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Abstract

In the past decades, hundreds of articles have explored the mechanisms underlying priming. Most 

researchers assume that masked and unmasked priming are qualitatively different. For masked 

priming, the effects are often assumed to reflect savings in the encoding of the target stimulus, 

whereas for unmasked priming, it has been suggested that the effects reflect the familiarity of the 

prime-target compound cue. In contrast, other researchers have claimed that masked and 

unmasked priming reflect essentially the same core processes. In this article, we use the diffusion 

model (Ratcliff, 1978) to account for the effects of masked and unmasked priming for identity and 

associatively related primes. The fits of the model lead us to the following conclusion: masked 

related primes give a head start to the processing of the target compared to unrelated primes, while 

unmasked priming affects primarily the quality of the lexical information.

In visual-word recognition laboratory tasks (e.g., lexical decision, naming), the response to a 

target stimulus can be influenced by the previous presentation of a related item – the so-

called prime (e.g., the response to the string “DOCTOR” is faster and/or more accurate 

when following a related prime like “nurse” than when following an unrelated prime like 

“horse”). Priming effects can occur in the absence of explicit instruction to use the prime’s 

information when responding to the target. Early research in visual-word recognition 

focused on visible, unmasked primes, and the potential role of participants’ strategies under 

these circumstances led a number of researchers to manipulate the stimulus-onset 

asynchrony (SOA) between prime and target (e.g., Neely, 1977) to explore issues around 

automatic vs controlled processes (Posner & Snyder, 1975). Along these lines, the 

introduction of masked priming (Forster & Davis, 1984) was an important development; the 

assumption behind masked priming was that the results would reflect early automatic 

processes. This article uses an explicit modeling method (Ratcliff’s diffusion model) to 

examine the differences among masked vs. unmasked priming in the most popular 

laboratory word identification task: lexical decision (e.g., see Dufau et al., 2011).
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The masked priming paradigm has been used to examine the initial stages of visual-word 

recognition (Forster & Davis, 1984; see also Forster, Mohan, & Hector, 2003; Kinoshita & 

Lupker, 2003; Grainger, 2008, for recent reviews). The typical trial in a masked priming 

experiment consists of a mask (e.g., #####) which is presented for 500 ms, which is 

followed by a briefly presented lowercase prime (for around 30–60 ms) and is subsequently 

replaced by an uppercase target (e.g., the target word TRIAL may be preceded by the 

identity prime trial or by an unrelated prime like ocean). Under these conditions, participants 

are not only not aware of the prime’s identity, but are often also unaware of its existence.

One basic tenet in masked priming studies is that the obtained priming effects are 

qualitatively different from priming effects in standard (unmasked) priming paradigms 

(Forster et al., 2003; Grainger, 2008). Indeed, fMRI evidence has revealed that masked 

primes produce some activation in the so-called “visual word form area”, while activation is 

negligible in frontal and parietal areas; in contrast, unmasked primes produce a much larger 

activity at parietal, prefrontal and cingulate areas (see Dehaene et al., 2001). Unlike 

unmasked priming, which can be mediated by an episodic memory trace of the prime, 

masked priming effects are supposed to reflect a transitory change in the accessibility of 

lexical/semantic information. However, work by Bodner and Masson (2003; see also Bodner 

& Masson, 2001) has called into question the alleged qualitative difference between masked 

and unmasked priming. Bodner and Masson suggested that, for both masked and unmasked 

priming, “a prime event creates a memory resource that can be recruited during target 

presentation to aid in the encoding of the target” (p. 646). Bodner and Masson’s account is 

supported by a key finding: the size of the masked identity priming effect in lexical decision 

is greater when the proportion of identity trials in the stimulus list is high (0.80) rather than 

low (0.20) (Bodner & Masson, 2001; see also Bodner & Masson, 2003 for a parallel effect 

with associative/semantic primes; cf. Perea & Rosa, 2002). This finding matches the usual 

result from the standard long-term priming with visible stimuli. Bodner and Masson argue 

that this is so because the masked prime establishes an episodic record, just like the 

unmasked prime (i.e., conscious awareness would not be a prerequisite for establishing an 

episodic record).

The dissociation of different processing mechanisms in behavioral experiments is often 

contentious, especially when the mean latency is the sole dependent variable. Here we 

contrast two views of masked/unmasked priming using Ratcliff’s diffusion model (Ratcliff, 

1978, 1981, 1985, 1988; Ratcliff, Van Zandt, & McKoon, 1999) in an experiment that 

compares masked versus unmasked priming. Ratcliff’s diffusion model has been 

successfully applied to lexical decision data (Ratcliff, Gomez, & McKoon, 2004; see also 

Gomez, Ratcliff, & Perea, 2007; Ratcliff, Perea, Colangelo, & Buchanan, 2004; Ratcliff, 

Thapar, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008; see 

Norris, 2009 for a complete model of lexical access that shares assumptions with the 

diffusion model). Importantly, the model allows cognitive processing to be divided into 

several components: the rate of evidence accumulation (which reflects the goodness of 

match between the test string and lexical memory); the decision criteria (i.e., how much 

information must be accumulated before a decision can be made); the non-decision 

components of processing (both encoding and response execution); and variabilities in the 

various components. In the following paragraphs, we will first describe the diffusion model, 
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and then we will indicate what components could be affected in masked vs. unmasked 

priming depending on whether or not the priming effects originate from the same sources. In 

particular, we will examine two of the most studied types of relationships between primes as 

targets: identity priming and associative/semantic priming.

The diffusion model and the lexical decision

The diffusion model was developed to account for those decisions that involve a two-

alternative choice and take less than a few seconds (Ratcliff, 1978; Ratcliff & Rouder, 1998). 

In the model, the decision-relevant information is accumulated over time in a noisy manner 

(see Figure 1). A response is initiated when the noisy accumulation of evidence reaches one 

of the two decision boundaries. The location of the decision boundaries is related to the 

amount of evidence needed to make a response. The two parameters of the model that 

describe the boundary positions are z: the location of the starting point1, and a, the distance 

between the decision boundaries (with the location of the negative boundary assumed to be 

set at 0). The values of a and z reflect speed-accuracy tradeoffs and response biases2. In the 

present study, two aspects of the diffusion model are of particular interest because they most 

likely capture the observed priming effects: the encoding of the perceptual information and 

the quality of such information.

Encoding and response execution time

The diffusion model assumes that the RT for a given trial is a sum of three components: (1) 

the encoding time; (2) the time taken by the accumulation of evidence process; and (3) the 

time taken by the response execution stage. The sum of components (1) and (3) is 

represented by the non-decision parameter Ter. Note that encoding and response execution 

cannot be separated in the model. This non-decision time is assumed to be uniformly 

distributed with range st. Of particular interest here is the possible contribution of the 

masked and unmasked primes to the encoding process. Some verbally formulated 

explanations of priming posit that the presentation of a related prime provide with a head-

start in the processing of the target (see Forster, 1998), which can be implemented in a 

diffusion model framework as affecting the encoding time (Ter parameter). We must note 

here that the term encoding has a specific interpretation within the diffusion model. It 

represents processes that terminate before the beginning of the accumulation of evidence in 

the decision process (i.e., the decision process itself, represented by the jagged lines in Panel 

C of Figure 1). This might not be the same as other processes that are also termed encoding 
processes in other models and theories.

Drift Rate

The average rate of accumulation of evidence is termed drift rate. It can be thought of as a 

quality of the extraction of evidence. Easy stimuli, such as high frequency words in a lexical 

decision task, are associated with large positive drift rates (Ratcliff et al., 2004a). Similarly, 

non-wordlike nonwords are associated with large but negative drift rates. Within a trial, the 

1The model assumes variability in the z parameter, which is uniformly distributed with range sz.
2For a comprehensive exploration of the behavior of these parameters in the lexical decision task, see Wagenmakers et al. (2008).
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accumulation of evidence has variability that is reflected in the jagged line in Figure 1. In 

addition to the within-trial variability, there is normally distributed variability in the drift rate 

from trial to trial (parameter η). This is so because all trials that nominally are in the same 

category (e.g., high frequency words) cannot be expected to have exactly the same 

discriminability.

On the qualitative differences between masked vs. unmasked priming

In Forster’s view, masked priming would reflect a savings effect, in which some of the 

processing carried out on the prime is transferred to the word target (see Forster et al., 2003; 

Forster, 2008). Specifically, Forster (1999) indicated that the magnitude of masked identity 

priming “ought to be equal to the duration of the prime (assuming that the target appears 

immediately after the prime)” (p. 10) and he provided data supporting this view. If this 

interpretation is correct, masked identity priming should be revealed as a shift in the entire 

RT distribution, without any change in spread. Thus, if we implement Forster’s verbal 

explanation within a diffusion model framework, the effect of the masked identity prime 

would be reflected as a change in the nondecision component (Ter), whereas the rate of 

accumulation of information would be the same across conditions. With respect to masked 

associative/semantic priming, Forster (2009) indicated that the “semantic evaluation of the 

target is completed more rapidly because the relevant semantic information retrieved by the 

prime is still stored in the semantic buffer” (p. 46). We believe that this latter verbal 

description does not have a clear translation into the diffusion model parameters. One could 

imagine that this buffer provides a head start (i.e., a change in Ter), but it could also cascade 

into the evidence being accumulated in the diffusion process (i.e., a change in drift rate). 

Similar views of masked priming are used in the Spatial Coding model (Davis, 2010) and in 

the LTRS model (Adelman, 2011). In the Spatial Coding model, the mechanism at play 

during masked priming is that the letter units are reset with the presentation of a new 

stimulus (e.g., when the prime is removed to give place to the target). When this happens, if 

there is lexical activation already in course, this activation is not reset and produces the 

advantage of the identity condition over the unrelated condition. Similarly, in the LTRS 

model, priming is considered as a savings effect or a headstart that takes place during the 

time in which the target is a candidate for lexical identification of the prime (Adelman, 

2011).

To explain unmasked priming effects, one influential view is that when the prime is visible, 

prime and target are merged in short-term memory to form a compound cue (see Ratcliff & 

McKoon, 1988, for further details).3 More specifically, Ratcliff and McKoon indicated that 

“the familiarity value given by the computation of the strength of the compound cue is used 

as the drift rate in a diffusion (random walk) decision process” (p. 388) (i.e., rate of 

accumulation of information). This implies that the RT distribution in the related condition 

would be less skewed than in the unrelated condition. We should stress that this mechanism 

would apply similarly to associative priming and identity priming –with the (obvious) 

3While we acknowledge that there are other potential explanations of unmasked priming, the compound cue model has three 
advantages: i) it provides a unified account of identity and associative priming; ii) it makes straightforward predictions in terms of the 
diffusion model; and iii) the idea of a compound cue has also been adopted (with some changes) in the competing view of Bodner and 
Masson.
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difference that the familiarity of the compound-cue of two identical words would be stronger 

than that of two semantically related words (i.e., identity priming implies not only semantic 

overlap but also form/phonological overlap). Therefore, both unmasked identity and 

unmasked associative priming would reflect changes in drift rate across conditions in a 

diffusion model.

Alternatively, in Bodner and Masson’s view (see also Plaut & Booth, 2000), both masked 

and unmasked primes would form an episodic trace independently of the visibility and the 

awareness of the prime. The explanation proposed by Bodner and Masson is similar to that 

of Ratcliff and McKoon for unmasked priming. The only difference is that, unlike Ratcliff 

and McKoon, the compound cue would be created regardless of the participant’s awareness 

of the prime. Therefore, the prediction is clear: the compound cue of the event would 

determine drift rate (i.e., rate of accumulation of information). In a diffusion model, this 

would imply that priming effects would be reflected in terms of drift rate for both unmasked 

and masked primes.

Previous research comparing masked vs. unmasked priming from an explicit model 

perspective is very scarce. In a recent study, Balota, Yap, Cortese, and Watson (2008) 

compared the RT distributions of semantic priming effects with masked vs. unmasked 

primes –using the estimates from the ex-Gaussian distribution rather than fits from the 

diffusion model. Using a masked priming paradigm at a 42-ms SOA, Balota et al. (2008; 

Experiment 7) found a nonsignificant 13-ms effect of semantic priming –note that the size of 

this effect is in line with previous masked semantic priming experiments (e.g., Perea & 

Lupker, 2003). In addition, using visible primes at a 200-ms SOA, Balota et al. (2008, 

Experiments 2 & 3) found that the semantic priming effect was larger at the higher quantiles; 

unexpectedly, this pattern was not reflected in ex-Gaussian fits in which only the μ and σ 
parameters were affected by priming, but not the τ parameter (which has been traditionally 

been related to changes in spread). The presence of an increasing associative/semantic 

priming effect at the higher quantiles is consistent with a compound-cue model (see above), 

whereas the apparent mismatch with the fits might be due to misspecification of the ex-

Gaussian parameters.

With respect to unmasked identity priming, previous applications of the diffusion model to 

the lexical decision task suggest that it might affect drift rates (and consequently the spread 

of the RT distribution). In a long-term (unmasked) identity priming experiment in which 

items were presented more than once in the experiment, Ratcliff, Gomez and McKoon 

(2004) found that the item identity yielded changes in the drift rate. To our knowledge, very 

few published studies have analyzed the differences between masked and unmasked priming 

from a modeling perspective; nonetheless we would like to note that Pollatsek, Perea, and 

Carreiras (2005) reported that form-related priming produced a shift in the RT distribution 

relative to an unrelated priming condition. Similarly, Kinoshita, Mozer and Forster (2011) 

examined the prime proportion effects on masked and unmasked priming and showed that 

visible primes (but not masked primes) showed adaptation to the prime-target contingency. 

Taken together, these data suggest that the mechanism underlying masked and unmasked 

priming might be different.
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In addition, previous research has tried to account for priming from a modeling perspective. 

Notably, Jacobs and Grainger (1992) were the first to simulate the masked (form) priming 

task with a quantitative model of visual-word recognition – the interactive-activation (IA) 

model (see also Perea & Rosa, 2000, for simulations of masked identity priming with this 

model). In these simulations, the prime is presented for a short number of processing cycles 

and then it is replaced by the target (see also Davis, 2010, for a similar logic for the 

simulations with the spatial coding model). That is, masked priming simulations with the 

interactive activation model and the spatial coding model assume that the prime offers a 

head start –similarly to Forster’s prediction. It is important to note, though, that the spatial 

coding model also employs the Rumelhart and Siple’s (1974) uppercase font. This implies 

that the prime and the target in the simulations would be exactly the same. As Jacobs and 

Grainger (1992), indicated, “a useful extension of the IA model would include a set of 

lowercase letters, thus allowing a more precise simulation of priming studies involving a 

change in case” (p. 1179). Finally, it may be worth noticing that this approach of modeling 

priming effects in an interactive-activation model cannot tell apart masked vs. unmasked 

priming effects.

Overview of the Experiment

In the present experiment, we used the diffusion model to test Forster’s vs. Bodner & 

Masson’s account of the differences between masked and unmasked priming. We focused on 

identity and associative/semantic priming, since these are the two most studies phenomena 

in previous priming experiments. In order to best compare the effects of the factors of 

interest in lexical decision performance, we performed all manipulations within subjects. In 

our experiment, we manipulated the relationship between the prime and the target through 

identity priming (prime: house; target: HOUSE) and associative priming (prime: doctor; 

target: NURSE). In addition, these targets could be preceded by a masked prime, or by an 

unmasked visible prime.

Method

Participants

Twenty DePaul University students participated for credit in an Introduction to Psychology 

class.

Materials

For the associative priming and the identity priming experiments, we selected 160 words for 

each type of stimulus. They were matched in word frequency: mean = 129 per million 

(Kucera & Francis, 1967), and other relevant variables (see the Tables 1 & 2). For the 

associative priming conditions, the items were obtained from the University of South Florida 

free association norms (Nelson, McEvoy, & Schreiber, 2004). The mean association for the 

associative priming pairs was .2824.

4The materials are available online at http://condor.depaul.edu/pgomez1/WNPL/Online_Appendices_files/materials.txt
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Procedure

Participants were tested in groups of one to three. PC-compatible computers controlled 

presentation of the stimuli and recording of response times. Stimuli were presented on a 15-

in. computer monitor in 24-point BrHand font (similar to non-proportional Courier fonts). 

For the masked blocks, on each trial, a forward mask consisting of a row of hash marks (#’s) 

of equal length to the stimulus (i.e., 4, 5 or 6 character long) was presented for 500 ms in the 

center of the screen. Next, the prime was presented in lowercase and stayed on the computer 

screen for 56 ms. The prime was then followed by the presentation of the target stimulus in 

uppercase. Both prime and target were presented in the same screen location as the forward 

mask. The target stimulus remained on the screen until the participant’s response. For the 

unmasked blocks there was a fixation area that matched the size of the stimulus in terms of 

number of letters (e.g., “< >”) for 200 ms; the prime was presented in lowercase for 200ms, 

and then the target in uppercase was kept on the screen until a response was made. 

Participants were told that words and nonwords would be displayed on the monitor in front 

of them, and that they should press the ? key to indicate if the uppercase item was an English 

word, and a different key (Z) to indicate if the stimulus was not a word. They were 

instructed to respond as quickly as possible while trying not to make errors. Each participant 

received a different random order of stimuli, and half of the participants performed the 

masked priming trials first, followed by the unmasked priming trial. Each participant 

received a total of 20 practice trials prior to the experimental phase. Participants were 

presented with 40 items per condition (40 words preceded by an identity prime, 40 words 

preceded by a identity control prime, 40 words preceded by an associative prime, 40 words 

preceded by an associative control prime, 40 nonwords preceded by an identity primed, and 

40 nonwords preceded by a control prime). There were 160 filler nonwords with word 

primes, and 80 filler words with unrelated nonword primes; this way, the primes were not 

predictive of the lexical status of the target. The experimental session lasted about 45 

minutes.

Results

Responses under 250 ms or longer than 1800 ms were removed from the analyses (less than 

3% of the data); in addition, one subject was removed because s/he pressed the “word” 

button more than 90% of the trials regardless of condition.

The results are straightforward (see Table 3 for a summary of the empirical results), and 

because our goal is not to establish the existence of either identity or associative priming 

(which are very well established), but instead to provide a diffusion model account of these 

phenomena, the results will be discussed only briefly. As expected, for both masked and 

unmasked modalities, the word targets were responded to faster when preceded by an 

identity prime than when preceded by an unrelated prime (for masked: priming effect = 60 

ms, t(18) = 4.55, p < .001; for unmasked: priming effect = 105 ms, t(18) = 9.98, p < .001). 

Similarly, for the associative pairs, target words (in both the masked and unmasked 

conditions) were responded to faster when preceded by an associatively related prime than 

when preceded by an unrelated prime, although only for the unmasked condition was the 

priming effect significant (for masked: priming effect = 12 ms, t(18) = 1.08, p = .29; for 
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unmasked: priming effect = 44 ms, t(18) = 4.75, p < .001). (Note that, despite being 

nonsignificant, the size of the masked associatively priming effect is similar to that in 

previous experiments in the literature; e.g., Perea & Lupker, 2003.) The priming effects for 

the nonword targets (i.e., identity masked priming and identity unmasked priming) did not 

produce any significant effects (all t′s < 1), and in fact there were very small inhibitory 

trends.

In terms of the accuracy data, performance for all word conditions were at a near-ceiling 

performance (all accuracies were at or above 95%) and none of the t-tests showed significant 

effects. The analysis on the nonword targets, on the other hand, showed a lower accuracy for 

the nonwords when preceded by an identity prime than when preceded by an unrelated 

prime in the masked condition (accuracy for primed = .917 vs. accuracy for control = .944; 

t(18) = 2.19, p = 0.04) as well as the unmasked condition (accuracy for primed = .910 vs. 

accuracy for control = .936; t(18) = 2.77, p = 0.01). This effect will be discussed together 

with the fits of the model to nonword data.

Modeling

We will use the diffusion model to test Forster’s vs. Bodner & Masson’s account of the 

differences between masked and unmasked priming. We fitted the data from the masked and 

the unmasked trials separately. We performed the fits of the model in two different ways:

1. For display in the figures and tables, we present the fits to the grouped data that 

we obtained using the fitting routines described by Ratcliff and Tuerlinckx 

(2002). We calculated the accuracy and latency (i.e., the RTs at the .1, .3, .6, .7, 

and .9 quantiles) for word and nonword responses for all conditions and for all 

subjects, and we obtained the group level performance by averaging across 

subjects (i.e., vincentizing; Ratcliff, 1979; Vincent, 1912).

2. For the analyses of the effects of priming on the parameters of the model, we 

fitted the model to each subject’s data, and then examined the difference in the 

Ter and drift rate parameters using standard inferential statistics techniques.

Fitting averaged data is an appropriate procedure for fitting the diffusion model. In previous 

research (Ratcliff et al., 2004b; Ratcliff, Thapar, & McKoon, 2001), fits to averaged data 

provided similar parameter values to parameter values obtained by averaging across fits to 

individual subjects. The quantile RTs were fed into the diffusion model.

For the two modeling methods (i.e., grouped data and subject-by-subject), the model 

generated for each response the predicted cumulative probability within the time frames 

bounded by the the five quantiles. Subtracting the cumulative probabilities for each 

successive quantile from the next higher quantile yields the proportion of responses between 

each quantile, which are the expected values for the χ2 computation. The observed values 
are the empirical proportions of responses that fall within a bin bounded by the 0, .1, .3, .5, .

7, .9, and 1.0 quantiles, multiplied by the proportion of responses for that choice (e.g., if 

there is a .965 response proportion for the word alternative, the proportions would be .965 

× .1, .965 × .2, .965 × .2, .965 × .2, .965 × .2 and .965 × .1).
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Masked Priming—There are two features of the masked priming data that needed to be 

accounted for (see Figure 2): (1) there was a shift in the RT distributions as a function of 

both identity and associative priming; and (2) there was a null effect of priming in the mean 

RT for nonwords; however, there was an effect of the RT distributions: lower quantiles the 

RTs were shorter for the related condition than for the unrelated condition and, at the same 

time, this pattern reversed in the higher quantiles.

Grouped data—Our model comparison strategy for the grouped data was to begin with 

the simplest implementation of the model (with the fewest number of free parameters) and 

then to add free parameters until the gain in the quality of fits did was negligible5. In other 

words, we looked to jointly maximize descriptive accuracy (goodness of fit) and parsimony 

(small number of free parameters).

Pure distributional shifts (changes in the location of the distributions) are naturally 

accounted for by allowing the Ter parameter to vary from the unrelated primes to the related 

primes. A model with a single Ter for all conditions yielded a χ2 = 362, while allowing Ter 

to vary yielded a χ2 = 81.3, which is 77% smaller (see Ratcliff & Smith, 2010 p. 90, Table 

1, for a similar result).

A model with only Ter free to vary as a function of priming, however, could not account for 

the pattern of results for nonwords. Hence, we needed to allow the drift rate for the primed 

nonwords to be different from the drift rate for their controls, with less-negative drift rate for 

the primed nonwords than for their control6.

Individual subject data—Another way to analyze the effect of manipulations on the 

parameters of the model is by fitting a model with free parameters to data for each subject, 

and then to carry out standard inferential statistics on the model’s parameters. To this end, 

we conducted subject-by-subject fits and we obtained the drift rates and Ter parameters for 

each of the conditions. Planned t-test were performed to compare the parameter values for 

the primed conditions against the parameter values for their controls. For Ter, all effects of 

priming were significant: for associative priming t(18) = 2.154, p = 0.045; for identity 

priming t(18) = 9.749, p < .01; and for nonwords t(18) = 2.158, p = 0.045. For the drifts, 

neither word identity priming nor associative priming yielded significant differences (t(18) < 

1); however, for nonwords there was a significant difference in drift rate between related and 

control items: t(18) = 2.411, p = .027.

The two fitting methods provide converging evidence: according to the diffusion model-

based account, the locus of the masked priming effects for words is the encoding process 

(with larger effects in the Ter parameter for identity priming than for associative priming, as 

can be seen in Table 4). In contrast, for nonwords, identity priming seems to facilitate the 

encoding process (reducing the Ter value), while increasing the word-likeness of the stimuli 

(making the drift rate value less negative).

5The χ2 in Table 4 are based on group data, so they cannot properly be used as absolute measures of fit

6For the Ter only model: χ2 = 81.30, and for the Ter + driftnonword model: χ2 = 74.55; hence , or an 8% 
improvement in the quality of the fit
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Unmasked Priming—Compared to masked priming, unmasked priming produced 

numerically larger effects in the mean RT as a function of priming. For the nonwords, 

although there was no significant difference in the mean RT between the related targets and 

their controls, the RTs for the .1 and .3 quantiles were shorter for the related condition than 

for the unrelated condition. However, for the .7 and .9 quantiles, the direction of the effect 

reversed.

Grouped data—For unmasked priming, the first model we fit to the data was the one we 

used for the masked priming condition (with Ter allowed to vary as a function of priming). 

This model misses some important features of the data quite badly (χ2 = 246.92). Bear in 

mind that changes in the Ter parameter produce shifts in the RT distributions; however, in 

unmasked priming for word targets, the effects go beyond a shift in the distribution and 

include a larger spread in the higher quantiles for the unrelated conditions relative to the 

related conditions. In addition, for nonword targets there was a non-monotonic effect of 

priming as a function of quantiles. Adding a free drift rate parameter for primed nonwords 

improved the quality of the fits for nonwords but still misses the qualitative features of the 

word data (χ2 = 225.71 for the Ter + driftprimed.nonwords model). Augmenting the model by 

allowing not only the Ter but also the drift rates to vary as a function of primes for both word 

and nonwords trials improve the quality of the fits χ2 = 136.69, which is smaller by 110 

from the Ter only model. We prefer this augmented model because with two extra 

parameters the gain in goodness of fit is quite large. Note that for the associative unmasked-

priming condition, the Ter parameter has the same value as the unrelated control condition, 

and there is no loss in the goodness of fit if the Ter parameter is kept the same for the 

unrelated condition and for the associative priming condition. This finding reveals that while 

unmasked associative priming increases the word-likeness of the target item, it does not 

contribute to the encoding of the target string.

It is worth mentioning that although the focus of this research is not the effects of priming 

on nonwords, there is a robust debate on this issue. Our analysis suggest that the facilitatory 

effects on Ter and the inhibitory effects on drift rate cancel each other out, so future research 

might need to include a neutral condition to fully explore this issue. In any case, Kinoshita & 

Norris (2010) have shown robust masked priming effects for nonwords in a same-different 

task, which suggest a pre-lexical status of the facilitatory effect.

Individual data—The subject-by-subject fits were carried out the same way as for the 

masked priming data. The effects of priming on the drift rates were significant for 

associative priming of words: t(18) = 2.509, p = .022; for identity priming of words: t(18) = 

2.134, p = .046; and also for nonwords t(18) = 2.911, p = .009. The effects of unmasked-

priming on Ter were significant for all priming conditions; for word identity priming: t(18) = 

7.808, p < .01; and for nonword identity priming: t(18) = 3.030, p < .01. Somewhat 

surprisingly we also found of effect on Ter for associative priming t(18) = 2.150, p = .045, 

although the effect was numerically very small.

Gomez et al. Page 10

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2017 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

The empirical results of the present experiment are clear: masked identity priming effects 

were approximately the same at each quantile in the RT distributions (i.e., they involved a 

shift in the entire distribution); in contrast, unmasked priming effects (both identity priming 

and associative priming) involved a change in the spread of the RT distributions. More 

important, these findings can be accounted for by the diffusion model in a straightforward 

manner: on the one hand, masked identity priming affects the parameter corresponding to 

encoding processes (Ter), but not the parameter corresponding to the quality of information 

(drift rates); on the other hand, unmasked priming affects both parameters: the quality of 

information (drift rates) in both associative and identity priming, and also the encoding 

process (particularly for identity priming, note that in the subject-by-subject fits there as a 

fairly small but significant effect in the difference in Ter between the related and unrelated 

primes for associative unmasked priming). Therefore, masked priming is qualitatively 

different from unmasked priming. To our knowledge, this is the first dissociation between 

these two parameters in the model within the lexical decision task.

The diffusion model is a model of the decisional process in the lexical decision task, and is 

void of a lexicon or explicit word recognition processes. However, we can use the parameter 

behavior in the present work to deepen our understanding of the priming processes by 

interpreting existing models through the lens of the diffusion model. To this end, theories 

that have been verbally stated of even computationally implemented can be mapped into 

diffusion model parameters.

If we interpret the diffusion model fits in light of other theories, we find that our account of 

masked identity priming is compatible with a “savings” account, in which priming occurs 

mainly due to changes in encoding time (e.g., note that the value of Ter is close to that of the 

prime duration; see Forster, 1999), whereas unmasked priming is consistent with a 

compound-cue account in which prime-target relatedness increases the quality of the lexical 

information that drives the decision process. To our knowledge, this is the first dissociation 

between drift rate and Ter in the model within the lexical decision task.

The effect on Ter has several implications for theories of priming and for general theories of 

perceptual decision making. The assumption behind this parameter is non-trivial: there is a 

stage in the processing of perceptual information in which the incoming evidence is not used 

towards the accumulation of evidence driving the decision process (e.g., the “word” vs 

“nonword” decision in the lexical decision task). Hence, to make a decision about a string of 

letters, participants must first encode it, and only after that process is over, they can match 

the obtained perceptual representation against their lexical knowledge7. Within the context 

of evidence accumulation models as applied to lexical processes, two questions arise: (1) 

how is it that the system ends the accumulation-free encoding stage and begins the 

accumulation process (the diffusion per se)? and (2) what exactly do we mean by encoding 
in the domain of masked priming? Regarding the first question, Ratcliff and Smith (2010) 

7It is important to note that during this stage, noise (without the signal from the stimulus) is most likely not accumulated either, as that 
would create a large proportion of fast errors
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offered two possible explanations in the context of a letter discrimination task; according to 

the first one, it is not until the stimulus is encoded in visual short term memory that the 

accumulation of evidence begins, while according to the second one, there is large inhibition 

of the accumulation of evidence process until the quality of the stimulus representation 

reaches a threshold. In their research, Ratcliff and Smith found that the effects in the first 

quantiles of the RT distributions only happened when a more abstract representation was 

needed to perform the task (i.e., there was an effect for letter discrimination but not for 

luminosity discrimination). Arguably, the lexical decision task requires an even more 

conceptual representation than their letter discrimination task. This leads us to the second 

issue: what in the nature of the encoding process in masked priming? Identity priming 

amounts to a head-start relative to an unrelated prime and identity priming does not seem to 

affect the quality of the lexical information in the decision; however, it does not seem to 

affect the quality of the lexical information. A number of models are compatible with this 

view, most notably, those that assume that there is some form of “reset” or “self-inhibition” 

mechanism (see Grainger & Jacobs, 1999) in which a mismatch between incoming sensory 

information (e.g., a prime and a target) triggers an inhibitory reset. Jacobs and Grainger 

(1992), had a similar intuition when they suggested that in an interactive-activation model 

based account, identity priming amounts to having a head start of a few cycles of processing 

(see also Adelman, 2011; Davis, 2010 for recent modeling efforts along the same lines). 

Note, however, that the mapping from an interactive activation model into a stochastic 

accumulation of evidence framework (e.g., the diffusion model) is not trivial. This is because 

activation of nodes in the interactive activation architecture is deterministic and errors only 

occur because of stochastic choice only at the very end of processing. The diffusion model 

represents noise in the decision process (within trial noise) and noise in the stimulus/lexical 

representation driving the decision process as across trial variability in drift rate.

The distinction between the encoding process and the evidence accumulation process is 

particularly clear in the case of identity priming for nonwords. Related nonwords (compared 

to their controls) are less accurate, have shorter RTs at .1, and .3 quantiles, but have longer 

RTs at .7 and .9 quantiles8. Identity priming seems to provide with time savings relative to 

the unrelated controls, while it makes it more difficult to correctly identify the string as a 

nonword. Modeling unmasked priming with drift-only and the Ter-only models does not 

allow us to capture a pattern like this. The interplay of these two parameters yields 

inconsistent effects of priming on nonword targets (see Perea, Gomez & Fraga, 2010 and 

Whitney, Bertrand, & Grainger, 2012, for discussion). Different studies might have elicited 

different proportions of facilitatory and inhibitory trials, and future research should try to 

dissociate the factors that may contribute to the encoding benefits, from the factors that may 

inhibit the identification of a nonword target.

It is important to note that our findings are consistent with the semantic priming experiments 

conducted by Balota et al. (2008). With unmasked primes, they found an increasing 

8We explored if this pattern of results might have been produced by a combination of a few items producing facilitation while other 
items producing inhibition; to this end, we performed a multiple regression using all the orthographic variables as regressors and the 
priming effect as the dependent variable, but none of the effects were significant. We also wondered if this pattern was produced by 
just a handful of subjects, but 15 out of the 19 participants showed it.
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semantic priming effect at the higher quantiles (see Balota et al’s Figures 7 and 8) –note 

however that they failed to find a change in the τ parameter of the ex-Gaussian distribution.9 

With masked primes, Balota and cols. found a small, nonsignificant masked semantic 

priming effect –as also occurred in the present experiment. Clearly, the small magnitude of 

masked semantic priming does not allow to make strong inferences on the precise nature of 

the underlying effects –note that previous experiments with masked associative/semantic 

priming have usually employed a large sample size to obtain a significant effect (e.g., see 

Perea & Lupker, 2003).

In summary, by using explicit modeling methods (i.e., fits from the diffusion model), the 

present lexical decision experiment has revealed that masked and unmasked priming involve 

different cognitive processes: related primes give a head start to the processing of the target 

compared to unrelated primes, whereas unmasked priming involves changes in the decision 

processes. This provides support for the use of the masked priming technique to examine the 

encoding mechanisms during the early stages of visual-word recognition.
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Figure 1. 
Representation of the diffusion model. Panel A shows a representation of the sequence of 

events in a trial of a lexical decision task. Panel B represents the nondecisional components 

of the response time (RT), which have a mean expressed by the Ter parameter and a range 

expressed by the st parameter. Panel C illustrates the diffusion model. The parameters 

represented in Panel C are a: boundary separation; z: starting point; sz: variability in starting 

point across trials; v: drift rate; η: variability in the drift rate across trials; and s: variability 

in drift rate within a trial.
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Figure 2. 
Latency-probability function for unmasked and masked priming conditions for the grouped 

data. The points represent (from bottom to top) the .1, .3, .5, .7 and .9 quantiles. Within each 

panel, from left to right, the columns of quantile RTs represent the responses associative/

semantic primes (A) and their controls (c); identity primes (I) and their controls (c); and 

nonwords (N) and their controls (c). The light circles show the model’s fits.
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