most widely used, and

having a good understanding of their safety profile is

important to public health. Prior observational studies esti-

mating the risks associated with paracetamol use acknowl-

edge the inherent limitations of these studies. One threat to

the validity of observational studies is channeling bias, i.e.

the notion that patients are systematically exposed to one

drug or the other, based on current and past comorbidities, in

a manner that affects estimated relative risk.

Objectives The aim of this study was to examine whether

evidenceof channelingbias exists in observational studies that

compare paracetamol with ibuprofen, and, if so, the extent to

which confounding adjustment can mitigate this bias.

Study Design and Setting In a cohort of 140,770 patients,

we examined whether those who received any paracetamol

(including concomitant users) were more likely to have

prior diagnoses of gastrointestinal (GI) bleeding, myocar-

dial infarction (MI), stroke, or renal disease than those who

received ibuprofen alone. We compared propensity score

distributions between drugs, and examined the degree to

which channeling bias could be controlled using a combi-

nation of negative control disease outcome models and

large-scale propensity score matching. Analyses were

conducted using the Clinical Practice Research Datalink.

Results The proportions of prior MI, GI bleeding, renal

disease, and stroke were significantly higher in those pre-

scribed any paracetamol versus ibuprofen alone, after

adjusting for sex and age. We were not able to adequately

remove selection bias using a selected set of covariates for

propensity score adjustment; however, when we fit the

propensity score model using a substantially larger number

of covariates, evidence of residual bias was attenuated.

Conclusions Although using selected covariates for propen-

sity score adjustment may not sufficiently reduce bias, large-

scale propensity score matching offers a novel approach to

consider to mitigate the effects of channeling bias.

Key Points

Channeling bias exists in the dispensing of single-

ingredient paracetamol versus ibuprofen. In

previously published papers, models attempting to

control for such channeling may not have adequately

controlled for this bias.

Propensity score model diagnostics and negative

control outcomes can be used to check the adequacy

of models to control for channeling bias.

Large-scale propensity score matching can reduce

channeling bias and should be considered for bias

reduction in future observational studies in which the

possibility of channeling bias is a major concern.
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1 Introduction

Over-the-counter analgesics such as paracetamol and

ibuprofen are among the most widely used drugs in the

world. Therefore, having a good understanding of their

safety profile is an important public health considera-

tion. A key challenge to studying the safety of parac-

etamol and ibuprofen is that they are used primarily

without prescription, therefore exposure status can be

difficult to ascertain accurately in both prospective and

retrospective epidemiology studies. Several observa-

tional studies have been conducted that attempt to

estimate the risks associated with the use of paraceta-

mol [1–8], but all acknowledge the inherent limitations

of observational studies in this context. One approach

that has been taken [7] is to use electronic medical

records that capture prescriptions, and attempt to esti-

mate the risks using only prescription exposure to

paracetamol compared with prescription exposure to

other pain medication, such as ibuprofen. While this

approach may have promise, a threat to the validity of

this design is channeling bias, also called selection by

contraindication, i.e. the notion that patients may be

systematically exposed to one drug or the other, based

on current and past comorbidities, in a manner that

could affect the estimates of relative risk.

This study aims to examine whether channeling bias

exists in the context of studies that compare paraceta-

mol with ibuprofen, and, if so, the extent to which

various confounding adjustment strategies can mitigate

this bias when estimating average treatment effects. We

do so using the Clinical Practice Research Datalink

(CPRD) database, which was the basis of a study [7]

that found an association between paracetamol and

increased risk of several adverse events, including upper

gastrointestinal (GI) bleeding, myocardial infarction

(MI), stroke, and acute renal failure. That study adjus-

ted its estimates for several potential confounders and

clearly acknowledged the possibility of confounding by

indication (actually, contraindication in this instance),

but did not document the existence of this bias or

attempt to assess its impact.

The primary research question addressed in the current

study is whether evidence of channeling bias in the pre-

scription of single-ingredient paracetamol versus single-

ingredient ibuprofen can be detected in an electronic

medical records database. If so, a second research ques-

tion assessed the prospects for studies confronted with

that bias to reliably control it through multivariable

methods or propensity score adjustment methods that

assume the groups being compared are drawn from a

single population.

2 Methods

We used two approaches to determine if there was evi-

dence of bias. In the first, we looked for evidence that

patients who received paracetamol were more likely to

have had specific prior diagnoses of interest, including GI

bleeding, MI, ischemic or hemorrhagic stroke, or acute or

chronic renal disease, than those who received ibuprofen.

These are known risks associated with ibuprofen, there-

fore the question is whether doctors selectively prescribe

paracetamol to individuals for whom ibuprofen would be

less appropriate. Second, we conducted a more global

assessment of bias through the use of propensity score

distributions to demonstrate the extent of differences

between the populations exposed to these two drugs in

terms of their propensity to be prescribed paracetamol

versus ibuprofen. Finally, we examined the degree to

which channeling bias could be controlled via propensity

score matching. To do this, we fitted logistic regression

models of negative control outcomes to propensity score

matched, paracetamol-exposed and ibuprofen-exposed

groups. For the comparison of these groups, we identified

negative control outcomes, conditions chosen specifically

because they were evaluated a priori to not have a dif-

ferential risk associated with either OTC analgesic, i.e.

conditions for which the relative risk associated with

paracetamol versus ibuprofen was therefore believed to be

approximately one. In this analysis, successful control of

channeling by the propensity score matching would be

evidenced by the lack of association of the negative

control outcomes with the exposure group, i.e. by

observing no more negative controls associated with the

exposure group than would be expected to be observed by

chance. The criteria for defining these negative controls

are described below. The protocol for this study is

available at ClinicalTrials.gov (NCT identifer:

NCT02830178).

2.1 Database Used

The CPRD, a UK primary care database containing de-

identified data from 1 January 1988 through 31 December

2014 and covering 11.65 million individuals, was used for

these analyses. The database includes data on demo-

graphics, conditions diagnosed, observations, measure-

ments, and procedures that the general practitioner (GP) is

made aware of, in addition to any made by the GP. A key

strength of the data is the long-term follow-up. Overall,

median follow-up time for individual patients is approxi-

mately 5 years (interquartile range 1.8–11.1 years) [9].

Data for this study were from practices classified as ‘up to

standard’ (UTS) by the CPRD during the period of interest.
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The UTS designation reflects a minimum, practice-level

measure of quality based on continuity of recording and

number of deaths recorded. The protocol for this study

(reference number 15_173R) was approved by the Inde-

pendent Scientific Advisory Committee (ISAC).

2.2 Determination of Exposures and Outcomes

The CPRD data in this analysis were converted to the

Observational Medical Outcomes Partnership (OMOP)

Common Data Model (CDM) version 5 [10]. The OMOP

CDM allows for standardization of clinical structure and

content across databases, and also facilitates the develop-

ment of covariates in the large-scale propensity score

models. Native source codes for outcomes and comorbid

conditions are mapped to the OMOP standardized vocab-

ularies for each domain (conditions, procedures, etc.). For

instance, all Read condition codes (diagnoses, procedures,

and clinical observations) are mapped to SNOMED-CT

concepts, and Gemscript drug codes are mapped to

RxNorm codes [10].

2.3 Cohort Definition

For subjects included in the study, the index date was

defined as the day when they received a first prescription

for single-ingredient paracetamol and/or single-ingredient

ibuprofen. Subjects were included if they were aged

18 years or older on the index date and enrolled in an

UTS practice for the 2 years prior to and 1 year following

the index date. To reduce the risk of observing prevalent

prescription use, we required at least 6 months of con-

tinuous observation without prescriptions prior to the first

prescriptions of paracetamol or ibuprofen in 2012. Only

index dates in 2012 were considered. In addition, subjects

with a prescription for paracetamol- or ibuprofen- con-

taining combination medication on the index date were

excluded.

We classified analgesic use into two cohorts: (1) ‘any

paracetamol’, i.e. patients with new paracetamol expo-

sure alone or in combination with a new ibuprofen

exposure; and (2) ‘ibuprofen alone’, i.e. patients with

new, single-ingredient ibuprofen alone. Where multiple

exposures on the index date qualified a patient for

inclusion, cohort and index date assignment were based

on the qualifying exposure(s) occurring on the index date

only. Approximately 6% of the cohort had concomitant

use and were classified as ‘any paracetamol’, to better

reflect prescribing in clinical practice. A sensitivity

analysis excluding concomitant users, to assess the

impact of these users on the evidence of channeling, was

performed.

2.4 Statistical Methods Used

2.4.1 Channeling Bias Models

To gain an understanding of how the study populations

differ from each other, a descriptive comparison by 10-year

age group, sex, and baseline health-related characteristics

was performed, stratified by prescriptions for any parac-

etamol versus ibuprofen, and age 18 years or older in 2012

(see the ‘Before Match’ columns of Table 1).

We examined potential channeling bias in the pre-

scription of any paracetamol versus ibuprofen. We used

multivariable logistic regression with any paracetamol

versus ibuprofen as the outcome, and diagnoses of GI

bleeding, MI, ischemic or hemorrhagic stroke, or acute or

chronic renal disease as the ‘exposure’ (predictor) variable,

controlling for age group in 5-year increments and sex. The

presence or absence of a given diagnosis was determined

by diagnoses in the database for the 2 years prior to the

index date (date of the first paracetamol/ibuprofen

prescription).

2.4.2 New-User Cohort Analysis Using Propensity Scores

A comparative cohort analysis was performed, comparing

new users of paracetamol with new users of ibuprofen.

Two propensity score models were created, both with any

paracetamol use (yes/no) as the ‘outcome’ variable. For the

first propensity score model, the independent variables

were baseline patient characteristics defined as described in

previous studies described in the literature [1–5, 7]. These

covariates, which we will refer to as ‘publication covari-

ates’, were not consistently included in each study, but

represent a super-set of the covariates measured, and

include the following conditions and drug exposures (the

number of studies that included the variable is given in

parentheses): obese (6), morbidly obese (6), smoker (5),

alcohol abuser (5), upper GI events (1), osteoarthritis (1),

rheumatoid arthritis (1), ischemic heart disease (3), heart

failure (2), hypertension (7), cerebrovascular disease (1),

diabetes mellitus (4), hyperthyroidism (1), stroke or tran-

sient ischemic attack (1), cancer [excluding non-melanoma

skin cancer] (1), inflammatory bowel (1), autoimmune

disease (1), depression (1), drug abuse (1), anticoagulants

(1), oral glucocorticoids (1), diuretics (2), cardiac glyco-

sides (1), statins (2), angiotensin receptor blockers (3),

hypnotics and anxiolytics (1), antipsychotics (1), antibac-

terials (1), aminosalicylates (1), antidepressants (1), aspirin

(2), oral corticosteroids (1), proton-pump inhibitors (1),

histamine-2 receptor antagonists (1), hyperlipidemia (2),

non-ibuprofen non-steroidal anti-inflammatory drugs (2),

and other analgesics (5).
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Table 1 Distribution of selected characteristics 1 year prior to first use of paracetamol and ibuprofen in 2012 among users in the study

populations before and after matching on the publication variables PS model and the large-scale PS model

Before match (N = 143,126) After matched on variables in the

publication variables PS model

(N = 98,048)

After matched on variables in the

large-scale PS model (N = 66,070)

Paracetamol,

%

Ibuprofen,

%

Std

diffa
Paracetamol,

%

Ibuprofen,

%

Std

diffa
Paracetamol,

%

Ibuprofen,

%

Std

diffa

Female 60.6 59.1 0.029 59.8 61.1 -0.026 60.0 60.4% -0.008

Mean age, years (SD) 62.2 (19.6) 52.6 (18.3) – 56.1 (19.0) 55.8 (18.7) – 56.4 (19.2) 57.3 (19.2) –

Age, years

15–19 1.6 3.1 -0.098 2.4 2.4 0.001 2.6 2.3 0.016

20–24 3.2 5.5 -0.115 4.6 4.6 0.001 4.6 4.5 0.005

25–29 3.5 5.4 -0.091 4.8 4.8 0.002 4.6 4.3 0.011

30–34 4.0 5.9 -0.090 5.4 5.5 -0.003 5.2 5.0 0.009

35–39 4.0 6.3 -0.105 5.3 5.4 -0.002 5.1 4.9 0.008

40–44 4.8 8.0 -0.134 6.4 6.4 0.001 6.4 5.8 0.023

45–49 5.4 9.1 -0.146 7.2 7.2 0.002 7.1 6.6 0.018

50–54 5.8 8.8 -0.118 7.5 7.3 0.005 7.2 6.9 0.011

55–59 6.2 8.0 -0.072 7.5 7.5 0.000 7.2 7.1 0.005

60–64 8.8 9.9 -0.038 10.1 10.4 -0.010 10.0 9.9 0.003

65–69 10.7 10.0 0.021 11.2 11.6 -0.011 11.4 11.6 -0.005

70–74 10.3 7.4 0.102 9.5 9.9 -0.014 9.5 10.1 -0.020

75–79 11.0 5.9 0.184 8.0 8.1 -0.004 8.4 9.2 -0.027

80–84 9.8 3.8 0.241 5.5 5.2 0.015 6.0 6.5 -0.023

85–89 7.0 1.9 0.249 3.0 2.6 0.023 3.1 3.5 -0.019

90–94 3.3 0.7 0.185 1.2 1.0 0.015 1.3 1.4 -0.012

95–99 0.8 0.1 0.101 0.2 0.1 0.012 0.2 0.2 0.007

Conditions

Obese 4.0 3.3 0.040 3.8 3.6 0.007 3.7 3.7 -0.001

Smoker 8.3 7.7 0.022 8.7 7.9 0.028 8.3 8.3 0.000

Osteoarthritis of the

knee

15.1 9.0 0.188 11.6 11.3 0.012 11.9 12.5 -0.021

Neoplasm of the

prostate

1.4 0.8 0.054 0.9 1.1 -0.021 1.2 1.2 -0.003

Hyperthyroidism 0.6 0.5 0.015 0.5 0.5 -0.001 0.5 0.5 -0.005

Inflammatory bowel

disease

0.2 0.2 0.004 0.1 0.2 -0.009 0.1 0.2 -0.009

Rheumatoid arthritis 1.8 0.7 0.091 1.3 0.9 0.033 1.1 1.2 -0.005

Heart failure 1.2 0.3 0.106 0.5 0.4 0.020 0.5 0.5 0.003

Ischemic heart disease 4.9 2.0 0.156 2.9 2.8 0.006 2.9 3.1 -0.011

Essential hypertension 29.0 17.5 0.275 21.1 21.6 -0.010 21.9 23.2 -0.033

Hyperlipidemia 5.3 3.4 0.092 4.1 4.2 -0.006 4.1 4.3 -0.008

Cerebrovascular

disease

1.9 0.5 0.124 0.9 0.7 0.019 0.7 0.9 -0.022

Drugs

Cardiac glycosides 2.3 0.5 0.151 0.8 0.7 0.015 0.9 0.9 -0.005

Corticosteroids,

systemic

23.8 19.1 0.115 20.5 21.5 -0.026 21.1 21.5 -0.009

Antibacterials,

systemic

53.1 46.9 0.123 50.1 51.2 -0.022 49.9 50.8 -0.018

Proton-pump

inhibitors

36.9 28.8 0.175 32.4 32.4 0.000 32.0 32.9 -0.019

Angiotensin system 29.5 17.9 0.277 21.8 22.1 -0.007 22.5 23.8 -0.031
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For the second propensity score model, a much larger

set of baseline covariates were defined, which we will refer

to as the ‘full set of covariates available’ or ‘large-scale

propensity score covariates’:

Age in 5-year increments

Sex

Race

Year of index date

Month of index date

Charlson Comorbidity Index

Diabetes Complications Severity Index (DCSI) score

CHADS2 score

Conditions1

Presence/absence of a condition in a 365-day window

prior to or on the index date

Presence/absence of a condition in a 30-day window

prior to or on the index date

Presence/absence of a condition diagnosed in an inpa-

tient setting in a 180-day window prior to or on the index

date

Presence/absence of an aggregation of episodes of care

over time for a condition (‘condition era’) any time prior

to or on the index date

Presence/absence of a condition era that overlaps the

index date

Condition classes (based on the SNOMED hierarchy of

conditions)

Presence/absence of a drug in a 365-day window prior to

or on the index date

Presence/absence of a drug in a 30-day window prior to

or on the index date

Drugs2

Presence/absence of an inference of length of time of

exposure to a drug product (‘drug era’) for all in a

365-day window prior to or on the index date

Presence/absence of a drug era in a 30-day window prior

to or on the index date

Presence/absence of a drug era that overlaps the index

date

Presence/absence of a drug era that overlaps the index

date

Presence/absence of a drug era any time prior to or on

the index date

Drug classes based on the Anatomical Therapeutic

Chemical hierarchy

Procedures, observations and measurements3

Presence/absence of a procedure in a 365-day window

prior to or on the index date

Presence/absence of a procedure in a 30-day window

prior to or on the index date

Procedures classes (based on the SNOMED hierarchy of

procedures)

Presence/absence of an observation in a 365-day window

prior to or on the index date

Presence/absence of an observation in a 30-day window

prior to or on the index date

Table 1 continued

Before match (N = 143,126) After matched on variables in the

publication variables PS model

(N = 98,048)

After matched on variables in the

large-scale PS model (N = 66,070)

Paracetamol,

%

Ibuprofen,

%

Std

diffa
Paracetamol,

%

Ibuprofen,

%

Std

diffa
Paracetamol,

%

Ibuprofen,

%

Std

diffa

Non-ibuprofen

NSAIDs

29.8 20.0 0.228 26.0 26.9 -0.021 23.7 24.5 -0.018

Other analgesics 39.9 20.8 0.424 28.0 28.2 -0.005 27.8 29.7 -0.042

Anxiolytics 8.2 6.1 0.083 7.3 7.3 0.000 6.8 7.1 -0.014

Hypnotics and

sedatives

9.8 6.9 0.105 8.1 8.4 -0.011 8.1 8.4 -0.010

Statins 32.5 19.5 0.300 24.2 24.6 -0.010 24.4 26.0 -0.038

Vitamin K antagonists 5.4 1.5 0.217 2.6 2.0 0.037 2.4 2.5 -0.010

PS propensity score, Std diff standardized difference, NSAIDs non-steroidal anti-inflammatory drugs
a The difference in prevalence of the characteristics in the two cohorts divided by the standard deviation

1 Examples of conditions include essential hypertension, dyspnea

and osteoarthritis.

2 Examples of drugs include analgesics, antithrombotic agents, and

codeine.
3 Examples of a procedure, measurement and observation include

heart valve replacement, creatinine measurement and CHADS2 stroke

risk score, respectively.
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Count of each observation concept in a 365-day window

prior to or on the index date

Presence/absence of a measurement in a 365-day

window prior to or on the index date

Presence/absence of a measurement in a 30-day window

prior to or on the index date

Count of each measurement concept in a 365-day

window prior to or on the index date

Presence/absence of a measurement with a numeric

value below the normal range for the latest value within

180 days of the cohort index

Presence/absence of a measurement with a numeric

value above the normal range for the latest value within

180 days of the cohort index

Counts of the number of concepts that a person has

within each domain (i.e. condition, drug, procedure,

clinical observation, laboratory measurement)

All propensity models were fitted using regularized

regression with an L1 (LASSO) prior [11]. The optimal

regularization hyperparameters were estimated using ten-

fold cross-validation. Based on the work of Walker et al.

[12], we estimated preference scores, which are propensity

scores normalized for the prevalence of the drugs being

compared. The state of clinical equipoise between different

treatments exists when the treatments are considered

equivalent and there is no clinical reason for choosing one

treatment over another. Walker et al. [12] suggested the use

of a minimum threshold of 50% of subjects from each

population with preference scores between 0.3 and 0.7 to

provide evidence of clinical equipoise. We compared the

preference scores for the probability of exposure to a first

prescription for any paracetamol versus ibuprofen alone

using these guidelines.

We examined the standardized mean differences

(SMDs) for both the publication covariates and the full set

of available covariates between paracetamol and ibuprofen

in the two propensity score models. SMDs are a measure of

covariate balance between the two treatment groups and

are the difference in prevalence in each cohort divided by

the standard deviation of the difference. A large absolute

value SMD on a covariate is an indication of a significant

disparity in the proportion of subjects with the covariate

between the two groups. An SMD[ 0.1 has been used as

an ad hoc heuristic for what constitutes ‘large’ [13].

2.5 Negative Control Outcomes Analyses

for Residual Confounding

Negative controls are outcomes determined a priori to have

no association with the exposure of interest [14]. In par-

ticular, there must be no mention of these outcomes in the

US FDA-structured product drug label for either

paracetamol or ibuprofen, a manual review of the literature

must find no studies showing the drug causing the outcome,

and the drugs cannot be listed as a ‘causative agent’ for the

outcome according to data provided in Drug-Induced

Diseases: Prevention, Detection and Management [15].

The resulting list contained 31 outcomes. Schuemie et al.

[16] determined that a sample size of at least 25 negative

controls is sufficient for constructing an empirical null

distribution. Any measurement error in the negative con-

trols is intended to shape, at least in part, the empirical

distribution.

Models with these negative controls as outcome vari-

ables (outcome models), which adequately control for

systematic bias, should produce relative risk estimates

close to the null value of 1.0. Negative control models

allow for the examination of the extent of bias in the

database, study design and analysis, to the degree that they

produce significant odds ratios (ORs) different from 1.0.

We fit a series of logistic regression models to examine the

association between treatment with paracetamol or

ibuprofen for each of the 31 negative control incident

outcomes within 1 year after the index date for treatment.

Review of all available time prior to the outcome was the

constraint in determining whether an event was incident or

not. The negative controls chosen for this study were:

1. Melanocytic nevus of skin

2. Impotence

3. Lipoma

4. Labyrinthitis

5. Panic attack

6. Acute stress disorder

7. Chronic sinusitis

8. Seborrheic keratosis

9. Infected ulcer of skin

10. Bronchopneumonia

11. Restless legs

12. Perforation of tympanic membrane

13. Type 1 diabetes mellitus

14. Hemangioma

15. Lichen planus

16. Ocular hypertension

17. Bronchiectasis

18. Hyperthyroidism

19. Lymphedema

20. Obsessive-compulsive disorder

21. Vitiligo

22. Strabismus

23. Open-angle glaucoma

24. Biliary calculus

25. Lactose intolerance

26. Ptosis of eyelid

27. Urethritis
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28. Keratoacanthoma

29. Vasomotor rhinitis

30. Granuloma annulare

31. Phobic disorder

For each of the negative control outcomes, we fit six

models:

1. Demographic Adjustment in Outcome Model: Per-

formed a multivariable logistic regression to estimate

the effect of exposure (any paracetamol versus

ibuprofen) on the incidence of each outcome, adjusting

for sex and age in 5-year increments. No matching or

restriction (via propensity score or otherwise) was

performed prior to final outcome model fitting.

2. Publication Variable Outcome Model Adjustment:

Performed a multivariable logistic regression to esti-

mate the effect of exposure (any paracetamol versus

ibuprofen) on the incidence of each outcome, adjusting

for sex, age in 5-year increments, and the set of 38

publication covariates. No matching or restriction (via

propensity score or otherwise) was performed prior to

final outcome model fitting.

3. Large-Scale Adjusted Outcome Model Performed a

regularized logistic regression using L1 (LASSO)

shrinkage [11] to estimate the effect of exposure

(any paracetamol versus ibuprofen) on the incidence of

each outcome, adjusting for the full set of data

covariates available. No shrinkage was applied to the

effect of exposure, and no matching or restriction (via

propensity score or otherwise) was performed prior to

final outcome model fitting.

4. Publication Variable Propensity Score Adjustment

Performed a multivariable logistic regression to esti-

mate a propensity score that predicts treatment

assignment (any paracetamol versus ibuprofen) using

baseline covariates for sex, age in 5-year increments,

and publication variables. One-on-one matching on the

propensity score was performed using a standardized

caliper of 0.25*propensity score standard deviation.

The matched sets were used within a univariate

conditional logistic regression, which estimated the

effect of exposure (any paracetamol versus ibuprofen)

on the incidence of each outcome, without further

adjustment.

5. Large-Scale Propensity Score Adjustment Performed a

regularized logistic regression using L1 shrinkage [11]

to estimate a propensity score that predicts treatment

assignment (any paracetamol versus ibuprofen) using

the full set of data covariates available. The propensity

score was used to perform 1:1 matching (using a

standardized caliper of 0.25 9 propensity score stan-

dard deviation). The matched sets were used within a

univariate conditional logistic regression, which esti-

mated the effect of exposure (any paracetamol versus

ibuprofen) on the incidence of each outcome, without

further adjustment.

6. Large-Scale Propensity Score Adjustment with Large-

Scale Outcome Modeling Performed a regularized

logistic regression using L1 shrinkage which estimated

a propensity score that predicts treatment assignment

(any paracetamol versus ibuprofen) using the full set of

data covariates. The propensity score was used to

perform 1:1 matching (using a standardized caliper of

0.25 9 propensity score standard deviation). The

matched sets were then used to perform a regularized

conditional logistic regression using L1 shrinkage to

estimate the effect of exposure (any paracetamol

versus ibuprofen) on the incidence of each outcome,

adjusted for the full set of data covariates available. No

shrinkage was applied to the effect of exposure.

We analyzed each of the negative controls to determine

the level of bias remaining in the six different models. If

there was no residual bias in a particular model, we would

expect no more than one or two risk ratios to be signifi-

cantly greater or less than unity based on a p value of\0.05

(i.e. 5% of 31 & 1.5, the number of significant parameter

estimates found by 5% chance alone).

3 Results

The number of participants in the CPRD dataset eligible for

inclusion in the study was 3,949,187 (Fig. 1), of whom

144,337 received prescriptions for paracetamol or ibupro-

fen (Fig. 1). Prior to any matching, more females received

either prescription than males, and those receiving

ibuprofen prescriptions were somewhat younger than those

prescribed paracetamol (Table 1). The paracetamol cohort

had higher rates of cardiovascular and musculoskeletal

morbidity. Smoking and obesity were also more prevalent

in the paracetamol group (Table 1).

Regarding evidence of channeling, approximately 13%

of patients who received a prescription for any paracetamol

had a prior condition of GI bleed, MI, renal disease and/or

stroke in the 2 years prior to the prescription (Table 2). In

those patients prescribed ibuprofen, approximately 6% had

a prior condition of GI bleed, MI, renal disease and/or

stroke in the 2 years prior to the prescription. The ORs

comparing prior conditions in those prescribed any parac-

etamol versus ibuprofen were all significantly greater than

unity for all of the conditions, both in the unadjusted

models and the models adjusted for sex and age (Table 2).

For those patients prescribed any paracetamol, the odds of
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prior MI were approximately 2.6 times the odds of prior MI

in those prescribed ibuprofen, after adjusting for sex and

age (adjusted OR 2.6, 95% confidence interval [CI]

2.3–3.0). Similarly, the OR of a GI bleed prior to parac-

etamol prescription versus an ibuprofen prescription was

1.4 (95% CI 1.3–1.5), OR of renal disease was 1.8 (95% CI

1.7–1.9), and OR of a stroke was 2.1 (95% CI 1.9–2.3). For

MI, renal disease and stroke, the adjustment for sex and age

moved the OR toward unity, reflecting the preferential

prescription of paracetamol in patients over 70 years of age

(Table 1). If the assumption of clinical equipoise were

valid, the ORs for each of these conditions would not differ

from unity.

Table 2 also presents the corresponding information for

paracetamol only versus ibuprofen only, omitting those

patients who were prescribed both ibuprofen and

paracetamol on their index date. The impact of excluding

those with both was small but consistent. Both the crude

and age- and sex-adjusted ORs were higher without the

concomitant group than including it with those receiving

paracetamol.

3.1 Propensity Score Models

We developed two propensity score models to assess the

differences between using the covariates described in prior

literature (the ‘publication covariates’) versus the full set of

data covariates available. The area under the receiver

operating characteristics curve (AUC) for the propensity

scores based on ‘publication covariates’ was 0.71, while

the AUC for the full set of data covariates available was

0.85. The full set of covariates provided better discrimi-

nation between patients receiving paracetamol and those

receiving ibuprofen compared with the publication

covariates. The larger AUC found using the full set of

covariates is an indication that discrimination between

subjects receiving prescriptions for paracetamol and

ibuprofen is achievable and is further evidence that the two

treatments do not follow the assumption of clinical

equipoise.

The distributions of the preference scores for paracetamol

and ibuprofen utilizing the publication covariates are shown

in Fig. 2a. The overlap in the preference scores in the 0.3–0.7

range, as described by Walker et al. [12], was[50% for the

publication covariates (Table 3). Using this set of covariates

would fulfill the criteria for necessary overlap to assume

clinical equipoise for the two treatment options. However,

when utilizing the full set of covariates (Fig. 2b), the degree

of overlap was below 50% and is evidence against the

assumption of clinical equipoise for paracetamol and

ibuprofen prescriptions. While matching by preference scores

using the published covariates reduced the number of eligible

matches by approximately 32% (See Supplement for sample

attrition table), matching on the full set of available covariates

reduced the eligible matches by over 50%.

The change in covariate balance for the publication

covariates between paracetamol and ibuprofen following

propensity score matching using publication covariates for

a representative negative outcome—melanocytic nevus of

skin—is shown in Fig. 3a. Each point represents the (ab-

solute value) SMD for a single covariate prior to matching

(on the horizontal axis) and after matching (on the vertical

axis). Prior to matching, the SMDs ranged from -0.15 to

0.40 in the publication covariates, indicating appreciable

differences in the distributions of these covariates between

the paracetamol and ibuprofen populations. Following

matching, among the matched cohorts, the SMDs ranged

from -0.02 to 0.01, indicating more homogenous popula-

tions (Fig. 3a).

Fig. 1 Flow of patients from Clinical Practice Research Datalink to

analytic study population. CPRD Clinical Practice Research Datalink,

yo years old, combo combination
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The purpose of propensity score matching is to achieve

a balanced sample on all sample characteristics. Figure 3b

shows the covariate balance before and after matching on

the publication variables propensity score model, but

showing the covariate balance among the full set of

available covariates. While all SMDs for the publication

covariates were reduced to below 2% after matching by

the publication covariates, there were a large number

(nearly 200) of other covariates for which the SMD

between paracetamol and ibuprofen subjects remained

[0.10 after matching. This indicates that there were still

many covariates that were unbalanced between the two

treatment groups, and brings into question the assumption

of clinical equipoise for the treatments. Figure 3c, in

which subjects were matched by propensity scores devel-

oped from the full set of covariates available, demonstrates

that the full set of covariates achieved adequate balance

after matching.

3.2 Residual Confounding in Negative Controls

As shown in Table 4, in our examination of residual bias

in the six models for our negative controls, we found

that only those models matched on all available covari-

ates (models 5 and 6) removed confounding bias suffi-

ciently to ensure that any significant finding would likely

be due to chance as opposed to being due to residual

bias. All models without matching performed poorly,

Table 2 Unadjusted and adjusted OR of prior conditions for patients prescribed any paracetamol versus ibuprofen alone and paracetamol only

versus ibuprofen only (N = 144,337)

Condition Any paracetamola [% (N)] Ibuprofen [% (N)] Unadjusted OR (95% CI) Adjusted ORb (95% CI)

GI bleed 3.1 (2372) 2.2 (1480) 1.5 (1.4–1.6) 1.4 (1.3–1.5)

MI 1.6 (1175) 0.4 (288) 3.7 (3.3–4.2) 2.6 (2.3–3.0)

Renal disease 7.4 (5643) 2.8 (1887) 2.8 (2.7–3.0) 1.8 (1.7–1.9)

Stroke 2.5 (1874) 0.7 (494) 3.5 (3.2–3.8) 2.1 (1.9–2.3)

Paracetamol only Ibuprofen only Unadjusted OR (95% CI) Adjusted ORb (95% CI)

GI bleed 3.3 (2201) 2.2 (1480) 1.5 (1.4–1.6) 1.5 (1.4–1.6)

MI 1.7 (1149) 0.4 (288) 4.1 (3.6–4.7) 2.9 (2.5–3.3)

Renal disease 8.0 (5382) 2.8 (1887) 3.1 (2.9–3.2) 1.9 (1.8–2.1)

Stroke 2.7 (1791) 0.7 (494) 3.8 (3.4–4.2) 2.3 (2.0–2.5)

OR odds ratio, CI confidence interval, GI gastrointestinal, MI myocardial infarction
a Any paracetamol includes patients who received both paracetamol and ibuprofen on the index date
b Adjusted by age group and sex

Fig. 2 Distribution of propensity scores from a publication covariates and b the full set of covariates for any paracetamol compared with

ibuprofen
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presumably due to the lack of balance in the clinical

characteristics of the sample. In model 5, where we

performed univariable logistic regression (with exposure

as the single variable) after 1:1 matching by a propensity

score developed using all available covariates, no risk

ratios in the 31 negative controls differed significantly

from unity. By comparison, in model 4, where we per-

formed univariate logistic regression after 1:1 matching

on propensity scores developed using the publication

covariates, we found seven risk ratios out of 31 negative

controls (approximately 23%) that differed significantly

from unity. We also found no risk ratios different from

unity in model 6, where we matched by propensity score

using all available covariates and used a logistic

regression model that also adjusted for all available

covariates.

It should be noted that in model 6, using both propensity

score matching and a fully adjusted outcome model, we

were unable to model 10 of the negative controls. This was

due to the methodological constraint that to fit the full

outcome model, we needed to perform regularization. To

perform regularization, we needed to know the appropriate

hyperparameter (variance of the regularization prior) to

use, and for that we used cross-validation. We required a

minimum amount of data for the cross-validation (100

‘informative strata’, which is basically the same as the

number of outcome events in the two treatment cohorts

taken together), and ten of the negative controls did not

meet this criterion.

4 Discussion

This is the first study that we know of to examine evidence

directly and quantitatively for channeling in the use of

paracetamol and ibuprofen, two widely used analgesics.

The purpose of this study was to answer two questions.

First, was there evidence of channeling in the prescription

of paracetamol versus ibuprofen, and, if so, could we

adequately adjust for channeling in studies examining

outcomes after exposure?

We found that patients with a prescription of single-

ingredient paracetamol were more likely to have a prior

history of GI bleeding, MI, renal disease, and stroke

compared with ibuprofen after controlling for age and sex.

Given this evidence of preferential prescribing, we

explored whether various strategies for confounding

adjustment in observational studies were adequate to allow

for unbiased assessments of outcomes from these expo-

sures. We used propensity score adjustment as it is

Table 3 Propensity score models distribution between 0.3 and 0.7

Analgesic All scores 0.3 B preference B 0.7

N N %

Publication variables model

Any paracetamol 75,919 51,249 67.5

Ibuprofen alone 68,418 49,728 72.7

Large-scale model

Any paracetamol 75,919 30,219 39.8

Ibuprofen alone 68,418 26,064 38.1

Fig. 3 Absolute value standardized difference of the mean of the

a publication covariates and b full set of data covariates available

prior to and after matching on publication variable propensity scores,

and c full set of data covariates available prior to matching and after

matching on propensity scores using the full set of data covariates

available for melanocytic nevus of skin
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designed to control for systematic differences in patient

populations between those receiving a treatment and a

comparator.

When we constructed a propensity score model using

baseline characteristics previously used in prior published

studies, we found that propensity score matching did

adequately balance these covariates but failed to balance

other observable covariates. This suggests that current

publications may still be subject to channeling bias that

could influence reported effect estimates. Moreover,

while the publication-inspired propensity score distribu-

tions may suggest that the two populations may be suf-

ficiently near clinical equipoise, we showed that a more

complete confounding adjustment would result in much

greater discrimination between the two populations that

calls clinical equipoise into question. When we applied a

large-scale regularized model to estimate the propensity

score using all available covariates, we observed that

matching achieved consistently greater balance across all

covariates, inclusive of the baseline characteristics used

in prior publications. These findings suggest that the

magnitude and complexity of channeling bias is sub-

stantial, and while it may not be adequately mitigated

with traditional approaches, could be better managed

through more complete multivariable models combined

with matching.

Negative control outcomes were selected a priori,

meeting criteria for having no known association with

exposure to paracetamol or ibuprofen. The distribution of

relative risk estimates from negative control outcomes

provides a measure of the extent of residual bias after

controlling for possible confounders since we know these

should produce relative risk estimates near unity. We

selected 31 negative control outcomes to empirically

evaluate the expectation that (under the null hypothesis),

5% of the relative risks would be statistically significantly

different from 1.0 (at a = 0.05), by chance alone. When

we only used publication variables in the propensity score

model, we observed there was substantial residual bias,

resulting in the model failing to have nominal operating

characteristics; namely, 23% (7 of 31) of the negative

control outcomes yielded significant findings, with five of

the null outcomes showing significant decreased risk

associated with paracetamol, and two outcomes showing

an increased risk. For many of the negative controls,

paracetamol looks numerically protective, indicating that

we cannot make assumptions about direction of the bias

when we do not adjust properly. These results call into

question whether statistical significance under this

adjustment strategy can be confidently inferred without

calibration [16]. In contrast, when we fit the propensity

score model using a larger set of covariates, all significant

associations observed using literature covariates wereT
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attenuated; no negative control outcomes produced sig-

nificant findings after full propensity score matching. The

negative control results corroborate the covariate balance

findings, which showed that modeling limited to publi-

cation covariates left residual bias, but more complete

adjustment with matching appears to be effective at mit-

igating the threats of channeling, although at the cost of

reducing the degree of overlap in propensity score dis-

tributions between the cohorts.

This assessment of channeling bias has important

limitations that require consideration. The bias evalua-

tion using negative controls requires an exchangeability

assumption that may not hold for future unknown out-

comes of interest. Specifically, we assume the magni-

tude (but not specific source) of residual bias for the

unknown outcome could have been sampled from the

distribution of residual bias that was observed for the

negative controls. As such, it is possible there is addi-

tional residual bias that we did not adequately observe

based on the measured covariate balance and empirical

null distribution diagnostics. This analysis was restric-

ted to prescription use of paracetamol and ibuprofen,

and it is unknown whether these results would gener-

alize to non-prescription exposures. There are several

reasons for a GP to prescribe these medications in the

CPRD, including record keeping and giving the patient

access to the medication at a lower cost because the

patient qualifies for free filling of prescriptions. In

addition, those using these medications chronically may

need larger quantities than typically available over the

counter. Thus, it is likely that, by relying on prescrip-

tions, we skewed our study population toward elderly

subjects with chronic conditions who may also be at the

low end of the economic spectrum. While being selec-

ted into the study population limits the generalizability

of the results, it does not limit their validity, i.e. we

expect that the selection mechanism should be the same

for both drug cohorts.

5 Conclusions

While it is widely understood that there are substantial

differences in the baseline characteristics of patients

treated with acetaminophen versus ibuprofen, the adjust-

ment for these differences must be confirmed with com-

parisons before and after matching or with appropriate

diagnostics if other methods are used. We were not able

to adequately remove selection bias using a selected set of

covariates for propensity score adjustment. Large-scale

propensity score matching offers a novel approach that

should be considered when attempting to mitigate the risk

of channeling bias.
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