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Abstract

In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, 

is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate 

that proper boundary conditions are not only necessary to capture correct wave propagations in a 

flow field, but also its interacted solid behavior and responses. While most research on the topics 

of the non-reflective boundary conditions are focused on fluids, little effort has been done in a 

fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined 

in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in 

a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The 

performance of the PML boundary condition is evaluated and compared to reference solutions 

with a variety of benchmark test cases including known and expected solutions of aeroacoustic 

wave propagation as well as vortex shedding and advection. The application of the PML in 

numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy 

and necessity of such boundary treatment in order to capture the correct solid deformation and 

flow field without the requirement of a significantly large computational domain.

1. Introduction

Numerical simulations of wave propagating in fluids often require appropriate boundary 

treatments. Appropriate treatment of the numerical boundary is crucial to accurately 

simulate flow-related problems in partially or fully unbounded fields without requiring 

excessive representation of the large field. An untreated or improper numerical boundary 

condition often cause spurious reflections from outgoing waves, which can severely 

contaminate the physical flow field. Problems involving interactions between propagating 

waves and deformable solids may see further impact of an untreated numerical boundary.
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There has been extensive development on techniques proposed to properly address the 

aforementioned boundary conditions [1, 2, 3], such as a so-called do-nothing boundary 

condition [4], infinite element method [5, 6], Dirichlet-to-Neumann radiation condition [7, 

8], and various non-reflective boundary conditions (NRBCs) [2, 9, 10, 11]. The last 

category, NRBCs, is frequently used and implemented with the benefit of retaining 

computational efficiency of numerical methods [12]. Some earlier efforts have been 

committed to truncate unbounded fields with NRBCs based on method of characteristics 

[13, 14] and Navier-Stokes characteristic outflow boundary conditions [15, 16]. However, 

the intended “non-reflectiveness” has not been ideal due to the non-optimal absorption of 

waves with oblique angles [17]. Other attempt for treating in particular large Reynolds 

number flows has also been proposed [18], however it was strictly for incompressible flows, 

more developments are necessary to study aeroelastic wave propagations.

A relatively novel and more robust NRBC approach is the Perfectly Matched Layer (PML) 

technique, initially proposed and formulated by Bérenger to solve unbounded 

electromagnetic problems with finite-difference time-domain method solution of Maxwell’s 

equations [19, 20, 21]. It has since been developed and evolved for applications of various 

other differential equations including Euler and Navier-Stokes equations [2, 22, 23]. One 

major advantage of PML comparing to many other NRBC methods is that the absorption is 

effective for multi-dimensional waves and flows of all incidence angles, and theoretically of 

all frequencies [12, 17, 19]. The PML technique can be plainly interpreted either as a 

complex change of variables in the frequency domain [22], or as a coordinate transformation 

that maps the original real coordinate onto a complex domain, where the physical domain is 

separated from the imaginary component that represents the PML. Within the PML domain, 

the continuing wave is “forced” to decay exponentially [24, 25, 26].

While much attention has been focused on the development of the PML technique and its 

application on Navier-Stokes equations [1, 2, 17, 22, 23], few applications are related to 

fluid-structure interaction problems. Studies that focused on fluid-structure interactions with 

non-reflective boundary condition mostly involve simplified models for either the structure 

or the flow, such as coupling the blood flow to a simplified 1D flow model in hopes to 

reduce spurious reflections with relatively generous tolerance for its effectiveness [27, 28, 

29].

The objective of this work is to investigate the effectiveness of PML in the environment of a 

high-fidelity fully-coupled fluid-structure interactions framework. The goal is to 

demonstrate and assess that an improper boundary treatment, e.g. untreated boundary, may 

not only affect the flow field and any wave propagation in a computational domain, but also 

greatly impact the solid motion, which then further impact the flow and propagation of the 

wave as time progresses. The error may ‘snowball’ as a result of the untreated boundary, 

which ultimately cause inaccuracy and divergence of the coupled solution. The fluid-

structure interaction framework used in this work is the Immersed Finite Element Method 

(IFEM) [30, 31], which we have developed in the past decades. It is a technique proven to be 

accurate and efficient in simulating fully-coupled fluid-structure interactions. The fully-

coupled scheme which is often referred to as strong coupling is essential in this context so 

that the correct propagation of fluid waves could have an instantaneous response in its 
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interacted solid. On the contrary, a typical one-way coupling technique often fails to capture 

such feedback, which makes it challenging to distinguish the errors induced by the wave 

propagation due the boundary treatment and the errors induced from a delayed coupled 

response. Moreover, the immersed framework involves independent fluid and solid solvers, 

where the solid is entirely immersed in a fluid domain. Therefore, including PML in the 

fluid solver does not require any change in the coupling scheme. Through a series of 

numerical examples, this study shows the feasibility and effectiveness of PML in both pure 

fluid and fluid-structure interaction settings.

The paper is organized as follows: we first review the basic concept of the PML within the 

framework of the immersed finite element method in Section 2. As mentioned earlier, since 

the PML is to control the fluid domain boundary rather than the solid, in the immersed 

framework the PML implementation is only applied to the fluid equations. In order to also 

capturing aeroacoustic waves, the fluid is modeled as a slightly-compressible isentropic 

flow, mostly used to describe aeroacoustic waves with low Mach numbers. In Section 3, 

numerical studies of fluid dynamics and fluid-structure interaction test cases are presented to 

illustrate the effectiveness of the PML. Finally, concluding remarks are presented in Section 

4.

2. Formulations

2.1. Perfectly Matched Layer

The Perfectly Matched Layer (PML) technique is essentially an absorbing boundary 

condition to sponge up any outgoing waves. The process is to make the waves reaching the 

numerical domain boundary so small that any resultant spurious reflections would be 

proportionally insignificant. As a result, the PML allows the truncation of physical domains 

without the implication of solutions being contaminated by spurious reflections at the 

boundaries [32, 33, 22].

A straightforward way to understand the PML methodology is to think of it as a specially 

designed complex domain. The complex domain z can be designed so that the wave 

magnitude at the intended numerical domain region is significantly attenuated. Generally for 

a sinusoidal wave with a wave number k and an angular frequency ω, we can express it 

analytically as:

(1)

where A is the amplitude of the wave, and t denotes time. The wave w(x, t) is a right-

traveling wave, assuming that both k and ω are positive, and has a propagation speed of c = 

ω/k.

The same wave can also be considered in a complex domain z = x + if(x), rather than on the 

real domain x, in which x = Re(z) and f(x) = Im(z). Thus the wave equation on the complex 

domain z becomes:
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(2)

The induced term e−kf(x) is considered as an attenuation factor of the original wave. In the 

physical domain, f(x) = 0 is set to yield e−kf(x) = 1, which results in the original real domain 

unaltered and brings no attenuation effects in the propagating wave. In contrast, we set the 

imaginary part of f(x), or the PML region, to be a positive value so that the attenuation factor 

e−kf(x) ≪ 1. Consequently, the wave amplitude can be significantly reduced in the PML 

region where Ae−kf(x) ≪ A, given that f(x) is sufficiently large. The boundary condition 

applied on the PML boundary is thus trivial as the amplitudes of spurious reflections are 

significantly small.

When using PML on partial differential equations describing physical phenomena, such as 

the Navier-Stokes equations for fluid dynamics and Maxwell’s equations for 

electromagnetism, the spatial derivatives of the aforementioned complex coordinate 

transformation are also required, where it is necessary to replace ∂xi with 

 to describe physics on the artificially designed complex domain zi. It is 

worth mentioning that linearity is one of the underlying assumptions of the perfect matching 

theory, which makes the PML for the nonlinear Navier-Stokes equations not formally 

perfectly matched as discussed in Ref.[22].

An illustration is shown in Figure 1(a) where a 1-D complex domain z includes a physical 

(real) domain x ∈ [0, 5) and a PML (imaginary) region x ∈ [5, 10]. The corresponding f(x) = 

Im(z) is 0 in the physical domain and is set to increase linearly from f(5) = 0 to f(10) = 1 

within the PML region. The red dashed line demarcates the physical domain on its left from 

the PML domain on its right. Figure 1(b) shows that a sinusoidal wave with a wave number 

k = 2π retains its waveform in the physical domain, yet is increasingly attenuated in the 

PML domain as the imaginary part f(x) = Im(z) increases. The corresponding attenuation 

factor at the right boundary x = 10 is e−kf(10) ≈ 0.0019, which reduces the wave magnitude 

by more than 500 times at the end of PML region. The resulting wave at the end of the entire 

computational domain is so small by the time it travels through the PML that its reflection is 

considered negligible.

As shown in Equation (2), the attenuation factor e−kf(x) has a dependency on the wave 

number k and therefore on the wave frequency ω as well. As a result, it is not ideal for 

waves of lower frequencies (smaller k) as absorption can be significantly less effective. 

Hence, to eliminate the attenuation factor’s dependency on the wave frequency, a separation 

of variables is defined such that:

(3)
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where σi(xi) is the absorption coefficient in each spatial direction xi, which remains 0 in the 

physical domain, but gradually increases in the PML domain. Therefore the following 

transformations can be applied to the partial differential equations:

(4)

The attenuation factor  at the outer edge of the PML domain  can be 

evaluated by integrating Equation (3) over the PML domain, whose thickness is DPML, from 

 to :

(5)

where c is the phase velocity, which makes the attenuation factor independent of the 

frequency. This is particularly useful for waves with little or no dispersion.

2.2. Perfectly Matched Layer for Slightly Compressible Navier-Stokes Equations

The three-dimensional compressible Navier-Stokes equations, continuity and momentum 

equations, can be written in the conserved form using Cartesian coordinate system [22, 2], 

as:

(6)

in spatial and temporal domains Ω × [0, T ], with initial condition u(x, y, z, 0) = u0(x, y, z) 

and appropriate boundary conditions on spatial domain boundary ∂Ω.

In Equation (6), u is the conserved vector variable,

(7a)

where ρ is the fluid density and ui is the fluid velocity, i = 1, 2, 3, representing the x, y, and z 
directions, respectively.

F1, F2, F3 are the flux vectors in the x, y, and z directions,

(7b)
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where δij is the Kronecker delta, p is the fluid pressure, and the viscous stress term τ with 

constant viscosity μ for compressible fluid is calculated as:

(7c)

s is the vector of external sources:

(7d)

where f1, f2, and f3 are the external or body forces per volume in the x, y, and z directions, 

respectively. This source is not necessarily the source of the wave form or the source of 

disturbance in the field. In the context of fluid-structure interactions, the external forces 

acting on the fluid would be coming from its interaction with the solid, termed as the fluid-

structure interaction force, FFSI. This force would be nonzero in the vicinity of where the 

solid is, while it is zero everywhere else. The details of this term will be explained more 

later.

The primitive variables in the above equations are density, velocities, and pressure {ρ, u1, u2, 
u3, p}. For most common aeroacoustic situations [34, 35, 36], the flow undergoes an 

isentropic process which is adiabatic and reversible, where energy equation is not required. 

However, to maintain equal numbers of equations and state variables for the system, an 

equation of state linking density and pressure is necessary. As the speed of the flow 

approximates the speed of sound, compressibility effects can be expressed as a function of 

the variation in density:

(8a)

where the parameters γ and R are the heat capacity ratio and ideal gas constant, and 

 are the pressure, density, and temperature in the equilibrium state under the 

standard atmospheric conditions, and satisfy the ideal gas law:

(8b)

Since aeroacoustic waves are examined in this study, air properties are used where 

, , R = 287.058 J·kg−1, and .

With the inclusion of the state equation (8a), the density variable ρ is represented as a 

function of pressure, thus the primitive variables are reduced to {u1, u2, u3, p}.

To facilitate derivations of the PML for Navier-Stokes equations, Hu et al. [22] defined a 

vector G(u) to contain the velocity components as:
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(9a)

and its spatial derivatives e1, e2, and e3 are defined as:

(9b)

so that the flux vectors F1, F2, F3 in Equation (6) can be expressed as explicit functions of u, 

e1, e2, and e3, such that:

(9c)

To apply the design of the PML complex domain efficiently to Navier-Stokes equations, the 

solution u of Equation (6) can be considered as a time-dependent fluctuation ũ around a 

time-invariant mean state flow ū, i.e. ∂ū/∂t = 0. Meanwhile, since the source s which is also 

the fluid-structure interaction force FFSI in the context of PML is only non-zero where the 

fluid and solid interact, they are not partitioned in the PML space. Therefore, there is no 

solution perturbation of the force. This partition, u = ũ + ū, and correspondingly e1 = ẽ1 + 

ē1, e2 = ẽ2 + ē2, and e3 = ẽ3 + ē3, are advantageous as it can be inefficient to absorb the total 

variable u and reduce it to small values inside the PML region. Although the exact mean 

state is often unknown a priori, the formulation only requires a pseudo-mean flow that 

satisfies a time-invariant version of Equation (9c) [22]:

(10)

where , , and  are shorthands for brevity:

The governing equations for the fluctuation û can then be obtained by subtracting Equation 

(10) from Equation (6):

(11)

A three-step derivation of PML formulation, starting from Equation (11), is proposed in 

[22], with the assumption that the aforementioned pseudo mean flow is in the x-direction:
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1. Perform a space-time transformation of the form . The transformation is 

necessary to yield a further time-Fourier transform in the next step. It results in 

the following replacement of partial derivatives:

The parameter β is proposed in [37] to be dependent on the pseudo mean flow 

profile in the x-direction, which in general requires a study on the dispersion 

relation to determine its value; for the specific case where the pseudo mean flow 

has a constant density, it can be simply evaluated by an empirical formula [22] as 

, where Ūm is the spatial average velocity in the x-direction. 

In the case of a multi-dimensional or unknown directions of mean flow Ūm = 0.

2. Perform time-Fourier transformation so that the partial differential equations is in 

the frequency domain rather than the time domain performed in the last step. 

This transformation is designed to correct inconsistency in the phase and group 

velocities of the waves (ω/k and ∂ω/∂k respectively) [38, 39] and therefore 

maintaining linear stability of the PML equations [22]. Apply PML complex 

change of variables following Equation (4), which imposes the partial differential 

equation onto a complex domain and removes its dependency on the angular 

frequency ω as shown in Equation (5).

3. Transform from the frequency domain back to the spatial domain, which now 

includes the complex domain. This transformation can be realized in different 

approaches [33]. In order to keep the number of auxiliary variables small, a split 

approach [22] is taken in the derivation, yielding the following PML formulation:

(12a)

The modification based on the original continuity and momentum equations, 

Equation (6) is evident. The auxiliary variables {q1, q2, q3} that appear in the 

above equation can be interpreted as a separation of the fluctuation variable ũ, 

and solved with the following equations:

(12b)
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(12c)

(12d)

It is evident that ũ = q1 + q2 + q3 and Equations (12b–12d) add up to Equation 

(12a), therefore only 3 out of these 4 equations are linearly independent and need 

to be solved. In the physical domain, σx = σy = σz = 0 which reduces Equation 

(12a) to the original continuity and momentum equations.

Since the flux vectors F1, F2, F3 are functions of ũ and velocity gradients {e1, e2, 

e3}, which upon similar transformation become:

(12e)

(12f)

(12g)

It then introduces another set of auxiliary variables {r1, r2, r3}:

(12h)

(12i)

(12j)
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Similarly, in the physical domain, {e1, e2, e3} are defined the same as in 

Equation (9b). In the PML region, the auxiliary variables {r1, r2, r3} in 

Equations (12h–12j) need to be solved simultaneously with {e1, e2, e3} 

computed in Equations (12e–12g). Equations (12) is the system of equations that 

apply to both the physical domain as well as the PML region. The auxiliary 

variables {q1, q2, q3} and {r1, r2, r3} only need to be solved where the domain 

is strictly complex, e.g., the pair {q1, r1} only needs to be solved where σx > 0, 

and the pair {q2, r2} only needs to be solved where σy > 0.

2.3. Immersed Finite Element Method for Fluid-Structure Interactions

The Immersed Finite Element Method [30, 31, 40] is developed for coupled solutions of 

fluid and deformable structure interaction problems. In this method, a non-fitted meshing 

technique is adopted, where a Lagrangian solid mesh can move and deform independently 

on top of a background Eulerian fluid mesh that occupies the entire computational domain 

Ω. The existence and the effects of the solid structure is embodied in the fluid computational 

domain through an artificial fluid , which overlaps with the structure in space. The 

real fluid Ωf and the artificial fluid together represent the entire computational domain where 

. The major distinction between the class of immersed finite element methods and 

that of the Immersed Boundary (IB) methods is that it utilizes the concept of principle of 

virtual work to remove the artificial effects from the overlapping background fluid, thus 

providing an independent and accurate solid material description. Both fluid and solid 

solvers use finite element approach where non-uniform and unstructured meshes can be used 

to handle complex geometries. This method is also more advantageous than some other 

boundary-fitted fluid-structure interaction schemes such as the Arbitrary Lagrangian-

Eulerian method, as it does not require re-meshing or mesh-update for the fluid domain, thus 

saving computational resources by avoiding re-meshing and interpolating the values from 

the previous mesh to the current mesh. The Immersed Finite Element Method has been 

validated and verified in many studies [41, 42, 43, 44, 45, 46, 47]. The method has since 

then been improved to accommodate large density differences, e.g. air and solid [43] and 

large Reynolds number flows, which was then referred to as the modified Immersed Finite 

Element Method (mIFEM) [42]. The mIFEM addresses these problems by re-formulating 

the coupling scheme through adding an indicator function [43], and solving for the solid 

dynamics rather than imposing it to ensure that the solid would not deform unrealistically 

due to its interactions with high Reynolds number flows [42].

For completeness, the numerical procedure for the mIFEM algorithm is summarized here. 

For detailed derivation of the coupled equations, please refer to [30, 31, 47, 41, 48, 40, 42, 

43].

1. Solve solid governing equations to obtain the motion and deformation of the 

solid structure. The boundary conditions of the solid, either Dirichlet or 

Neumann boundary conditions are interpolated from the previous time step from 

the fluid velocity (displacement) and stress.

2. Evaluate the fluid-solid interaction force in the current solid configuration Ωs 

based on the solid and fluid stresses, fFSI,s = ∇ · σs − ∇ · σf.
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3. Distribute the fluid-solid interaction force to the background fluid using an 

interpolation function ϕ(x) such that . This 

interaction force contributes to the external sources described in Equation (7d). 

Assuming there are no other external forces such as body forces acting on the 

fluid, the interaction force represents the influence of the solid on the fluid.

4. Evaluate the respective density and viscosity values based on the ‘one fluid’ 

treatment and the indicator values.

5. Solve Navier-Stokes equations with transformed PML domain Eq. (12). The 

PML domain is an extension of the fluid domain and it does not overlap with the 

immersed solid domain. The numerical framework is set up so that the solid only 

sees the real physical domain and would not travel into the PML imaginary 

domain. With the source term s being the interaction force calculated in step 3), 

we obtain velocity and pressure fields for the entire fluid region and the PML 

region.

6. Interpolate the fluid velocity and stress onto the fluid-solid interface to be used in 

the next time step for force evaluation and solid boundary conditions, 

respectively.

In the presence of spurious reflections at fluid domain boundary ∂Ω, the interior of the flow 

field is contaminated as a result. In the case of fluid-structure interaction problems, this 

could also lead to unphysical deformation of the solid structure, which in return further 

alters the flow field. Therefore, it is of great importance to apply non-reflective boundary 

condition at open fluid domain boundaries to ensure physical and realistic solution of the 

flow field as well as the structure deformation.

3. Numerical Examples

The test cases are presented in a progressively complicated manner. First, a simple 

aeroacoustic planer wave propagation in a fully unbounded field is examined. This 

straightforward case is to verify the correct implementation of PML in the fluid solver. The 

study is then extended from a planar wave to oblique waves where waves contain oblique 

incidence angles. The results reveal its effectiveness in eliminating spurious reflections by 

absorbing outgoing waves in all directions. Second, a case of PML absorption of vortex 

shedding generated from flow past a cylinder is examined. This is a fluid-structure 

interaction problem, however the cylinder is a rigid body. The effectiveness of PML is 

shown comparing to an untreated boundary. Its correctness is compared to a long domain 

that mimics an unbounded domain. Lastly, a fluid-structure interaction with a deformable 

obstacle is performed. The embedded deformable body not only generates vortices as the 

previous case, but also has its own vibrational wave from the solid’s natural frequency. 

Without a properly treated boundary, adverse effects in the solid is brought about by the 

spurious reflections. The case demonstrates the effectiveness of PML in a fluid-structure 

interaction setting over long duration.

The fluid involved in all the demonstrated cases is air, with a density of 1.2922 × 10−3 g/cm3 

and a viscosity of 1.0 × 10−4 g/(cm · s). The air is considered as slightly compressible that 
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undergoes an isentropic process. Effectively, we are modeling aeroacoustic propagation 

scenarios.

In all the examples, the PML absorption coefficients in the x- and y-directions, σx and σy, 

are evaluated with the following quartic functions while they remain 0 in the physical 

domain:

(13a)

(13b)

where σmax is the maximum absorption coefficient value, DPML is the thickness of the PML 

region. It is set up so that both x- and y-directions have the same absorption effects. xPML 

and yPML are the corresponding x- and y-coordinates of the outer edges of PML, labeled in 

Figure 2(a). Therefore, the absorption coefficient value increases from 0 at the inner edge of 

PML to σmax at the numerical domain boundary (which the outer edge of PML coincides 

with) as a 4th-order monomial function over a distance of DPML. A parametric study on the 

thickness of the PML, DPML, for this fourth order function can be found in [49]. It was 

found that the PML thickness and spatial resolution dx have impact on the absorption. The 

parameters that would impact on the efficiency of the PML in Navier-Stokes equations are 

closely examined in [50]. However, because the sensitive of the parameters is function 

dependent, the exact effectiveness based on the PML parameter setting cannot be identified.

Figure 2 shows an example where PML is placed on the top and the right boundaries. The 

shaded region in Figure 2(a) is the physical domain. The blue dashed lines indicate the 

interface between physical and PML domains; Figure 2(b) shows the values of σx and σy in 

the third dimension, colored in red and blue respectively: σx increases from 0 at the vertical 

dashed line to σmax at the right boundary, and σy increases from 0 at the horizontal dashed 

line to σmax at the top boundary. The square region on the top right corner is therefore a mix 

of PML facing downward and leftward, thus both σx and σy are nonzero therein.

3.1. Aeroacoustic Wave Propagation

The first validation case is a planar aeroacoustic wave traveling through a semi-infinitely 

long straight uniform-cross-section channel. The planar wave is induced with the velocity on 

the left end prescribed with a Gaussian wave as:

(14)
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Free-slip boundary condition is applied on the top and bottom boundaries so that the wave 

remains planar. The result is simply a rightward traveling wave along the straight channel 

that is eventually absorbed in the PML region placed on the right end. The computational 

domain is 0.6 cm wide and 5 cm long with a uniform grid of Δx = Δy = 0.04 cm, wherein the 

PML is placed on the right end with 20 grid layers in thickness, i.e. 0.8 cm in this case. The 

maximum absorption coefficient is chosen as σmax = 2.4 × 106, using σx defined in Equation 

(13a), the attenuation factor is then calculated to be 9.3 × 10−6 based on Equation (5).

Figure 3 shows the velocity profile along the length of the channel at instants t = 0.000 125 

s, 0.000 150 s, 0.000 175 s, 0.000 200 s, 0.000 225 s, and 0.000 250 s. Both the numerical 

solution with PML (solid) and the theoretical solution (dashed) without PML are presented. 

As the wave travels rightward, it exits the physical domain and enters the PML region (right 

of the vertical dash-dot line). The theoretical solution shows the traveling wave as if the 

PML region does not exist. The numerical result reproduces the theoretical solution in the 

physical domain, while it decays substantially in the PML region as intended. The phase 

velocity is the acoustic speed c ≈ 33 138 cm/s under the standard conditions given in Section 

2. Therefore the peak of the incident wave would theoretically be attenuated to 5.57 × 10−5 

cm/s at the right end of the PML region, on the same order with the peak value of the 

reflected wave measured to be 9.22 × 10−5 cm/s in the physical domain.

Another numerical example is designed to showcase PML absorption of outgoing waves 

with oblique incidence angles. A planar wave travels rightward in a short section of a 

straight channel and radiates into an open field connected to the right end of the channel. 

The resultant radiated wave is roughly cylindrical, therefore has a range of incidence angles 

to the numerical domain boundaries. The planar wave is induced with a prescribed velocity 

on the left end of the channel with Equation (14). The computational setup is shown in 

Figure 4, where the shaded area in Figure 4(a) is where the PML is applied.

A total of 4 cases are examined for comparison. One case is without PML treatment, two of 

which are with different PML thicknesses, and the fourth case is to physically model the 

entire open field with a large computational domain. In the case without application of PML, 

a stress-free boundary condition is applied on the dash-dot-line edges (exit boundaries). 

Free-slip boundary condition is applied on the other edges, namely the side edges of the 

straight channel and the left edges of the open field. Two cases are with PML but have 

different thicknesses, 0.25 cm and 0.50 cm respectively. Finally, for the domain that 

simulates the open field, an open semi-unbounded farfield with a 11 cm-radius semi-circular 

region to the right of the channel is modeled. The setup is shown in Figure 4(b). The semi-

circular region is designed to have such a large radius so that the radiated wave would not be 

able to reach its boundary, i.e. its arc, where stress-free boundary condition is applied. With 

the aeroacoustic wave traveling at 33 138 cm/s, the wave would only have traveled less than 

10 cm from the source within the simulation timespan of 3 × 10−4 s; no spurious reflections 

would be caused by then.

For the first three cases using the geometry shown in Figure 4(a), the computational domain 

is discretized with a uniform mesh of Δx = Δy = 0.025 cm. For the far-field geometry, shown 
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in Figure 4(b), the semi-circular region is single-biasedly meshed with element size at about 

0.025 cm near the channel opening to 0.6 cm on the arc.

Figure 5 compares the pressure history at two arbitrary locations, points A and B indicated 

in Figure 4(a), near the exit of the straight duct: point A is 0.5 cm to the right of the channel 

opening and 0.75 cm above the centerline and point B is 0.75 cm to the right of the channel 

opening and 0.25 cm below the centerline. The results from the 4 setups are presented and 

compared: 0.5 cm-thick PML (solid), 0.25 cm-thick PML (dashed), no application of PML 

(dash-dot), and the reference solution with the semi-circular far-field region (circle markers). 

It is easily seen that the cases with PML that have either thickness of 0.25 cm or 0.5 cm, the 

solutions agree very well with the reference solution. In contrast, the solution with no PML 

nor large far-field region shows significant discrepancies, due to the contaminations of the 

pressure field caused by the spurious reflections at the exit boundaries.

To visually demonstrate the absorption effectiveness of the PML, Figure 6 shows the 

instantaneous contours of the pressure field at t = 0.000 10 s, 0.000 16 s, and 0.000 30 s. 

Figure 6(a) are the results with application of 0.50 cm-thick PML on the outflow boundaries, 

where the lines inside the computational domain are the interface between the physical 

domain and the PML. Figures 6(b) show the results without the application of PML. At t = 

0.000 10 s, the radiated wave just reaches the PML interface in Figure 6(a) while the 

wavefront has not reached the numerical domain boundary in Figure 6(b), therefore there is 

no artificial reflection that contaminates the pressure field. At this instance, the pressure 

contours remain identical in the cases with and without PML. At t = 0.000 16 s and 0.000 30 

s, PML continues absorbing waves in Figure 6(a) therefore leaving the pressure contours in 

the physical domain roughly cylindrical; however artificial reflections from the numerical 

domain boundaries severely distort the pressure contours without PML, shown in Figure 

6(b).

3.2. Flow Past a Fixed Cylinder

In this test case, the effectiveness of PML absorbing vortices shed by a viscous flow past a 

cylinder is studied. This is a typical example of a fluid-structure interaction case where the 

solid is rigid. The cylinder is 2 cm in diameter placed on the centerline, 7 cm downstream of 

the inlet on the left, in a uniform-cross-section channel, shown in Figure 7. A uniform 

incoming velocity of 50 cm/s is applied on the left boundary. A 10 cm-thick PML is placed 

on the outflow boundary to absorb the outgoing vortices, as shown in Figure 7(a). For 

comparison, a test case without PML is performed to provide the result with neither non-

reflective boundary conditions nor large farfield domain. Finally, to obtain a reference 

solution, a test case with large farfield region downstream of the cylinder is carried out, 

making the channel length 55 cm shown in Figure 7(b). Stress-free boundary condition is 

applied on the outflow boundary in the latter two cases, while free-slip boundary condition 

is applied on the side edges in all test cases. The rationale behind this test case is that the 

effects brought about by spurious reflections from the outflow boundary would be more 

pronounced if the computational boundary is too close to the obstacle. On the contrary, the 

effects would be negligible if the boundary is placed sufficiently far away at the cost of 

computational resources due to a much larger computational domain. Application of PML 
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would be able to eliminate the aforesaid effects by absorbing spurious reflections without 

substantially increasing computational burdens. The computational domains are discretized 

with quadrilateral elements sized about 0.2 cm.

Figure 8 shows the time history plots of the y-velocity and the vorticity strength at 2.5 cm 

downstream of the cylinder at the centerline. The results from the 3 test cases: with PML, 

without PML, and with large farfield region (reference solution), are plotted together for 

comparisons. As clearly shown, with the application of the PML, the results agree very well 

with the reference solution that has a large downstream farfield region. The slight 

discrepancies from t = 0.25 s to 0.5 s are caused by the truncation of the initial wake flow at 

the interface of physical domain and PML before the periodic vortex shedding starts and 

sustains itself. Similarly observation is found in [22]. In contrast, with no appropriate 

treatment of outflow boundary, the velocity and vorticity show significant differences from 

the other two cases, particularly showing altered phases in shedding indicating that there are 

contaminations of the flow field due to spurious reflections.

Figure 9 shows the comparison of vorticity contours in the 3 aforementioned test cases, at 

time t = 0.50 s and t = 1.25 s. All figures are focused on the area of interest that is the 

physical domain from the inflow boundary to 15 cm downstream. The absorption of the 

vortices in the PML region is clearly observed in Figures 9(a) and 9(b), in which the 

vorticity contours in the area of interest are comparable to those in Figures 9(c) and 9(d) 

with large farfield region downstream. In comparison, without appropriate treatment of the 

outflow boundary, the vorticity contours are shown to have different shapes and the vortex 

shedding process is out of phase compared to the other two test cases, as shown in Figures 

9(e) and 9(f), due to spurious reflections from the outflow boundary located just 7 cm 

downstream of the cylinder.

These results show that the PML region efficiently absorbs the flow structures such as the 

vortices induced from flow past an obstacle and avoids contaminations by spurious 

reflections, without a significant increase in the computational workload as brought about in 

the case with the large downstream farfield region.

3.3. Flow Past a Deformable Body with Different Types of Input

In this test study, a 0.2 cm × 0.3 cm rectangular deformable block is placed 0.8 cm from the 

inflow boundary and attached to the bottom of a 1.0 cm-wide channel, as shown in Figure 

10. A 1.0 cm-thick PML is placed at the outflow boundary of a 3.0 cm-long fluid domain as 

shown in Figure 10(a). For comparison purposes, test cases are also carried out without PML 

in setups shown in Figure 10(b) with lengths of the channel at 2.0 cm and 8.0 cm. The 8.0 

cm case is used as a reference solution that represents an infinitely long channel where the 

spurious reflection is minimum. The solid has a density of 1.0 g/cm3 that is linear elastic 

with Young’s modulus of 5000 Pa and a Poisson’s ratio of 0.3. The fluid is air with a density 

of 1.3 × 10−3 g/cm3 and a viscosity of 1.8 × 10−4 g/(cm · s) that undergoes isentropic 

process. The solid is relatively stiff compared to the fluid.

Two types of boundary conditions are examined. The first inflow boundary velocity is 

subjected to a sine function oscillating at 1 × 105 Hz between 0 cm/s and 200 cm/s. Free-slip 
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boundary condition is enforced on the top and bottom boundaries, while stress-free 

boundary condition is applied onto the outflow boundary for the comparison cases of finite 

length. The solid domain is discretized with uniform grid of quadrilateral elements sized 

0.01 cm, and the fluid domain with uniform grid of quadrilateral elements sized 0.02 cm.

Figure 11 shows the time history plot of the displacement at the upper right corner of the 

solid block in the x-direction, Δx. Initially, all three setups (with PML, with 2 cm and 8 cm 

channels and no PML) yield the same solution in terms of the solid behavior in response to 

the inflow. At around 1 × 10−4 s, the case with no PML starts to deviate from the other two 

cases, when the spurious reflection from the outflow boundary travels back to the solid block 

and forcing the solid block to deform differently. Meanwhile, the displacements in the latter 

two cases agree very well with each other within the simulation timespan, since the spurious 

reflection has not traveled back to affect the structure deformation in the 8 cm-long channel. 

The application of PML suppresses spurious reflections altogether.

A second study case is done by applying a constant pressure of 2.0 Pa onto the inflow 

boundary with an initially stationary flow field and solid block. Figure 12 shows again the x-

displacement of the upper right corner of the solid block. In the case with 2 cm channel and 

no PML, the spurious reflection from the outflow boundary significantly affects the flow 

field; in fact, an unphysical vortex travels back from the outflow boundary only 1 cm 

downstream of the solid block, and collides with the structure and pushes it to the left at 

around t = 0.04 s, which can be seen in Figure 13(b). In comparison, with the 8 cm channel 

length, the adverse effects by the spurious reflection is relatively small, since the outflow 

boundary is farther away from the solid block. However, the x-displacement steadily 

increases within the simulation timespan, as the pressure at the outflow boundary stays near 

zero. With the application of PML the x-displacement starts to oscillates around zero and 

eventually reaches a steady state. This result is expected as in a semi-infinite channel the 

constant pressure propagates at speed of sound, therefore making the driving force on the 

structure very small after the initial push. In fact, the vortex downstream of the block is 

completely absorbed in the PML region, as shown in Figure 13(a), while the flow field near 

the solid is severely distorted in the case without PML, as shown in Figure 13(b), which in 

turn affects the solid behavior.

3.4. Flow Past Deformable Leaflets with Different Heights

In this study, a similar set up is done as in the previous case, however with a softer leaflet 

that has different heights. A leaflet with a width of 0.2 cm is placed 0.5 cm from the inflow 

boundary and attached to the bottom of a 1.0 cm×2.0 cm channel. In the case with PML 

boundary condition imposed, an additional length of 0.5 cm is added. In this study, three 

different heights of the leaflet, namely 0.4 cm, 0.6 cm and 0.8 cm are applied to compare the 

difference among the cases with or without PML. The setup is shown in Figure 14. The solid 

is linear elastic with a density of 1.0 g/cm3, a Young’s modulus of 500 Pa and a Poisson’s 

ratio of 0.3. The fluid is air with a density of 1.3 × 10−3 g/cm3 and a viscosity of 1.8 × 10−4 

g/(cm · s). A constant velocity input of 60 cm/s is applied to the left inflow boundary. 

Therefore, the Reynolds number for the channel using its width as the characteristic length is 
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Re = 433. The top and bottom are no-slip walls. For the cases without PML, the right 

boundary has a stress-free outflow condition.

The real fluid domain is discretized into 20000 square elements with the side length of 0.01 

cm. For the cases with PML, the additional region is composed by a stretching grid for better 

absorbing efficiency, which has 1200 rectangular elements. The solid domain has 1600, 

2400 and 3200 triangular elements for the cases of 0.4 cm, 0.6 cm and 0.8 cm respectively. 

The time discretization is 1 × 10−5 s.

Figure 15 shows the comparisons of vorticity contours for the three scenarios with different 

leaflet heights. The instantaneous contours shown in the figure are chosen right before the 

cases without PML solutions blowing up. From these contour plots, we can also observe that 

all the cases without PML show spurious reflection from the outflow boundary, and finally 

the solutions no longer converge. To the contrary, the PML absorbs the vortices very well. It 

is evident that in the no-PML cases the spurious reflections come from the breaking up of 

the vortices that contaminate the real fluid domains. Another closer view of the vortex 

traveling is shown in Figure 16 (case with 0.4cm height at t = 0.054s). At this instance, the 

vortex is seen to travel “downward” in the case without PML due to the lacking of absorbing 

it, while in the PML case the vortex travels horizontally as if the channel is infinitely long.

Finally, to study the impact of PML on the solid deformation, we pick the right top corner on 

the leaflet and track its displacement. The comparisons between PML and no PML are 

shown in Figure 17. In the cases of no-PML, the displacement is obviously larger than the 

PML cases. The discrepancy appears when the first vortex is formed. The spurious reflection 

increases the magnitude of the velocity in the real fluid domain, which induces unrealistic 

displacement of the leaflet. The frequency of the case with PML is found to be lower than 

the case without PML for each height of the leaflet. It can be easily explained that the 

spurious reflections in the cases of no-PML simply provide a secondary wave that affect the 

motion of the leaflet. When comparing the different heights, we also notice that intrinsically 

the shorter leaflet experiences higher natural frequency with a fixed inflow.

4. Conclusions

In this study, the Perfectly Matched Layer (PML), a non-reflective boundary condition, for 

finite element method solutions of Navier-Stokes equations in the fluid-structure interaction 

framework is examined. It is shown to be effective in absorbing outgoing aeroacoustic waves 

as well as advective flow structures such as vortices in fluids. Furthermore, simulations of 

fluid-structure interaction in such instances are shown to greatly benefit from the application 

of PML as well. Proper non-reflective boundary condition avoids contaminations of the flow 

field from spurious reflection at numerical boundaries, which in turn ensures reasonable and 

accurate structural response. A series of numerical examples are studied that started with a 

1-D planar wave propagation in infinitely long channel, to wave propagations in an open 

field, to flow past an obstacle involving the advection of vortical structures, and eventually 

to flow past a deformable solid where the solid deformation can be adversely affected by 

inaccurate flow waves reflected from numerical boundaries. All the studies demonstrate that 

appropriate application of PML allows the simulations of aeroacoustic wave propagation and 
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flow advection in unbounded open fields using relatively small numerical domains without 

the sacrifice of its computational accuracy and efficiency. The numerical framework will be 

used in the future for simulation of the phonation process, involving fluid-structure 

interaction between laryngeal airflow and vocal fold structures in a simplified infinitely long 

channel, such that it is feasible to examine the generated sound directly from the source in 

this process without the filter effects incurred by a finite-length channel.
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Figure 1. 
Illustration of wave attenuation on a complex domain.
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Figure 2. 
Schematics of physical and PML domains.
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Figure 3. 
Plane wave propagating along the length of the channel.  (blue solid line): numerical 

solution;  (red dash line): theoretical solution in absence of PML; vertical  (magenta 

dash dot line): interface between the physical domain and PML.
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Figure 4. 
Setup of aeroacoustic wave radiation from a duct to an open field.
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Figure 5. 
Comparison of pressure time histories at two different locations.  (cyan solid line): with 

0.5 cm-thick PML;  (red dash line): with 0.25 cm-thick PML;  (green dash dot line): 

with no PML;  (blue circle): with semi-circular farfield region.
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Figure 6. 
Pressure contours of wave radiation.
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Figure 7. 
Setup of flow past a cylinder with vortex shedding.

Yang et al. Page 27

J Fluids Struct. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Comparison of time histories of y-velocity and vorticity history at 2.5 cm downstream of the 

cylinder along the centerline.  (blue solid line): with PML;  (green dash dot line): 

with large farfield region;  (red dash line): with no appropriate treatment of outflow 

boundary.
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Figure 9. 
Comparison of vorticity contours in cases with application of PML, shown on the same 

focused area near the cylinder. (a) and (b): with PML; (c) and (d): with large downstream 

farfield region; (e) and (f) without proper boundary treatment.

Yang et al. Page 29

J Fluids Struct. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Setup of the fluid-structure interaction test cases.
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Figure 11. 
Comparison of x-displacement of the upper right corner of the solid block in channel with 

acoustic pulses applied on the inflow boundary.  (blue solid line): fluid domain with 

PML;  (green dash dot line): 8 cm × 1 cm fluid domain;  (red dash line): 2 cm × 1 

cm fluid domain.
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Figure 12. 
Comparison of x-displacement of the upper right corner of the solid block in channel with 

constant pressure applied on the inflow boundary.  (blue solid line): fluid domain with 

PML;  (green dash dot line): 8 cm×1 cm fluid domain;  (red dash line): 2 cm × 1 cm 

fluid domain.
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Figure 13. 
Vorticity contour in the case with application of PML and outflow boundary close to the 

block.
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Figure 14. 
Setup of the flow past deformable leaflets with the height of 0.4 cm, 0.6 cm and 0.8 cm.

Yang et al. Page 34

J Fluids Struct. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 15. 
Comparisons of vorticity contours in the three different heights of the leaflet.
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Figure 16. 
Traveling of vortices.
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Figure 17. 
Comparisons for the displacement of the top right node on the leaflet.  (red dashed line): 

Cases without PML;  (blue solid line): Cases with PML.
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