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Purpose: The implementation of motion management techniques in radiation therapy can aid in mit-
igating uncertainties and reducing margins. For motion management to be effective, it is necessary to
track key structures both accurately and at a real-time speed. Therefore, the focus of this work was to
develop a 2D algorithm for the real-time tracking of ultrasound features to aid in radiation therapy
motion management.
Materials and Methods: The developed algorithm utilized a similarity measure-based block match-
ing algorithm incorporating training methods and multiple simultaneous templates. The algorithm is
broken down into three primary components, all of which use normalized cross-correlation (NCC) as
a similarity metric. First, a global feature shift to account for gross displacements from the previous
frame is determined using large block sizes which encompass the entirety of the feature. Second, the
most similar reference frame is chosen from a series of training images that are accumulated during
the first K frames of tracking to aid in contour consistency and provide a starting point for the local-
ized template initialization. Finally, localized block matching is performed through the simultaneous
use of both a training frame and the previous frame. The localized block matching utilizes a series of
templates positioned at the boundary points of the training and previous contours. The weighted final
boundary points from both the previous and the training frame are ultimately combined and used to
determine an affine transformation from the previous frame to the current frame.
Results: A mean tracking error of 0.72 � 1.25 mm was observed for 85 point-landmarks across 39
ultrasound sequences relative to manual ground truth annotations. The image processing speed per
landmark with the GPU implementation was between 41 and 165 frames per second (fps) during the
training set accumulation, and between 73 and 234 fps after training set accumulation. Relative to a
comparable multithreaded CPU approach using OpenMP, the GPU implementation resulted in speed-
ups between �30% and 355% during training set accumulation, and between �37% and 639%
postaccumulation.
Conclusions: Initial implementations indicated an accuracy that was comparable to or exceeding
those achieved by alternative 2D tracking methods, with a computational speed that is more than suf-
ficient for real-time applications in a radiation therapy environment. While the overall performance
reached levels suitable for implementation in radiation therapy, the observed increase in failures for
smaller features, as well as the algorithm’s inability to be applied to nonconvex features warrants
additional investigation to address the shortcomings observed. © 2017 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.12574]
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1. INTRODUCTION

Intrafraction positional uncertainties during radiation therapy
can contribute to inaccuracies in the delivery of a planned
treatment. Positional uncertainties are particularly relevant in
regions which are highly impacted by respiratory motion,
such as the liver, where respiratory motion can be on the
order of several centimeters.1 To account for these

uncertainties, margins are added around target structures so
that the full clinical tumor target can be adequately covered
and treated. However, more extensive margins leads to addi-
tional dose to nontarget structures thereby degrading the
treatment plan quality.2 Image guidance is often used to help
mitigate these uncertainties and reduce the necessary mar-
gins.3,4 Image guidance allows for verification of the target
location throughout a treatment to aid in the accurate delivery
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of the desired dose to the target while sparing as much nor-
mal tissue as possible. In addition, with sufficiently accurate
guidance as to the position of the tumor target, the margin
size can be reduced as positional uncertainties are reduced.
Currently several methods are used clinically or actively
being developed to provide real-time image guidance during
liver treatments, including external tracking systems,5 embed-
ded electromagnetic transponders,6 kV/MV imaging of inter-
nal fiducials,7 and combined MR-linac systems.8 However,
these methods are subject to inherent drawbacks that can
limit their effectiveness in a radiation therapy environment.
External tracking does not always correlate with internal tar-
get motion,9 internal markers are invasive and have been sub-
ject to marker migration,10,11 kV/MV imaging induces added
dose to the patient,12 and MR-linac systems are not widely
accessible and come at a much greater cost than standard
treatment machines.13 Therefore, there is a need for a motion
management technique that can provide accurate image guid-
ance while addressing the drawbacks of the approaches cur-
rently being clinically applied.

In an attempt to provide accurate and noninvasive image
guidance while not largely impacting the dosimetric quality
of the plan, the use of ultrasound for real-time image guid-
ance has been proposed and actively pursued. Ultrasound is
of interest due to its real-time imaging capability, low cost,
high portability, and absence of added patient dose.14,15 Addi-
tionally, ultrasound does not rely on the implantation of any
markers, and is widely available. Furthermore, it has been
demonstrated that avoiding ultrasound probes during radia-
tion therapy treatments does not significantly impact the dosi-
metric properties of the plan, making it well-suited for use
within radiation therapy.16,17 While most work with ultra-
sound tracking has focused solely on the motion visible in the
ultrasound image, feature correspondence between real-time
ultrasound and alternative imaging modalities is also being
considered to potentially better visualize key structures. For
instance, an MR-compatible ultrasound probe currently being
developed by GE Global Research and the University of Wis-
consin-Madison will be used in a novel manner to combine
the real-time imaging features of ultrasound with the excel-
lent soft tissue contrast associated with MRI.18,19

The overall effectiveness of a motion management solution
is inherently dependent upon the accuracy and speed of the
algorithm used to track the motion of the tumor target. Radia-
tion therapy applications require a high degree of accuracy
while maintaining an image processing speed that allows the
radiation therapy system to respond in sufficient time to the
motion of the tumor target in real-time. Often there is a trade-
off between accuracy and speed, especially if more advanced
techniques require additional computational complexity. There
have been several investigations into ultrasound tracking meth-
ods including those based upon the principles of slow feature
analysis,20 normalized gradient fields,21 logDemons,22 Baye-
sian methods,23 and block matching based methods.24–30 A
wide range of tracking accuracies have been reported because
it is often difficult to compare methods due to the variation in
the data sets used for analysis. However, 2D point-landmark

tracking approaches in the liver, as is investigated in this work,
have reached accuracies of less than 2 mm, with the most suc-
cessful achieving an accuracy of <1 mm.24,29 Furthermore, the
image processing speeds of the algorithms can vary greatly,
with several approaches reaching speeds sufficient for real-
time implementation. While the relative effectiveness of sev-
eral of the ultrasound tracking methods presented to date are
sufficient for implementation in radiation therapy, it is believed
that there is potential for further advancement in both tracking
accuracy and speed.

The purpose of this work was to develop an accurate track-
ing algorithm with the potential for real-time tracking of the
motion of tumor targets during radiation therapy. In this
work, a block matching framework is presented in which a
learning approach with multiple simultaneous templates was
used to track point-landmarks (designated by a single point
within a boundary) within the liver.

2. MATERIALS AND METHODS

2.A. 2D liver ultrasound data

Liver ultrasound data were obtained from the MICCAI
Challenge on Liver Ultrasound Tracking (CLUST)
2015.24,31–36 Data were acquired from five different ultra-
sound scanners using probes with center frequencies ranging
from 1.8 to 5.5 MHz. A total of 85 point-landmarks from 39
different ultrasound sequences (1–4 features per sequence)
were annotated by CLUST challenge organizers for validation
of the tracking approach. The point-landmarks approximately
corresponded to the center of tracking features, such as a
blood vessel, as shown by the center dots in Fig. 1. The
image features (specifically the area of a vessel) associated
with the point-landmarks varied in size, position, and orienta-
tion. Image sets were acquired at imaging rates from 11 to
31 Hz and ranged in duration from ~1 to 10 min. The image
acquisition duration of the sequences was on the order of
magnitude of the delivery time for a radiation therapy frac-
tion, making it a representative sample of the tracking dura-
tion necessary for clinical implementation.

In addition to the data used for algorithm validation, algo-
rithm development was primarily based on the CLUST 14
training set data (two sets, five features) and a subset of the
CLUST14 test set data (eight sets, 19 features). The image
sets used for development were similar in frequency, imaging
rate and duration to the data used to validate the algorithm.
Algorithm development was performed using a qualitative
analysis where the tracked contour was visually monitored
with respect to the appearance of the feature. The contour
shape relative to the true feature shape was monitored
throughout tracking for partial contour deviations (drift of
one contour edge from the true boundary), as well as full con-
tour failures. In scenarios where repeated deviations or fail-
ures occurred, the algorithm framework or parameters were
adjusted to track the contour boundary more accurately while
ensuring the modifications did not significantly compromise
the tracking of other features. It should also be noted that
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while algorithm development was almost entirely performed
on the development set mentioned, there were modifications
to the algorithm after viewing the validation data. However,
this was within the rules outlined by the CLUST challenge
and there was no annotation data (outside of the first frame)
available to the authors before submitting the tracking results
to CLUST for final validation.

2.B. Tracking algorithm framework

The algorithm was developed to employ block matching
principles while utilizing both information from the previous
frame as well as information from a rolling training set. Criti-
cal elements of the proposed algorithm include: a global shift
calculation to account for gross displacements, a reference
frame selection to find the most similar feature from a train-
ing set of previously tracked frames, and a localized deforma-
tion calculation based on multiple templates to fine-tune the
contour shape. As shown in the general overview of the pro-
posed algorithm in Fig. 2, these elements are used in every
frame during tracking. Additionally, a rolling training set is
acquired and grown throughout the first K frames of tracking
to be used as reference and to aid in contour shape stabiliza-
tion in future frames. For all comparisons made in the algo-
rithm, the normalized cross-correlation (NCC) was chosen as
a similarity metric where the NCC is given by

NCC u; vð Þ

¼
P

x;y f x; yð Þ � �f u;v
� �

g x� u; y� vð Þ � �g½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y f x; yð Þ � �f u;v

� �2 P
x;y g x� u; y� vð Þ � �g½ �2

q

(1)

where f ðx; yÞ is the search image, gðx; yÞ is the template
image, ðu; vÞ is the image shift, and �fu;v is the mean of f ðx; yÞ
in the area of the template. The NCC was chosen to obtain a
high accuracy when comparing image similarity while limit-
ing the computational complexity such that real-time speeds
could be attained. The NCC is computationally more efficient
than many advanced metrics such as mutual information,
while also being more accurate and robust than other compu-
tationally efficient metrics such as sum of squared differences
or sum of absolute differences.37

Initialization of the tracking algorithm requires a manual
first frame contour be drawn by the user to define the
starting point for the feature boundary. The contour drawn
by the user is converted to a set of discretized points for
tracking by first creating a binary mask of the pixels con-
tained within the contour, and then by using a method
based on the Moore-Neighbor tracing algorithm modified
by Jacob’s stopping criteria.38 For this work all user
defined contours were performed on the first frame of
tracking by an author. Examples of the initialized contours
are shown in Fig. 1. While four features are shown in the
figure to display multiple features at once, in practice fea-
tures are tracked one at a time and are not simultaneously
tracked within an image.

The tracking algorithm is based on tracking the points
comprising the feature boundary. As was referenced previ-
ously (and will be discussed in more detail in Section 2.B.4),
this is based on the concept of multiple simultaneous tem-
plates to provide both shape and temporal constancy. Due to
the fact that multiple templates are compared for each bound-
ary point location, it is required that the number of boundary
points stay constant throughout tracking and that the location
of each boundary point relative to the centroid stay consistent
across training images and tracking images. To ensure valid
comparison between templates on a point-by-point basis,
angular normalization is performed at the end of each track-
ing frame such that the boundary points are always located at
distinct angles about the centroid (i.e. 2°, 4°, 6°, etc.). This is

FIG. 1. Contour initialization. The initialized first frame contours for the
MED-07-4 image sequence. The outer contour is manually segmented on the
first frame to define the boundary points of the features associated with each
landmark point. The landmark points to be tracked are indicated by the single
point at the center of each feature. While multiple features are shown for
visualization, in practice features are tracked one at a time. [Color figure can
be viewed at wileyonlinelibrary.com]

FIG. 2. Tracking flowchart. Generalized flowchart of the algorithm frame-
work.
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achieved by interpolating between the two nearest points in
each direction of a given angle.

2.B.1. Training set accumulation

A training set containing information on the feature
appearance and contour boundary location is acquired
throughout the first K frames of image acquisition. The train-
ing set is referenced at later frames and serves as a mecha-
nism to provide feature shape constancy and prevent contour
drift. As block matching methods are susceptible to drift over
long sequences, the use of a training set helps to provide a
shape constraint to the tracking results that is reflective of the
expected feature shape as observed in the first K frames of
tracking.

At the onset of tracking, the training set only has informa-
tion for the first frame contour which was initialized by the
user. However, for each subsequent frame, the size of the
training set grows and the final boundary for each feature is
stored in memory. The image data corresponding to each
individual feature is cropped such that the tracked centroid of
the feature is centered within the image. This allows for all
training set images to be aligned, and later facilitates an easier
comparison between the tracking frame and all the training
frames. Furthermore, as the training frames will be compared
to tracking frames that may be acquired at a much later time,
it is unlikely that speckle patterns will match between the
frames due to decorrelation. Therefore, the intensities related
to the speckle pattern are eliminated and a mask image based
upon the tracked feature contour is determined. This proce-
dure then allows for a comparison with the training frames on
the basis of high contrast light-to-dark or dark-to-light transi-
tions. The cropped image of the feature will later be used for
reference frame selection and smaller templates centered at
each boundary point will be used for localized deformation
calculations. To avoid repetitive calculations and enhance the
speed of future NCC calculations involving the training
images, sum tables are obtained of the cropped image
intensities and stored in memory as suggested by Luo and
Konofagou.39

Initial implementation utilized a training set of K = 200
frames for all sequences analyzed, which corresponded to
roughly 2–4 breathing cycles depending on the imaging and
respiratory rate. The number of training set frames was set to
encompass much of the expected motion and deformation of
the feature throughout the subsequent frames, while remain-
ing sufficiently small to avoid the introduction of unnecessary
computational complexities.

2.B.2. Global shift calculation

As each new frame of the sequence is acquired, a global
shift calculation is performed to manage gross displacements
of the feature from the previous frame. The global shift mag-
nitude is calculated by performing NCC-based block match-
ing in which a template containing the expected feature
location in the current frame is scanned through a larger

search range in the previous image. The template size of the
current image is a fixed size throughout all frames of tracking
and is given by

TGlobal ¼ WFeat þ TLocal
2

þ dMax;Local þ 10 (2)

where TGlobal and TLocal are the global and local template
sizes respectively, WFeat is the diameter of the feature, and
dMax,Local is the maximum local motion during a given frame.
The template size is set such that it fully contains the feature
plus an additional boundary to allow for feature scaling or
shifting over time. The template is then scanned through a
search range in the previous image that is larger in size than
the template image to allow for a constant 51 9 51 pixel (25
pixel maximum shift) search grid for all features. The fixed
search range size is set to encompass the expected maximum
frame to frame motion. Both the template image and the
search image are centered at the calculated centroid of the
previous frame such that a maximum NCC score at the center
of the search grid would correspond to zero global motion
from the previous to the current frame.

The location in the search grid corresponding to the high-
est NCC score is taken as the global shift from the previous
frame to the current frame given that the NCC was above a
user defined threshold (0.55). The threshold was chosen
based upon qualitative analysis of training set images by visu-
ally assessing the times in which significant shifts were
missed between frames. In the case that there is not a good
match between the previous and the current frame, it is likely
that there has been a substantial change in the feature appear-
ance. Therefore, to attempt to still locate the feature with a
high degree of certainty, a previously well-matched training
image, followed by the initial frame, is used in the global shift
procedure described above. There is still no guarantee that
the training image or initial image will have a similar appear-
ance to the current feature; thus, if all three global searches
have a maximum of less than the threshold, the maximum
across all three is used to define the global shift. The general
process of the globalized matching is presented in the first
module of Fig. 3.

2.B.3. Reference frame selection

The globalized shift provided a rough estimate of the fea-
ture boundary based upon the previous frame; however, in
the framework presented it is desired to also use the acquired
training set information to provide a degree of shape con-
stancy and obtain a second estimate of the feature boundary.
This is done by determining the training set image most simi-
lar to the current image based on NCC. The current image is
cropped and centered (centering based on global shift calcu-
lation in Section 2.B.2) about the feature and then compared
to every image in the training set. The current image and the
training set images are the same size and thus there is no
scanning needed, and only a single NCC calculation is done
for each training set image. The most similar training set
image corresponds to the highest NCC given it is above a
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user defined threshold (0.2). The threshold for the reference
frame selection is set based on qualitative analysis of previ-
ously tracked features. It is set to a relatively low NCC value
to promote matching such that a usable reference frame is
found and to account for the fact that the training images have
often been acquired much earlier than the current image,
making it less likely that the speckle patterns will match well
enough to achieve a very high NCC value. This reference
frame selection is demonstrated in the second module of
Fig. 3.

In the scenario when there is no image in the training set
with a similarity above the threshold, it is likely that the fea-
ture is not centered properly, and thus a previously well-
matched training image is scanned through a larger section of
the current image to determine if the feature has been shifted.
If a representative training image still cannot be found after
scanning the current image, a reference frame is not selected.
Due to the fact that the subsequent steps rely on having both
an estimate from the previous frame as well as from the refer-
ence frame, if there is no reference frame selected, the track-
ing for the given frame is terminated at this point and the

final contour for the frame is the result of the global shift dis-
cussed previously.

2.B.4. Localized matching with multiple templates

By globally aligning the current frame with the previous
frame and by also determining the most similar training set
image, two rigid estimates of the feature boundary in the cur-
rent frame are obtained. To account for localized deforma-
tions that may occur in the contour boundary, block matching
is performed with localized templates for both the masked
reference frame and the previous frame independently rela-
tive to the current frame. The matching is performed at each
boundary point along the contour of the feature. The tem-
plates are initialized in either the previous frame or the refer-
ence frame at each boundary point location and then are
scanned across a search range in the current image. The
search region in the current image is centered at the location
corresponding to the given boundary point in the previous or
reference frame. The localized template sizes and search
ranges used for a given feature were determined as linear

FIG. 3. Single frame tracking procedure. A detailed flow diagram outlining the procedure taken to track each frame. The flowchart is broken down into four mod-
ules, each corresponding to Sections 2.B.2–2.B.5. The first module outlines the global matching in which a template set on the current frame is scanned through
a search region in the previous frame to find the gross shift of the entire feature. The second module uses the result of the first module and then compares the cur-
rent image to all images in the training set to determine a most similar training set image. The third module then uses the results of the global matching and refer-
ence frame selection to perform localized matching with smaller templates to fine tune the contour shape. The templates are initialized at the boundary points of
either the previous or reference frames. Note that only four templates are shown in the image, but in practice they are located at every boundary point. Finally, the
two estimates are combined using a weighting scheme on a point-by-point basis and an affine transformation is calculated based on the estimated boundary points
relative to the previous frame contour to determine the final tracked contour for the current frame. [Color figure can be viewed at wileyonlinelibrary.com]
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functions of the number of boundary points in the initial con-
tour, with a larger number of boundary points corresponding
to a larger local template size. Template sizes range between
9 9 9 and 41 9 41 pixels, while search ranges varied
between 7 9 7 and 11 9 11 pixels. The linear dependence
on the number of points was used such that template sizes
were relatively consistent with respect to the feature size and
to ensure that the localized templates were a subunit of the
feature.

As was mentioned previously, the localized reference
frame calculations are performed using a mask image to
focus on finding high gradient regions that correspond to
the feature boundary, and not on matching the background
speckle pattern that could be subject to decorrelation. This
is demonstrated in the third module of Fig. 3 in which the
localized template initializations about the feature boundary
are shown for both the previous and reference mask
images. While only four of the localized blocks are shown
in the figures for clarity, in practice there is a template
positioned at every boundary point. By finding the best
matching location in the current frame of each template
from the previous and reference frames, two estimates of
the final boundary after accounting for localized displace-
ments are obtained.

2.B.5. Estimate combination and transformation

At this point the goal is to combine the two boundary esti-
mates to determine a single boundary for the current frame.
This is achieved by analyzing the local estimates on a point-
by-point basis and calculating a weighted sum of the expected
boundary locations from the previous and training frames.
The single estimate for each boundary point location can then
be described by

x0m;y
0
m

� �¼ðxm;Ref ;ym;Ref Þþwm;Prev �ðxm;Prev;ym;PrevÞ
wm;Prevþ1

(3)

where m is the boundary point number, ðx0m; y0mÞ is the
weighted boundary point, ðxm;Ref ; ym;Ref Þ and ðxm;Prev; ym;PrevÞ
are the estimated boundary point location based on the refer-
ence and previous estimates respectively, and wm,Prev is the
weight of the previous estimate relative to the reference esti-
mate. The weight of the previous result compared to the refer-
ence result is determined for each independent boundary
point based upon the matched NCC values, with better
matches being weighted more heavily. The one-to-one point
correspondence between the previous and training frames
necessary for the point-wise analysis is achieved through the
angular normalization described in Section 2.B. The new set
of weighted boundary points is then analyzed for possible
outliers on the basis of low NCC scores (0.1 reference, 0.92
previous), large angular movements, or large differences
between the training and previous matches. The NCC cutoffs
used were primarily based on qualitative analysis of times in
which the algorithm struggled to correctly identify feature
boundaries. For instance, the NCC cutoff relative to the

previous frame is primarily based on algorithm performance
near regions of shadowing, where at lower cutoffs the algo-
rithm had the potential to fail to detect outliers that had incor-
rectly extended into the neighboring shadowing regions.

Ultimately, the final contour is determined by calculating
the affine transformation from the previous frame contour to
the new weighted estimate for the current frame. This trans-
formation is given by

x0

y0

1

2
4

3
5 ¼

a b c
d e f
0 0 1

2
4

3
5

xPrev;Init
yPrev;Init

1

2
4

3
5 (4)

where ðx0; y0Þ is the weighted boundary points and
(xPrev,Init, yPrev,Init) is the previous contour’s initial boundary
points. A least squares approach is used to determine the
most appropriate transformation from one set of points to the
other. The determination of the affine transformation is per-
formed with the outlier points having been removed from
both boundary point sets. The estimated affine transformation
can then be applied to the full set of previous boundary points
(previously determined outliers included) to obtain the final
contour in which the total number of boundary points is the
same as all previous frames.

2.C. GPU implementation

To enhance the image processing speed and take advan-
tage of the fact that the proposed algorithm is parallelizable,
the block matching algorithm was implemented on a graphics
processing unit (GPU). The main algorithm was written in
MATLAB; however, several MATLAB executable (mex) files
calling OpenCV functions or custom CUDA kernels were
implemented. The CUDA kernels were written to take advan-
tage of the computational capabilities of a GPU and to
address the repetitive NCC calculations which arise in the
reference frame selection and localized matching.

The calculations associated with the reference frame selec-
tion are rather straight forward, as the current image is
directly compared to each static training image of the same
size. Thus, there is no translation of the template image and
simply 200 static NCC calculations are performed. This is
performed on the GPU by first utilizing a kernel to perform
the pixel-wise multiplications associated with the NCC
numerator. Then, a separate kernel is used to fully calculate
the NCC between the current image and each possible train-
ing image, where each training image is calculated with an
independent thread. Conversely, detection of the localized
templates requires a dynamic shifting of the template image
within the search image. Therefore, a different kernel struc-
ture is implemented for the localized matching in which each
kernel block is associated with a distinct boundary point, and
each kernel thread is associated with a possible displacement
within the search range of the given boundary point. Subse-
quently, the optimum location of the localized template corre-
sponding to each boundary point is determined using
independent threads for each boundary point.
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2.D. Tracking algorithm validation

For each feature of interest, the centroids of the tracked
contours were determined at every frame and the net dis-
placement of those centroids relative to the initial contour
centroids were calculated. As the goal was to track the speci-
fic point-landmarks annotated by the CLUST organizers, the
net displacements of the contour centroids were used to infer
the motion of the point-landmarks. This was done in a man-
ner that assumes the same net displacement between frames
for both the contour centroid and the point-landmarks. Due to
the fact that the point-landmarks roughly corresponded to the
feature centroid in all cases, this was considered to be a valid
approach. The average difference between the contour cen-
troid after initialization and the first frame point-landmark
annotation was < 0.5 mm, which is on the order of the
expected interobserver annotation variability (0.5–0.6 mm)
reported by De Luca.31 The results of the inferred point-land-
marks were then compared to ground truth as annotated by
the CLUST organizers and the Euclidean distance of the
inferred point-landmark from ground truth was used to char-
acterize the performance.

Timings of the algorithm processing speed were per-
formed using the average of three independent runs of the
same feature with the image sets preloaded into memory. The
primary timings reported in this work are associated with the
GPU implemented version of the algorithm. Additionally, to
characterize the relative speedup obtained by using a GPU as
opposed to a CPU for the reference frame selection and local-
ized matching, a comparison to a multithreaded C++ imple-
mentation was explored. All validation testing was performed
using an Intel Xeon E5-2609 2.40 GHz CPU with 1 TB
memory and using a Tesla M2090 GPU card with 6 GB
GDDR5 memory and 512 CUDA cores.

3. RESULTS

A summary of the overall performance as well as the per-
formance for each sequence subset (different acquisition loca-
tion and scanner) is provided in Table I. Values are provided
for the total number of features for each subset as well as the
mean, standard deviation, 95th percentile, and maximum
tracking errors. A full breakdown of the tracking including
the mean, standard deviation, and maximum error for each
point-landmark can be found in supporting information.
Additionally, Fig. 4 provides the mean tracking accuracy for
all features relative to the number of points in the initialized
contour.

Overall the algorithm displayed a mean accuracy of
0.72 � 1.25 mm across the 85 features analyzed. The aver-
age accuracy observed would be sufficient for tracking in
radiation therapy and is in line with current state-of-the-art
tracking methods. With respect to a 2.0 mm tracking accu-
racy threshold (as is used in work by O’Shea29), successful
tracking was observed for 82 of the 85 features, with
6.14 mm being the worst tracking error observed. The largest
tracking error was a result of the algorithm detecting a similar

nearby feature and detecting that feature as opposed to the
feature of interest. Noting Fig. 4, the two largest tracking
errors observed occurred in features with a small number of
boundary points, indicating the potential for the algorithm to
struggle for smaller features. Additionally, it was observed
that tracking of the feature contour performed well for fea-
tures that had distinct boundary edges; however, there was
susceptibility for the tracking to struggle maintaining a con-
sistent contour on features that lacked distinct boundary
edges. Relatively consistent results were seen throughout all
subsets of data. The average accuracy per scanner subset ran-
ged between 0.65 and 0.89 mm. The consistency across scan-
ners demonstrates the minimal performance dependence on
the scanner or transducer used and the potential of the algo-
rithm to be applied across multiple systems.

The processing speed was analyzed during the training set
accumulation and postaccumulation independently on a per
feature basis with the image sequences preloaded into

TABLE I. Tracking performance summary. A summary of the overall perfor-
mance of the algorithm on all the features tested. Each sequence type repre-
sents a different scanner that the sequences were acquired from and the
number of features is the total across all sequences for a given scanner. Addi-
tionally, the mean, standard deviation, 95th percentile, and maximum track-
ing accuracies are presented.

Sequence No. Feat.
Mean
(mm)

St. dev.
(mm)

TE 95th
(mm)

Max
(mm)

CIL 6 0.89 0.87 2.45 8.58

ETH 30 0.65 1.46 1.43 24.30

ICR 13 0.78 1.27 1.81 11.00

MED1 27 0.86 0.79 2.11 10.34

MED2 9 0.74 0.53 1.71 4.48

2D 85 0.72 1.25 1.71 24.30

FIG. 4. Individual feature tracking accuracy. The mean tracking accuracy is
shown for all features analyzed with respect to the number of points in the
initialized contour. Tracking failure (Tracking Error > 2.0 mm) was
observed in three features with the worst two tracking errors occurring for
small features with a low number of boundary points. [Color figure can be
viewed at wileyonlinelibrary.com]
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memory. The processing speeds observed per frame per fea-
ture object ranged from 41 to 165 frames per second (fps)
during accumulation of the training phase, and from 73 to
234 fps postaccumulation. The processing speed exceeded
the imaging rate of the associated acquisition for all
sequences. As shown in Fig. 5(a), processing speeds were
determined to be dependent upon the overall number of
boundary points in the initialized contour, with speeds
decreasing with increasing number of points.

Implementation of the algorithm using a GPU for refer-
ence frame selection and localized matching calculations
resulted in speedups between �30% and 355% during train-
ing set accumulation, and �37% and 639% postaccumulation
relative to a multithreaded C++ implementation. The
observed speedup on a per feature basis is presented in
Fig. 5(b). It was observed that GPU implementation did not
always perform better, as the CPU implementation performed

at a faster rate for small features; however, for large features
the GPU implementation greatly outperformed the CPU
implementation where a speedup of greater than 600% was
observed. The CPU implementation performed better for fea-
tures containing a smaller number of points as the computa-
tional load remained relatively low, and thus the GPU
speedup was offset by the overhead associated with copying
the data from the hard drive to the GPU memory, and vice
versa. The point at which the GPU implementation became
advantageous and the relative speedup became positive
occurred when the feature size reached approximately 50
boundary points.

4. DISCUSSION

This work presented an algorithm for the 2D tracking of
features in ultrasound for the purposes of image guidance
during a radiation therapy procedure. A training set of feature
information was accumulated over the first K = 200 frames
of tracking in an attempt to help negate drift and provide
shape constancy to the tracked contour. Obtaining the accu-
mulated training set in turn enabled the simultaneous use of
information from both the previous frame (temporal con-
stancy) and a training frame (shape constancy) to consistently
track features of interest. Furthermore, the localized block
matching was performed using boundary point initialization
to enable a search based on boundary edges and high contrast
regions as opposed to speckle patterns which can decorrelate
over time.

As block matching in general is not a new concept, this
work is clearly not the first to implement the general princi-
ples for the purposes of ultrasound tracking, and thus this
work drew off of several principles of similar works. For
instance, the globalized matching step in Section 2.B.2 is
quite simply a na€ıve correlation-based block matching
approach where the previous frame is always used as refer-
ence (in our case with the template encompassing the entire
feature). Correlation-based block matching has been applied
in several other works, either as the primary focus, or simply
as a smaller portion of the overall algorithm.24–26,28–30,40 It
has been shown by both De Luca et al.24 and O’Shea et al.29

that this na€ıve approach applied by itself performs poorly over
long sequences, necessitating the need for additional stabi-
lization techniques to avoid the effects of drift. To address
this concern over long sequences, De Luca24 proposed the
use of a training set, and Kondo25 took a similar approach as
well, in which accuracies of 0.96 mm and 1.71 mm were
reported respectively. Methods outlined in Section 2.B.3
make use of a training set and the selection of a reference
frame which is similar to the works of De Luca and Kondo.
However, while a few of the underlying concepts are derived
from other works, what distinguishes this work from these
previous approaches and allowed for advances in accuracy
include the training set accumulation, the simultaneous use
of multiple templates on each frame, and the use of a mask
image for the localized matching along the boundary of the
contour.

FIG. 5. GPU image processing speed. The image processing speed in frames
per second for the GPU implementation of the algorithm as a function of the
number of points in the initial contour is presented and compared to the
imaging rate in (a). The image processing speed decreased with increasing
contour size. The relative speedup obtained by implementing the reference
frame selection and localized matching calculations on the GPU as opposed
to an OpenMP CPU based approach is shown in (b). As the initial contour
size increased so did the observed speedup. [Color figure can be viewed at
wileyonlinelibrary.com]
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In this work, a training set was accumulated from the
tracking results of the first K = 200 frames without the use of
a pretreatment scan. Theoretically the size of the training set
could be adjusted to accommodate a variable number of
breathing cycles; however, there will be a tradeoff between
encompassing more of the projected motion scenarios and
the added computations to extend the training set size. By
obtaining the training set from the initial tracking results, the
necessity of a pretreatment scan, or a pure learning phase,
was eliminated, which could potentially lead to more accurate
tracking as well as a more suitable clinical workflow. Obtain-
ing the training set from the first several frames of tracking
will limit the potential for any gross displacements of the
transducer or patient anatomy between the training set acqui-
sition and the beginning of tracking, and will likely allow for
a more representative training set of the true feature shape
and orientation expected. Additionally, by utilizing the first
subset of the frames acquired, we obtain the training set of
information in a timeframe at which the tracking is the most
accurate. If the training information were taken or updated at
later times in the tracking sequence, there is a greater proba-
bility of drift or error accumulation, resulting in poor repre-
sentation of the true feature shape. This is of importance as
there is no way to truly validate whether a contour is correct
or not during the tracking procedure and thus it is essential to
acquire this training set during the time at which the tracking
is expected to be most accurate.

Additionally, this work utilized multiple templates simul-
taneously for each frame as opposed to choosing a single
template from a set of possible options. Since boundary
point-to-point correspondence between the previous and
training frames was obtained by normalizing the boundary
points at set angles about the centroid, analysis could be per-
formed on a boundary point-wise basis. Theoretically the cor-
responding boundary points in both templates are trying to
find the same boundary points in the current image, thus the
results could be compared to obtain a weighted average with
information from both the previous and a training image. A
single reference frame can either provide temporal constancy
(previous frame) or shape constancy/renormalization (train-
ing frame) to the tracked contour. Our approach was able to
simultaneously use both templates in order to provide tempo-
ral and shape constancy at each frame. Another advantage of
this approach was that it enabled the better detection of
potential outlier boundary points as the position of a given
boundary point based on each template could be compared
on an absolute scale. If a large difference was seen between
the previous frame’s match and the training frame’s match,
the boundary point could be removed when calculating the
transformation since it was likely unrepresentative of the true
boundary.

Finally, by performing the block matching at localized
regions surrounding each of the contour boundary points, the
templates were able to be initialized at strategic locations on
feature edges. Positioning the templates along the feature
edges allowed for the use of the most relevant and easily dis-
tinguishable information for each feature by emphasizing

high contrast regions of the image as opposed to pure speckle
patterns. Boundary point block initialization has been done
in the past by Boukerroui;27 however, in this work it was cou-
pled with the use of a training set mask image. Finding
blocks that contained boundary edges greatly enhanced the
performance of the algorithm, especially when finding
matches from the training set mask images. As it was likely
that the training data was taken at times much different than
the analysis frame, it could not be reasonably expected for the
speckle pattern to be consistent. Due to out of plane motion
as well as nonuniform movement of scatterers, the speckle
pattern in 2D images has been known to decorrelate over
time.41 Therefore, trying to find blocks from a comparison
image which contains a large degree of speckle pattern and
was taken at a time much earlier than the analysis image is
not always valid, and could lead to poor results. Therefore,
by eliminating all dependence on the speckle pattern and
using a mask of the training images, a more representative
match could potentially be found in the tracked frame.

Our results have shown how the addition of these novel
aspects of the algorithm have allowed for the accurate track-
ing of point-landmarks within ultrasound sequences. The
accuracy reported is comparable to or exceeds alternative 2D
tracking methods. The mean tracking error of �0.72 mm
compared favorably with other algorithms applied to the
CLUST 15 data set, with the next closest algorithm present-
ing a mean tracking error of �1.21 mm.22 However, there are
differences between how this method and other methods were
applied to the CLUST 15 data that are noteworthy. This
approach was developed after the on-site challenge con-
cluded, implying that access to all data was allowed before
computation as opposed to only 80% of the data for those
participating in the on-site challenge. Additionally, our
method relied on a first frame initialized contour as opposed
to a single point landmark initialization. However, the method
submitted was still within the rules outlined by the CLUST as
all parameters were either automatically determined or fixed
across all sequences, ensuring that the algorithm was not
optimized for each individual sequence.

While the algorithm performed extremely well for the
overall feature set, several limitations were observed through-
out the development and testing of the algorithm that will
need to be addressed moving forward. It was observed that
the algorithm may be at a disadvantage when encountering
extremely small features, poorly defined feature boundaries,
and nonconvex features. As shown in Fig. 4, the two worst
tracking performances observed were for features with a lim-
ited number of boundary points in the initialized contour.
While theoretically the algorithm should still work with a
limited number of boundary points, the effects of an unde-
tected outlier have a much greater chance of producing inac-
curate results than it would for larger features. With a smaller
number of boundary points, each boundary point carries a
greater weight, meaning a single poor match can greatly
impact the entire contour and cause it to lose the true feature.
Relatively poor performance was also observed in features
with poorly defined feature boundaries, for instance if a
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feature has a very bright top and bottom edge however the lat-
eral edges of the feature tend to slowly transition to speckle.
This can especially be of concern for matching with the refer-
ence frame which strongly depends on the high contrast
regions at feature boundaries. Because there was poor defini-
tion of feature edges, many of the points near these regions
were either removed as outliers due to poor matches or
matched to a high contrast neighboring structure, leading to
large variability of the contour. While ultimately the well-
defined regions of each individual contour allowed for rea-
sonable point-landmark tracking, the large variability at
regions that did not exhibit large intensity gradients led to a
worsened contour estimation and a decreased accuracy. The
degree to which this effect is observed could be impacted by
the image compression used before analysis. For this work
the images were provided to the user in PNG format, a loss-
less compression method, and thus minimal effect was
expected. However, had the data been analyzed based on a
lossy compression method, such as JPEG, there could have
been a loss of details in the low contrast regions and a poten-
tial negative impact on the algorithm performance. While it
was not demonstrated in the features analyzed in the work, a
further limitation of the algorithm is the current inability to
handle grossly nonconvex feature sets. To analyze the best
match from the previous frame and a training frame, and
compare them to each other on a point-wise basis, an angular
regularization of the contour boundary points was adopted
into the framework as was discussed in Section 2.B. This
ensured that the same number of boundary points was always
present, and that the boundary points for both the previous
and training frames occurred at the same angles about the
centroid. However, this angular regularization approach is
only applicable for convex, or very nearly convex features. In
the event of a nonconvex contour, there is the potential for
multiple occurrences of a given angle, thus allowing for
potential inaccuracies and multiple answers during the angu-
lar interpolation. This shortcoming is not represented in the
accuracy presented as all features were either convex, or very
nearly convex such that the issue did not arise. However, as
we are aware of the potential for nonconvex features in prac-
tice, investigation into an alternative approach applying
deformable registration between consecutive mask images to
establish point correspondence is also being explored.

The algorithm processed the image data at speeds (41–
165 fps training accumulation, 73–234 fps postaccumula-
tion) that exceeded the imaging rate (11–31 fps) for each
ultrasound sequence. Since this work was performed using a
set of retrospective ultrasound sequences, the data transfer
latency from the imaging unit to an external processing unit
is unknown. However, the degree to which the image process-
ing speeds exceeded standard 2D imaging rates provided con-
fidence that the algorithm has the potential to be used for
real-time application. The observed image processing speed
also showed the effectiveness and necessity of applying the
algorithm on a GPU. When the algorithm was implemented
on the CPU only, it was observed that the average speeds
failed to reach real-time rates for 8 of the features. Failure to

reach the real-time rate could then lead to an increasing
latency of triggering the beam on or off relative to the image
acquisition over time, or necessitate the skipping of frames to
allow for the analysis to keep up with the image acquisition.
The GPU implementation proved to enhance the paralleliz-
able calculations, as speed increases between �30% and
355% during training set accumulation, and �37% and
639% postaccumulation were observed. With a GPU, real-
time rates were reached for all features, a substantial improve-
ment in performance. Not only is this significant because it
allows for processing at a rate equal to or faster than acquisi-
tion to avoid buildup of images, but it is also significant with
respect to the overall motion management system latency.
The latency of an MLC tracking system is composed of the
image acquisition, processing, and MLC repositioning
speeds. Sawkey et al. has shown that system latency is the
dominant source of positional uncertainty when applying
MLC tracking and that a reduction in latency from 200 ms to
100 ms can lead to a reduction in necessary margins from
4.6 mm to 3.1 mm.42 The decrease in margins would then
subsequently decrease the normal tissue dose while still
delivering an adequate dose to the target. Therefore, if the lar-
gest feature seen in this work (134 boundary points) is con-
sidered, the average processing speed is reduced from 88 ms
to 13 ms by implementing the algorithm on the GPU as
opposed to the CPU, resulting in an overall decrease in sys-
tem latency of 75 ms, which could be significant in terms of
margin reduction. It was also demonstrated that the effective-
ness of the GPU was enhanced with a greater number of nec-
essary calculations, as Fig. 5(b) demonstrates an increase in
speedup with increasing number of points. With this in mind,
as the work is expanded to 3D, it is expected that the GPU
implementation will become more useful and provide an even
greater speedup due to the added calculations and increased
number of boundary points that will come with an added
dimensionality.

While this work focused solely on the tracking of liver
vessels from retrospective ultrasound image sets, the desire is
for the algorithm to eventually be applied in a clinical setting.
With this in mind, it is important to consider the potential
impact a clinical situation may have on the algorithm perfor-
mance, as well as alternative applications. As has been men-
tioned, the algorithm relies on a manual first frame contour
initialization. In the setup used in this work, the contour was
initialized on the first frame and tracking consequently began
at the next acquired frame. However, clinically the time
latency between contour initialization and the beginning of
tracking will be much longer than the time between consecu-
tive images. This effect has not yet been explored, however,
will likely rely on either patient breath-hold during contour
initialization, or frame matching to ensure that the feature is
at a similar location relative to the initial contour when track-
ing begins. Additionally, this work focused on the tracking of
liver vessels, however clinically the PTV is more often of
interest. In an ideal scenario, the tracking algorithm could
simply be used to directly track the PTV if it is visible in the
ultrasound image. However, in the case where the PTV is not
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visible on the ultrasound image, the liver vessels proximal to
the tumor target will generally be used as a surrogate to esti-
mate PTV position. Therefore, the overall clinical effective-
ness of the tracking approach will not only rely on the
tracking of the vessels, but additionally on the mapping accu-
racy between the vessels and the PTV. Additionally, the clini-
cal impact of the algorithm implementation does not have to
be limited to ultrasound, as it could be applied to alternative
imaging modalities such as MRI with systems such as the
ViewRay MRIdian� or future MR-linac systems. Preliminary
investigations into the tracking of both liver vessels and lung
tissue with MRI have shown favorable results, and the possi-
bility of direct tumor tracking with applied contrast agents is
a potential future application.

5. CONCLUSIONS

This work implemented a 2D block matching algorithm
while simultaneously using multiple templates to retrospec-
tively track point-landmarks in ultrasound sequences. We
have implemented the use of a rolling training set as a method
to retain information about features throughout several initial
breathing cycles and to aid in subsequent tracking of the fea-
tures. Through the simultaneous use of training set images
and the previous image we were able to provide both shape
and temporal constancy to aid in the consistent tracking of
feature contours, and subsequently point-landmarks, through-
out long ultrasound sequences. The high accuracy
(�0.72 mm) and image processing speed (41–165 fps train-
ing accumulation, 73–234 fps postaccumulation) exhibited
have demonstrated the potential of the algorithm to be used
as an effective real-time tracking approach for radiation
therapy.
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Additional Supporting Information may be found online in
the supporting information tab for this article.

Table SI. Full Tracking Performance. A full summary of the
tracking performance on each feature tested from the CLUST
15 data set. The mean, standard deviation and maximum error
are presented for each feature.
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