Skip to main content
. Author manuscript; available in PMC: 2017 Nov 16.
Published in final edited form as: Geochim Cosmochim Acta. 2013 Dec 7;127:326–347. doi: 10.1016/j.gca.2013.11.030

Table 4.

Krypton in aluminum solar wind collectors released in five different laser ablation experiments. Isotopic ratios 83Kr/84Kr, 82Kr/84Kr and 80Kr/84Kr were measured twice using different ion collectors. Comparison of these two measurements served as an internal test of multiplier performance. A small fraction of analyses rejected based on this test are not shown here. Blanks represent weighted average of several analyses. Atmospheric values are from Basford et al., 1973.

Sample, extraction method Area (cm2) 84Kr, 106 at. 86Kr/84Kr 83Kr/84Kr 82Kr/84Kr 80Kr/84Kr 78Kr/84Kr 132Xe/84Kr Fraction of SW 84Kr SW 84Kr retrieved 107 at/cm2
A-π/8 (a) Blank     0.18 0.3067 (95) 0.2134(120) 0.2022 (100) 0.0508 (36) 0.00605 (530) 0.0435
0.2014(88) 0.2065 (80) 0.0494 (44) 0.0438
IR-laser ablation of Al-film on AloS. The beam hits the Al surface at 22.5° angle from normal incident. Y-stage is mounted on X-stage at 22.5° 0.81   11.53 0.3026 (17) 0.2018 (14) 0.2083 (13) 0.0404 (6) 0.00638 (17) 0.0953 0.85 1.21
0.2036 (13) 0.2042 (11) 0.0410 (7) 0.0966
0.72   11.16 0.3039 (11) 0.2032 (11) 0.2022 (10) 0.0403 (4) 0.00632 (19) 0.0899 0.77 1.19
0.2027 (10) 0.2037 (9) 0.0391 (5) 0.0894
0.38     7.26 0.3002 (16) 0.2019 (13) 0.2029 (14) 0.0405 (6) 0.00585 (28) 0.0827 0.65 1.25
0.2032 (13) 0.2017 (12) 0.0411 (6) 0.0822
0.052     0.84 0.3030 (40) 0.2026 (33) 0.2087 (30) 0.0432 (13) 0.00665 (55) 0.0863 0.71 1.15
0.2041 (32) 0.2065 (30) 0.0386 (14) 0.0856
A-π/8 (b) 0.96   11.82 0.3004 (19) 0.2046 (19) 0.2053 (16) 0.0393 (6) 0.00652 (22) 0.1019 0.96 1.18
0.2041 (12) 0.2042 (11) 0.0410 (6) 0.1026
Same as A-π/8 (a) but made 5 months later under slightly different conditions 3.82   50.23 0.3010 (8) 0.2042 (8) 0.2072 (8) 0.0418 (4) 0.00655 (10) 0.1008 0.94 1.23
0.2040 (6) 0.2052 (6) 0.0413 (3) 0.1012
0.84   14.18 0.3022 (13) 0.2038 (15) 0.2045 (17) 0.0419 (6) 0.00642 (20) 0.0868 0.72 1.21
0.2044 (12) 0.2044 (12) 0.0408 (5) 0.0884
0.32     4.02 0.2999 (23) 0.2014 (18) 0.2068 (17) 0.0415 (7) 0.00652 (35) 0.0982 0.90 1.13
0.2032 (16) 0.2032 (13) 0.0399 (7) 0.0973
Blank     0.19 0.2964 (120) 0.1927 (81) 0.2177 (110) 0.0449 (35) 0.00833 (170) 0.0388
A-π/4 0.2026 (72) 0.1998 (75) 0.0454 (41) 0.0386
3.75 231.4 0.3049 (9) 0.2013 (10) 0.2033 (10) 0.0402 (4) 0.00627 (12) 0.0517 0.17 1.04
0.2025 (11) 0.2029 (9) 0.0396 (3) 0.0520
UV-laser ablation. The laser beam is reflected by 45° dichroic mirror (external to the cell) and hits the Al surface at 45° angle X- and Y stages are moving in the same horizontal plane 0.44     5.63 0.3007 (27) 0.2049 (18) 0.2072 (20) 0.0391 (7) 0.00618 (28) 0.0888 0.75 0.96
0.2032 (20) 0.2065 (17) 0.0416 (8) 0.0878
0.78   12.13 0.3010 (32) 0.2017 (22) 0.2090 (25) 0.0419 (13) 0.00570 (35) 0.0867 0.72 1.12
0.2030 (23) 0.2052 (21) 0.0423 (10) 0.0867
0.15     2.57 0.2987 (35) 0.2018 (25) 0.2081 (29) 0.0397 (11) 0.00621 (44) 0.0797 0.61 1.04
0.2015 (26) 0.2087 (25) 0.0417 (11) 0.0791
0.24     2.97 0.3011 (38) 0.2017 (29) 0.2014 (28) 0.0429 (12) 0.00611 (51) 0.0933 0.82 1.02
0.2004 (28) 0.2029 (25) 0.0428 (13) 0.0943
0.72   10.24 0.3020 (24) 0.2019 (14) 0.2034 (17) 0.0408 (6) 0.00619 (24) 0.0850 0.69 0.98
0.2023 (18) 0.2023 (15) 0.0403 (5) 0.0854
A-π Blank     0.14 0.2913 (140) 0.1916 (95) 0.2039 (110) 0.0420 (48) 0.00535 (580) 0.0554
0.1856 (100) 0.1929 (100) 0.0387 (50) 0.0538
AloS ablated upside down. IR-beam first hits the transparent sapphire substrate and melts Al from the side of the Al-sapphire interface keeping the viewport free of sputtered Al 1.48   20.61 0.3003 (19) 0.2004 (16) 0.2069 (18) 0.0402 (7) 0.00681 (35) 0.0940 0.83 1.16
0.2003 (16) 0.2056 (16) 0.0411 (7) 0.0958
0.20     3.37 0.3038 (50) 0.1993 (49) 0.2043 (42) 0.0385 (22) 0.00665 (63) 0.0836 0.67 1.13
0.2006 (47) 0.2023 (49) 0.0407 (20) 0.0777
0.84   13.50 0.3017 (25) 0.2048 (22) 0.2062 (23) 0.0397 (10) 0.00601 (44) 0.0875 0.73 1.17
0.2030 (24) 0.2054 (19) 0.0402 (13) 0.0893
0.32     3.55 0.3019 (38) 0.2016 (31) 0.2034 (33) 0.0422 (14) 0.00555(130) 0.0985 0.90 1.00
0.2018 (35) 0.2055 (28) 0.0409 (13) 0.1012
0.24     3.38 0.3022 (62) 0.2019 (48) 0.2054 (58) 0.0413 (19) 0.00567 (83) 0.0946 0.84 1.19
0.2037 (51) 0.2050 (53) 0.0401 (19) 0.0961
0.80   10.38 0.3047 (16) 0.2024 (12) 0.2052 (12) 0.0440 (5) 0.00640 (20) 0.0910 0.78 1.02
0.2036 (13) 0.2074 (12) 0.0409 (5) 0.0912
P-π/4 Blank     0.38 0.2997(60) 0.1979 (50) 0.2098 (72) 0.0495 (24) 0.00677 (68) 0.0667
0.2035 (52) 0.2063 (48) 0.0456 (25) 0.0685
PAC ablated by the UV-beam tuned by external 45° mirror. Same as A-π/4 but different collector material: PAC instead of AloS 8.40   98.41 0.3030 (6) 0.2031 (4) 0.2044 (4) 0.0409 (4) 0.00634 (18) 0.0901 0.77 0.90
0.2021 (4) 0.2039 (4) 0.0421 (4) 0.0905
2.04   26.73 0.3013 (9) 0.2042 (7) 0.2049 (8) 0.0411 (3) 0.00631 (30) 0.0839 0.67 0.88
0.2020 (7) 0.2048 (8) 0.0408 (3) 0.0848
0.86   13.84 0.3007 (9) 0.2030 (7) 0.2038 (7) 0.0412 (3) 0.00611 (30) 0.0760 0.55 0.88
0.2033 (7) 0.2059 (7) 0.0417 (3) 0.0743
0.42     8.75 0.3037 (17) 0.2028 (13) 0.2039 (11) 0.0409 (6) 0.00638 (55) 0.0694 0.45 0.93
0.2018 (13) 0.2029 (11) 0.0419 (6) 0.0702
Atmospheric Kr 0.3052 0.2014 0.2022 0.0396 0.00609 0.0415

Notes: Numbers in parenthesis are 1σ. Errors for gas concentrations and elemental ratios are 5–7% based on the scatter observed in series of air standards measured prior and after each experiment. 132Xe/84Kr = 0.041 was used to resolve SW from trapped Kr.