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Abstract

Opioids, and more specifically μ-opioid receptor (MOR) agonists such as morphine, have long 

been clinically used as therapeutics for severe pain states but often come with serious side effects 

such as addiction and tolerance. Many studies have focused on bringing about analgesia from the 

MOR with attenuated side effects, but its underlying mechanism is not fully understood. Recently, 

focus has been geared toward the design and elucidation of the orthosteric site with ligands of 

various biological profiles and mixed subtype opioid activities and selectivities, but targeting the 

allosteric site is an area of increasing interest. It has been shown that allosteric modulators play 

key roles in influencing receptor function such as its tolerance to a ligand and affect downstream 

pathways. There has been a high variance of chemical structures that provide allosteric modulation 

at a given receptor, but recent studies and reviews tend to focus on the altered cellular mechanisms 

instead of providing a more rigorous description of the allosteric ligand's structure–function 

relationship. In this review, we aim to explore recent developments in the structural motifs that 

potentiate orthosteric binding and their influences on cellular pathways in an effort to present 

novel approaches to opioid therapeutic design.

Graphical abstract

Keywords

Allosteric modulation; Opioid receptors; Cannabinoid receptors; Sigma receptors; Heterodimers; 
Pain therapeutics; Opioid side effects

*Corresponding Author: Phone: 1-520-626-2820. Fax: 1-520-626-2204. yeon@email.arizona.edu. 

Author Contributions: The manuscript was written through contributions by M.R., V.J.H., F.P., and Y.S.L.

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
ACS Chem Neurosci. Author manuscript; available in PMC 2018 June 21.

Published in final edited form as:
ACS Chem Neurosci. 2017 June 21; 8(6): 1147–1158. doi:10.1021/acschemneuro.7b00090.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

The μ-opioid receptor (MOR) is the target for most clinically available opioid drugs of 

which the majority are small molecules (morphine, codeine, fentanyl, etc.) that bind to the 

orthosteric site. It is a prominent pharmacological target for both acute and chronic pain 

states but has also been implicated as being a viable treatment for mood disorders.1 These 

agonists bind to the orthosteric site of the MOR, bringing about analgesia, but also come 

with serious side effects such as tolerance, respiratory depression, nausea, constipation, 

allodynia, and addiction through direct receptor activation in acute and/or chronic 

administration scenarios.2–4 Because of the presence of these detrimental effects, the opioid 

receptors, and more specifically the MOR, has been scrutinized to better effectively bring 

about pain modulation with the idea of adverse effect attenuation or ablation. Various 

approaches have been underway to circumvent this issue: (i) biased ligands,5 (ii) 

multifunctional (or multivalent) ligands,6,7 (iii) partial agonists due to having reduced 

efficacy relative to full agonists,8 and (iv) coadministration of multiple agonistic and/or 

antagonistic compounds.9 Although these approaches have afforded ligands with improved 

side effect profiles, they all interact with the orthosteric site. As of late, momentum has been 

shifting toward generating allosteric and bitopic ligands as opposed to orthosteric ligands.10

The opioid receptors are class A G-protein-coupled receptors (GPCRs) that contain seven 

hydrophobic transmembrane domains and elicit their signaling through heterotrimeric G-

proteins that reside on the intracellular surface to bring about a plethora of signaling 

cascades and responses.11 This receptor type is targeted by approximately 30–40% of 

currently marketed drugs attributed to their direct involvement in disease states and high 

potential druggability, for both cellular location and distribution, and receptor variance, 

allowing for selective therapeutics.12 A wide array of stimuli interact with GPCRs including 

small molecules, lipids, amino acids, and peptides, which upon binding induce a ligand-

dependent conformational change in the receptor, and depending on the nature of the ligand, 

recruit certain proteins or activate others. Opioid receptors and other GPCRs can also bring 

about cellular responses through pathways independent of G-protein-related signaling such 

as those originating from β-arrestin. This protein plays an important role in receptor 

desensitization and internalization, and it is theorized that biased signaling toward the G-

protein-mediated pathway as opposed to the β-arrestin route may be clinically beneficial 

considering it was shown that β-arrestins negatively impact antinociception and are 

correlated with MOR-related side effects.13–16 The three classic opioid receptor types are 

the μ-opioid receptor, δ-opioid receptor (DOR), and κ-opioid receptor (KOR). These 

receptors share approximately 60% sequence homology, mostly within the receptor's 

transmembrane domains, and signal through Gi/o, which leads to the inhibition of cyclic 

adenosine mono-phosphate (cAMP) formation from ATP, a reaction catalyzed by the 

enzyme adenylyl cyclase, and ultimately leads to the inhibition of cyclic adenosine, 

impacting the activities of ion channels and gene transcription.17

Numerous drugs target the orthosteric site (the location at which the endogenous ligand 

binds) and activate (agonist) or inhibit (antagonist) the receptor's activity. However, focus 

has been shifting toward the development of therapeutic compounds that target the allosteric 

site(s) of a receptor and potentiate the desired effect of the orthosteric ligand without 
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eliciting activity on its own.18 The allosteric site can be found within the nonconserved 

regions of a receptor, allowing for enhanced selectivity among GPCR receptor subtypes and 

thus restricting off-target activity, giving attenuated side effects compared to their orthosteric 

ligands. Because of there being a lack of evolutionary similarity, these allosteric sites can be 

species- and receptor-dependent, and thus a compound that shows great promise in mouse 

models may not be translatable to humans. It is important to understand that the allosteric 

site does not interact with the orthosteric ligands. This characteristic enables drug discovery 

programs to bypass some of the major hurdles when dealing with selectivity. When it comes 

to dealing with multiple receptors that interact with the same endogenous ligand(s), it is 

typically found that the orthosteric sites between the receptors share high sequence 

homology in the region(s) deemed critical for ligand–receptor interaction and to which 

additional detrimental effects are often attributed. Furthermore, this provides a fresh start in 

exploring chemical space/scaffolds that target this site. In addition to this benefit, allosteric 

ligands can preserve the temporal and spatial fidelity of receptor activity in vivo by 

elucidating an effect only in the presence of an orthosteric ligand in a desired region. 

Particularly when dealing with opioids in which the central nervous system (CNS) is 

primarily targeted as opposed to the periphery, neuronal circuitry is tightly regulated with 

the triggered release of neurotransmitters in an exact and timely manner. Systemic 

administration of a therapeutic orthosteric compound can cause broadened site activation in 

extraneous tissues, which can dramatically hinder the therapeutic potential. Furthermore, 

orthosteric ligands constitutively activate a receptor enabling receptor desensitization and 

internalization, which correlate with tolerance and dependence, not to mention increased 

toxicity. Off-target side effects could be avoided as the allosteric ligand would only act in 

cells where innate opioid signaling occurs with the respective endogenous ligand.

Functional selectivity, or bias signaling, has recently drawn significant attention as a 

plethora of research cohorts have attempted to elucidate the various ligand-initiated 

signaling pathways, especially in the opioid arena, and yet there is a paucity of 

definitiveness when it comes to the underlying mechanisms. It has been shown that agonists 

can influence β-arrestin pathways, which have a tendency to result in receptor internalization 

and recyclization, receptor phosphorylation, impact the actions of ion channels, and mediate 

adenylyl cyclase.19–25 Allosteric compounds can produce bias signaling by differentially 

controlling signaling pathways.24 Allosteric modulators can mediate signaling away from 

pathways that control unwanted side effects, and considering that these influences are 

restricted by their ceiling cooperativity threshold with the orthosteric ligand, can further 

decrease overdose liability.26,27 In particular, in circumstances where a receptor's 

endogenous ligand is not yet known, allosteric modulation can be particularly effective. 

Allosteric modulators do exhibit probe dependence, meaning that they show different 

activities depending on the orthosteric agonist.28,29 In receptor systems such as the opioid 

receptors, where multiple endogenous ligands have been discovered, along with biologically 

active metabolites of the endogenous ligand(s) and where marked variance of orthosteric 

ligand scaffolds are observed (small molecule alkaloids to peptides of various length such as 

the enkephalins to β-endorphin), the complexity of modulator activity elucidation can pile 

up quickly as the same allosteric modulator can have a range of activities for multiple 

ligands. (Figure 1)
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Considering allosteric modulators can result in a range of actions at the targeted receptor, 

they are divided into categories depending on their ability to modulate activity. Negative 

allosteric modulators (NAMs) may have no standard activity, but when bound to the target 

receptor can inhibit the binding of orthosteric ligands and/or lessen the efficacy of the 

receptor's orthosteric ligand (Figure 2). This reduction is typically seen in finite rightward 

shifts of the orthosteric ligand's potency/efficacy.30 At the point at which modulator 

concentration has saturated the allosteric sites on all of the receptors, no decrease in 

functional potency or efficacy by the orthosteric ligand is seen despite increasing the 

modulator's concentration. Silent allosteric modulators (SAMs), also referred to as neutral 

allosteric ligands, do not interfere with the orthosteric ligand's ability to bind or produce a 

signal but competitively antagonize the allosteric pocket, inhibiting other positive allosteric 

modulator (PAM) or NAM activity. Lastly, allosteric ligands can generate receptor signaling 

in the presence of the orthosteric ligand. PAMs have garnered the most attention in the 

literature as they potentiate the orthosteric ligand's binding affinity and/or efficacy but can 

have no inherent effect on its own in the absence of the orthosteric ligand. These results can 

be achieved by promoting specific conformations for orthosteric binding or reducing the 

dissociation rate of the ligand. This usually shows as a finite leftward shift in the functional 

potency/efficacy of the orthosteric ligand. Similar to the NAMs' effect, this finite shift can be 

taken advantage of by designing PAMs that are unable to shift potency and/or efficacy past 

the desired range. This has significant implications for enabling orthosteric ligands to have 

decreased toxicity and patient risk of overdosing. Because of the nature of PAMs, the 

temporal and spatial fidelity of cell signaling is maintained in vivo and receptor 

downregulation can be circumvented along with other mechanisms that are triggered upon 

constitutive activation from orthosteric agonists. This can potentially lead to decreased 

tolerance and addiction compared to when only the orthosteric agonist is administered. It has 

been surmised that coadministration of a receptor agonist with a PAM at a lower dose rather 

than just administration of orthosteric agonist can result in the same functional activity. This 

has been partly verified by coadministration of an agonist with a PAM for the GABAB 

receptor resulting in a decreased level of receptor desensitization but the same level of 

functional activity compared to those of a higher dose of orthosteric agonist and thus may 

potentially be applied to opioid systems.31

Herein, we scrutinize the recent literature regarding opioid allosteric modulators from a 

structural perspective and their ability to affect the affinity of orthosteric ligands and 

influence signaling pathways. Furthermore, the arena of opioid receptor heteromers is 

traversed, and the additional complexities of allosteric modulation that is inherent in 

heteromeric complexes is scrutinized. The hallmark benefits of targeting the allosteric site 

for novel therapeutic approaches is quite evident in the numerous studies explored and is a 

testament to the growing consideration and interest in this field.

MOR

The MOR has been the classic therapeutic target for pain treatment. Mice that have had the 

MOR gene ablated show a loss of morphine-induced antinociception.32 Clinically available 

MOR agonists such as morphine, codeine, and fentanyl bind to the orthosteric site and 

produce antinociception but also result in serious side effects such as tolerance, respiratory 
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depression, and addiction.2–4 These side effects are reversed when MOR antagonists are 

administered and are not observed in MOR-knockout animals, showing that these effects 

indeed originate from the MOR.32 Thus, the current paradigm is the development of 

powerful analgesics at the MOR but in such a way that the side effects are greatly attenuated 

or nonexistent. Multifunctional ligands that target multiple opioid receptors and the use of 

partial agonists are examples of ways that this can be achieved, but targeting the allosteric 

site may provide an additional approach and is inherently more advantageous to the 

biological system.

Before the MOR PAMs, two opioid NAMs were discovered. Cannabidiol (Figure 3), a 

cannabinoid type-1 receptor (CB1) agonist, was identified as a NAM of MOR and DOR 

agonists.33 Salvinorin A, a potent KOR agonist, was also identified as a NAM of MOR in a 

high-throughput screen using a β-arrestin recruitment assay.34 Cannabidiol accelerated the 

dissociation of [3H][D-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin (DAMGO) from the MOR by at 

least a factor of 12 and also [3H]naltrindole from the DOR by at least a factor of 2.33 This 

was shown in both saturation binding studies and time-dependent alteration of equilibrium 

studies. Cannabidiol exhibited a Hill coefficient indicative of positive homotropic 

cooperativity, suggesting that it binds to an allosteric site. In addition, a 10 μM concentration 

of cannabidiol rightward shifted the dose–response curve of DAMGO in its inhibitory effect 

in the electrically induced twitch response test in the mouse vas deferens.35 Despite the 

NAM properties exerted by cannabidiol, its allosteric effects occur at much higher 

concentrations than its activity in vivo.

Salvinorin A, a KOR agonist, was found to partially inhibit the binding of opioid ligands 

DAMGO, diprenorphine, and 6β-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5α-

epoxymorphinan (IOXY), shifting their inhibition curves to the right while giving off a 

lower Emax, which is a profile that is parallel to that of NAMs (Figure 4).34 Salvinorin A 

also impacts the Kd and Bmax of the MOR in a way that is diverse from competitive binding 

patterns. This compound first augmented the MOR Bmax followed by a significant decrease 

at higher concentrations and affected the Kd of the MOR in a dose-dependent manner 

instead of in a linear fashion that was observed with a competitive inhibitor.36 Salvinorin A 

also affects the disassociation kinetics of MOR radioligands by increasing the disassociation 

rate of DAMGO and slowing the disassociation rate of diprenorphine. Lastly, Salvinorin A 

was shown to be an uncompetitive inhibitor of DAMGO-stimulated [35S]GTPγS binding by 

decreasing the Emax in a dose-dependent manner and not being able to increase the ED50 

appreciably upon increasing its concentration as was observed with the competitive inhibitor 

naloxone (Figure 4).34 Interestingly, Salvinorin A may also act as a partial agonist at the 

MOR considering that it exhibits an Emax of 42% relative to DAMGO in the [35S]GTPγS 

assay and is able to inhibit forskolin-stimulated cAMP accumulation. Additionally, it may 

interact with a site that is unique from typical MOR agonists seeing as naloxone 

noncompetitively inhibits Salvinorin A-stimulated [35S]GTPγS binding.

MOR PAMs and SAMs have recently been identified that show varying abilities to shift the 

orthosteric agonist's potency, affording different efficacies.37 The MOR SAMs exhibited 

neutral cooperativity with the orthosteric ligands, but the PAMs that were identified, more 

specifically thiazol-2-amine analogue BMS-986121 (Figure 3) and a sulfonyl thiazolidine 
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analogue BMS-986122, potentiated the effects of DAMGO and the endogenous agonists 

endomorphin-1 (EM-1) and Leu-enkephalin (Leu-ENK), morphine's recruitment of β-

arrestin 2, the inhibition of adenylyl cyclase, and G-protein activation. They did not 

appreciably recruit β-arrestin 2 in the absence of the orthosteric agonist but substantially 

enhanced the β-arrestin 2 recruitment response with low concentrations of EM-1. 

BMS-986121 potentiated recruitment of β-arrestin 2 brought about by 20 nM EM-1 to an 

Emax of 76% relative to the maximally effective response observed at 1 μM EM-1 with an 

EC50 of 1.0 μM. BMS-986122 exhibited similar results as it augmented the effect of 20 nM 

EM-1 to 83% relative to the maximal EM-1 response with an EC50 of 3.0 μM.

Further characterization of BMS-986122 was performed to determine the compound's probe 

dependence and mechanistic basis of activity by employing different kinds of orthosteric 

agonists for the MOR including both peptides and small molecules.38 It was found that the 

degree of allosteric modulation was dependent upon the efficacy of the orthosteric ligand. 

All endogenous opioid peptides and the small molecules R-methadone and loperamide 

showed increased affinity and potency for the MOR, but more so for the small molecules, 

and none elicited any augmentation of maximal G-protein activation. Overall, variability was 

observed in the case of small molecule MOR agonists, which falls in line with probe 

dependence. Morphine, buprenorphine, and fentanyl augmented the maximal level of 

[35S]GTPγS stimulation, but their affinities and potencies were not appreciably affected 

when administered in the presence of BMS-986122.

It has been previously established that physiological concentrations of Na+ decrease an 

agonist's ability to bind to the MOR while antagonist binding is unaffected.39 This 

phenomenon was then extended to the other opioid receptors, and it was found that Na+ 

inhibits agonist binding by 65% for the MOR and the DOR and only 20% for the KOR.40 

Evidence suggested that BMS-986122 allosterically inhibited the binding of Na+ to the 

MOR by disallowing stabilization of the inactive state of the MOR, pushing it toward an 

active conformation, which explains its marked PAM abilities.38 The crystal structure of the 

human DOR revealed the presence and fundamental role of Na+ in mediating allosteric 

modulation of receptor selectivity and activity.41 The Na+ site is shown to be centrally 

located in the seven-transmembrane bundle core to stabilize a reduced agonist affinity state 

and thereby inhibit signal transduction. Changing the allosteric site from an Asn131 residue 

to an Ala or Val residue increases β-arrestin-mediated signaling.

The use of BMS-986121 and BMS-986122 as therapeutic agents may be restricted due to 

the difficulty of their preparation. In an additional study, MOR PAMs and SAMs were 

identified using a novel chemotype with an easier scaffold to explore.42 Sulfonamido 

acetamide analogue MS1 (Figure 3) was determined as the most promising compound to be 

functionally selective toward β-arrestin recruitment as opposed to G-protein activation in the 

presence of EM-1 and displayed probe dependence. MS1's most prominent effects were 

observed with R-methadone, which were similar to those of BMS-986122's action.38 MS1 

also pushed the threshold of maximal activation of the partial agonist morphine to stimulate 

the G-protein, again in accordance with BMS-986122's ability to enhance the efficacy of 

partial agonists. However, it was not determined if MS1's mechanism of action was the same 
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as that of BMS-986122, which is through allosterically inhibiting/disrupting Na+ binding to 

the MOR.

It was recently discovered that the compound ignavine (Figure 3), one of the main alkaloids 

in Aconite root, interacts with the MOR, exhibiting an IC50 of 2.0 μM.43 A receptor 

internalization assay determined that ignavine can modulate MOR activity in such a way that 

is dependent upon its concentration. GFP-tagged MOR expressing HEK-293 cells that were 

treated with 1 μM DAMGO showed vesicle internalization at 20 min. Upon cotreatment with 

1 μM ignavine, enhanced vesicle internalization was observed at 10 min. Co-treatment of 1 

μM DAMGO with 10 μM ignavine completely blocked the internalization induced by 1 μM 

DAMGO, and 10 μM of ignavine alone did not affect receptor internalization. Ignavine's 

effects on intracellular cAMP levels were parallel to those of the receptor internalization 

assay. Administration of ignavine alone did not influence cAMP levels; however, 1 μM 

concentration enhanced DAMGO activity at 7.5 min, whereas 10 μM ignavine was found to 

be inhibitory at 23.5 min. The same results were achieved upon cotreatment of EM-1 and 

morphine. In addition, ignavine produced a leftward shift in response to DAMGO at 1 μM at 

7.5 min and a rightward shift at 23.5 min at a concentration of 10 μM. A concentration of 

0.1 mg/kg of ignavine showed maximum response in the tail-flick test, whereas higher 

concentrations weakened the analgesic activity. The same trend was seen with the tail-

pressure test.

Computational and docking studies elucidated that ignavine could bind to the MOR in its 

orthosteric pocket in a manner that is unique from that of morphine or β-funaltrexamine (β-

FNA) and that the binding pocket cannot accommodate both ignavine and an agonist 

compound simultaneously. It was previously shown that ignavine inhibited the binding of 

[3H]diprenorphine, which has a similar structure to that of morphine and β-FNA. In 

comparison to these compounds for the MOR, ignavine also has a quaternary amine 

structure, a motif that has been shown to interact with Asp147 of the rat MOR, an interaction 

that is thought to be significant in morphine's pharmacological profile.44,45 Taking these 

results as a whole, it was hypothesized that, in a MOR homodimer, ignavine at a low 

concentration can employ positive modulatory action on an agonist bound to the other 

orthosteric site but at higher concentrations would bind both orthosteric sites and provide 

antagonistic activity.

DOR

The DOR may be a therapeutically relevant target for its antinociceptive and antidepressive 

properties, but much of this receptor's pharmacological behavior is still unclear. For 

example, contradictory evidence has been collected on the DOR's role in bringing about 

respiratory depression. High doses of [DPen2,DPen5]-enkephalin (DPDPE) brought about 

respiratory depression in sheep, and similarly, the small molecule SNC-80 had the same 

effect at 40 mg/kg.46,47 However, deltorphin II (Del II) and (+)-BW373U86 enhanced 

respiratory function and inhibited the MOR agonist alfentanil's respiratory depressant 

effect.48 Previous studies have also shown that it is implicated in mediating mood states and 

producing analgesia in chronic pain models, but agonists have also been the cause of 

convulsive/seizurogenic behavior.49–52
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A structure–activity relationship study was performed on what became the first reported 

DOR-PAMs as they were shown to increase the affinity and/or efficacy of DOR orthosteric 

agonists Leu-Enk, SNC80, and TAN67 as evidenced by binding affinities, G-protein 

stimulation, recruitment of β-arrestin 2, inhibition of adenylyl cyclase, and stimulation of 

extracellular signal-regulated kinases (ERK).53 The hexahydro-1H-xanthene-1,8(2H)-dione 

analogues generated (Figure 5) did not produce an appreciable amount of agonist activity, 

but all provided PAM actions and a range of selectivities (up to >200 fold) for the DOR over 

the MOR No substitutions on the benzyl (R1, R2, R3 = H) afforded a DOR-PAM with an 

EC50 of 0.2 μM, showing 30-fold β-arrestin recruitment selectivity over that of the MOR 

Incorporation of a methyl substituent (R1 = Me) showed an order of magnitude increase 

(EC50 = 0.03 μM) in PAM response for the DOR with negligible impact on the MOR 

Halogen substitutions about the ring with either fluorine or chlorine had little impact on 

DOR-PAM activity, but the dichloro adduct in the ortho and meta positions showed a 

marked improvement in DOR selectivity by decreasing MOR activity (EC50 > 10 μM). It 

appeared that CF3 substitution in the ortho position resulted in the loss of DOR-PAM 

activity (EC50 > 10 μM). Bromination of the ortho position afforded an EC50 of 0.05 μM for 

the DOR and >200-fold selectivity over that of the MOR.

The most promising compound, BMS-986187 (R1 = Me), did not show any agonist function 

and provided an EC50 of 48 nM and 2 μM in the company of EC20 concentrations of Leu-

Enk or EM-1, respectively. BMS-986187 also afforded 100-fold selectivity for the DOR over 

the MOR and an EC50 of 33 nM in the β-arrestin recruitment assay when run with an EC20 

concentration of Leu-Enk (18-fold increase in Leu-Enk's potency along with a small 

increase in maximal response). In an inhibition of forskolin-stimulated cAMP assay, 

BMS-986187 exhibited complete inhibition of cAMP propagation when administered >3 

μM, showed robust PAM activities in ERK1/2 phosphorylation and [35S]GTPγS assays, and 

potentiated the affinities of Leu-Enk, SNC80, and TAN67 (3–32-fold).

Interestingly, some of the BMS-986122 analogues, MOR PAMs, also showed some DOR 

PAM activity, suggesting that MOR and DOR may share a similar allosteric site, and thus 

selectivity between two receptors can be engineered into the compounds.

Sigma-1 Receptor

The sigma receptor was originally proposed as a subtype of opioid receptors but is now 

confirmed as a nonopioid receptor that binds various psychotropic drugs.54,55 The sigma 

receptor has two pharmacologically distinct subtypes, sigma-1 and sigma-2, in which the 

former is emerging as a novel CNS drug target. It is expressed in the periphery, but primarily 

in the CNS, and is involved in neuronal plasticity, which is a hallmark of the 

pathophysiology of neurological diseases, such as Alzheimer's, schizophrenia, and major 

depressive disorders, along with being implicated in pain and addiction.56–58 Sigma receptor 

ligands were previously shown to influence opioid receptor-induced analgesic properties 

without modulating additional opioid action and later found to physically complex with the 

MOR.59–63 Despite this association, it was determined that the sigma-1 ligands do not 

interfere with the binding of ligands to the MOR but rather impact opioid receptor 

transduction.59 When administered alone, sigma-1 ligands were unable to stimulate 
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[35S]GTPγS binding, but the selective sigma-1 receptor ligand BD-1047 was able to 

enhance DAMGO-induced signaling 3–10-fold without changing the maximal response nor 

DAMGO binding to the MOR. Additionally, sigma-1 receptor downregulation mimics the 

effect of the sigma-1 receptor antagonists. In lieu of these results, it may be worthwhile to 

explore the realm of sigma-1 receptors and their potential as allosteric targets.

Presently, compounds of the racetam family (pyrrolidone analogues, Figure 6) and ligands 

containing an N,N-dialkyl or N-alkyl-N-cycloalkyl motif are the paradigm for treating such 

neurological disease states, serving as nootropic drugs.64 Sigma-1 has a been shown to 

mediate a wide variety of biological functions such as Na+, Ca2+, and K+ ion channels, 

neuro-transmitter release, and inflammation.56,65–67 Typically, the ideal choice of ligand 

partners for allosteric modulators is the endogenous ligand for a given receptor, but this is 

arduous in the case of the sigma-1 receptor considering the obscurity of the endogenous 

ligands.68

Chiral resolution of a racemic 4,5-disubstituted piracetam analogue, 2-(5-methyl-4-

phenyl-2-oxopyrrolidin-1-yl)-acetamide (Figure 7), at the sigma-1 receptor was investigated 

using the selective sigma-1 receptor agonist PRE-084 (Figure 8) in an electrically stimulated 

rat vas deferens model.69 Permutations of chirality at C4 and C5 of the pyrrolidin-2-one ring 

were explored. Serendipitously, the (4R,5S)-isomer (E1R) was discovered to interact at the 

sigma-1 receptor by increasing the binding affinity of an orthosteric ligand, which is 

characteristic of a PAM. The set of enantiomers did not change the height of contractions of 

the electrically stimulated vas deferens, but when co-administered with PRE-084, an 

increase in activity was observed for all compounds. E1R and (4R,5R)-isomer yielded 

contractions that were at least twice as high compared to when PRE-084 was administered 

alone, showing the importance of the R-configuration at the C4 position.

E1R augmented the binding of [3H]ditolylguanidine, a nonselective sigma receptor 

radioligand, but was not able to show any allosteric effect on sigma-1 receptors using [3H]

(+)-pentazocine, a sigma-1 receptor agonist70 (Figure 8). E1R did not increase contractions 

in the vas deferens assay when co-administered with PB-28, a sigma-2 receptor agonist, but 

did potentiate the effect of PRE-084 upon bradykinin-induced intracellular Ca2+ increase in 

vitro. The PAM attributes of E1R were confirmed in vivo by protecting against scopolamine-

induced cognitive deficit effects that were antagonized by NE-100, a sigma-1 receptor-

selective antagonist.71 In addition, E1R was observed to show no locomotion impairment up 

to 100 mg/kg nor interact with Na+ and K+ channels.

SKF83959, SCH23390, and SKF38393, which possess an N,N-dialkyl moiety (Figure 9), 

potentiated the binding of [3H](+)-pentazocine in allosteric fashion selectively to the 

sigma-1 receptor.72 SKF83959 afforded improved binding and an increased PAM effect 

relative to that of phenytoin, a classic sigma-1 receptor PAM.73,74 In an additional study, it 

was demonstrated that SFK83959 enhanced the binding activity of dehydroepiandrosterone, 

an endogenous agonist for the sigma-1 receptor.75 Unlike E1R, which is selective for the 

sigma-1 receptor, SKF83959 has inherent D1 dopamine receptor affinity among other 

activities.76–80 In an effort to ablate these off-target interactions, a series of modifications 
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were performed, bringing to fruition SOMCL668, which exhibited no appreciable activity at 

the dopamine 1(D1), D2, D3, 5-hydroxytryptamine1A (HT), or 5-HT2A receptors.81,82

Heterodimers

GPCR homodimers and heterodimers have been observed in a variety of systems including 

tissues, cells that endogenously express both receptors, and in primary cell cultures. In some 

cases, it is critical for receptor function to form heteromeric pairs.83–85 Considerable 

evidence has shown that the opioid receptors can form homodimers or heterodimers with 

each other and other receptor families such as the cannabinoids.86–88 This offers an 

additional layer of intricacy to the allosteric regime due to individual protomers causing 

allosteric interactions or novel allosteric binding pockets that can impact affinity and/or 

efficacy for either one or both of the protomers.89–91 Orthosteric binding at one protomer 

can influence the conformation of its paired receptor and thus influence the response of 

orthosteric binding to that paired receptor. Because of the varying nature of probe 

dependence, it would be paramount to recognize pairs of ligands that work well together so 

that low doses of compound may be administered, reducing the severity of side effects.

MOR/DOR

MOR/DOR heterodimer levels are increased in vital areas of the CNS that are thought to 

play major roles in processing the pain response after chronic administration of morphine 

and thus serve as viable targets for chronic pain states, addiction, and tolerance.92 Studies 

have also shown that MOR/DOR upregulation occurs via chronic administration of 

morphine and various protein chaperones, which leads to a modification of binding 

characteristics and functional signaling of the heteromer.93,94 Therapeutic design could be 

geared toward making a PAM of the DOR capable of augmenting MOR agonist signaling, 

affording better analgesia with less severe adverse effects. The benefit of this would be that 

such a ligand would not interact with the MOR or MOR homodimers, allowing for increased 

selectivity in which only MOR/DOR heterodimers are present.

The binding equilibrium and association/dissociation kinetics of the DOR agonist Del II and 

the MOR agonist DAMGO were scrutinized in the presence of MOR-selective ligands and 

DOR-selective compounds, respectively, in an established model system for MOR/DOR 

heterodimers.95 It was indeed found that MOR ligands are capable of allosterically 

potentiating binding to the DOR and vice versa, suggesting that orthosteric binding of the 

ligands to the protomer modulates the receptor pair's activity. In the case of MOR 

compounds, morphine was able to enhance DOR activity by 5 orders of magnitude, whereas 

other ligands ranged from 3 to 4 orders of magnitude. The rate at which the orthosteric 

ligands dissociated from their respective receptors was also found to be decreased when 

coadministered with the heterodimeric partner's orthosteric ligand, again falling in line with 

positive allostery between the two protomers. It was determined that there was no 

correlation between the binding affinities of the MOR and DOR ligands for their respective 

receptor's orthosteric sites and their efficacy in ligand binding to the DOR or MOR, 

respectively, delineating that it is not essential for the ligand to remain bound to the 

protomer to maintain the conformational change.
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DOR/KOR

Because of the adverse effects that come with targeting the opioid receptors in the CNS, the 

periphery has also been garnering attention. Opioid receptors are expressed in peripheral 

primary sensory neurons that are involved in relaying pain signaling. These peripheral 

receptors have not shown an analgesic response when a peripherally limited opioid is 

administered but provide analgesia to tissues under a pathological state.96,97 Previous studies 

have revealed that the DOR and KOR can form heterodimers, which allow for the 

development of compounds that are heterodimer-selective, enabling enhanced tissue 

specificity considering that these ligands would only interact where heteromeric pairs are 

expressed.98–100 KDN21, a bivalent ligand in which KOR selective antagonist 

pharmacophore 5′-guanidinonaltrindole (GNTI) tethered through a spacer to the DOR-

selective antagonist naltrindole I, was found to enhance binding to the DOR/KOR 

heterodimer using [3H]diprenorphine.100

Recently, more evidence has shown that DOR/KOR heterodimers in peripheral sensory 

neurons exist and that KOR antagonists modulate DOR agonist function in a manner likely 

to be through allosteric interplay between the protomers.101 Nor-binaltorphimine (Nor-BNI), 

a KOR antagonist, increased the potency of DPDPE, decreased the potency of 

[DAla2,DLeu5]-enkephalin (DADLE), and decreased the potency and efficacy of SNC80. 

Dissimilar to Nor-BNI, 6′-GNTI weakened DPDPE's potency, as both of the KOR 

antagonists had these results confirmed in a behavioral model of thermal allodynia. 

Although a possible mechanistic explanation could be mediated through downstream 

interactions of the two DOR and KOR signaling pathways, the ligand's effects show probe 

dependence, a trademark of allosteric modulation.

DOR/CB1

Cannabinoid receptors, like the opioid receptors, are codistributed in both the peripheral and 

CNS and are implicated in both ascending and descending pain pathways and emotional/

mood processing such as anxiety and depression.102–106 Both cannabinoid and opioid 

receptors can bring about analgesia in pain states and suppress anxiety and depression, more 

specifically through the DOR and CB1, and thus have been considered therapeutic 

targets.107–109 Synergistic interplay between the cannabinoid and opioid receptors has been 

well-documented.110 A prominent coinhabitation of CB1 and MOR has been seen in lamina 

II interneurons.111 Furthermore, naltrindole, a DOR-selective antagonist, can inhibit 

anxiolytic responses resulting from the CB1 agonist Δ9-tetrahydrocannabinol (THC).112 

(Figure 9)

Further studies have shown that the DOR and CB1 can be coimmunoprecipitated when 

coexpressed in cells, providing evidence that the DOR and CB1 do form heterodimeric 

complexes.88 Furthermore, CB1 stimulation is augmented in DOR-knockout mice, and CB1 

stimulation is reduced in cells that are transfected with the DOR and in the presence of 

DOR-selective ligands showing an allosteric inhibitory response. CB1 undergoes 

upregulation in chronic pain states and shows a marked enhancement of analgesic response 

when an agonist such as WIN 55,212-2 (Figure 10) is administered.113–115 Ablation of the 

DOR heightens anxiety and depressive behavior, whereas administration of a CB1 agonist 
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results in antidepressive activity, but in low doses can produce anxiety.108,116,117 Because of 

the DOR and CB1's roles in emotional processing and pain states, the DOR/CB1 

heterodimer is a viable clinical target for neuropathic pain-associated adverse emotional 

states. DOR and CB1 expression both show an upregulation in brain regions 2 weeks after a 

peripheral nerve lesion, but only CB1 activity is increased as DOR activity is decreased.118 

This observation suggested that CB1 lowers DOR action. However, nonsignaling doses of 

CB1 agonists or antagonists were found to potentiate DOR ligand affinities and signaling but 

were inhibited by a heterodimer-targeting antibody. Ultimately, this indicates that the 

decreased levels of DOR activity that are observed in neuropathic pain states can be 

remedied through allosteric mediation of the CB1-DOR heterodimer, whether it is by a 

bivalent partial agonist/antagonist at CB1 and an agonist at DOR or a CB1-DOR-selective 

ligand that inhibits heterodimeric activity.

Concluding Remarks

The push to develop allosteric modulators for the opioid receptors has resulted in exciting 

times in opioid therapeutics. The discovery of novel PAMs, SAMs, and NAMs that can fine-

tune cellular transduction in a positive or negative way has resulted in new scaffolds of 

opioid receptor interactions to explore along with interesting biological profiles. With new 

iterations of modulator design, these compounds now possess greater affinity for their 

respective receptors with improved pharmacokinetic and safety profiles. Because of this, 

more of these modulators can be tested for their efficacy toward pain and other physiological 

models, and they can be administered alone to determine their effect on the endogenous 

opioids or in conjunction with an exogenous opioid in the hope of attenuating opioid-related 

side effects such as tolerance and addiction that are established during chronic receptor 

activation.

There are still a number of hurdles to circumvent that have proven to be challenging. The 

probe dependency that comes with allosteric modulation is a major feat to overcome and 

requires the testing of numerous orthosteric compounds through both binding and functional 

assays. Furthermore, allosteric modulators will need to be tested against multiple receptor 

subtypes considering the nonselectivity of many endogenous and opioid drugs, including 

biologically active metabolites. Additionally, the synthetic approach should be performed in 

a high-throughput manner instead of using a single compound approach considering the vast 

number of SARs that have been observed. Subtle changes in substitution patterns can 

drastically change the effect on the orthosteric ligand, such as going from a PAM to a SAM.

There is a paucity of literature regarding allosteric modulators for the KOR or a KOR-

containing heteromeric pair. It has been well-documented that stimulation of the KOR brings 

about dysphoria and has a lesser maximal analgesic potential than that of the MOR, but 

KOR agonists have been shown to attenuate the rewarding effect of coadministered addictive 

drugs and can be an alternative approach to pain relief in those that possess a risk of drug 

abuse by providing analgesia mediated through the KOR.119

All things considered, because allosteric modulators are able to maintain temporal and 

spatial therapeutic control, improve physiochemical properties, and modulate biased 
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signaling, the future appears to be bright for the allosteric paradigm in GPCR drug discovery 

for developing potent analgesics that lack the serious side effects of traditional opioids.
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Abbreviations

cAMP cyclic adenosine monophosphate

CB1 cannabinoid type-1 receptor

CNS central nervous system

D dopamine

DADLE [DAla2,DLeu5]-enkephalin

DAMGO [D-Ala2, N-Me-Phe4,Gly-ol5]enkephalin

Del II deltorphin II

DOR δ-opioid receptor

DPDPE [DPen2,DPen5]-enkephalin

Dyn A dynorphin A

EM-1 endomorphin-1

ERK extracellular signal-regulated kinases

β-FNA β-funaltrexamine

GNTI guanidinonaltrindole

GPCRs G-protein-coupled receptors

HT hydroxytryptamine

IOXY 6β-iodo-3,14-dihydroxy-17-cyclopropyl-methyl-4,5α-epoxymorphinan

KOR κ-opioid receptor
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Leu-Enk Leu-enkephalin

MOR μ-opioid receptor

NAMs negative allosteric modulators

Nor-BNI nor-binaltorphimine

PAM positive allosteric modulator

SAMs silent allosteric modulators

THC tetrahydrocannabinol
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Figure 1. 
Structures of orthosteric opioids.
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Figure 2. 
Receptor binding modes: (row 1) orthosteric interaction; (row 2) silent allosteric modulator 

(SAM); (row 3) positive allosteric modulator (PAM), and (row 4) negative allosteric 

modulator (NAM).
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Figure 3. 
Allosteric ligands of MOR: (upper row) NAMs, (middle row) PAMs, and (lower row) 

concentration-dependent AM. *MOR and DOR.
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Figure 4. 
Inhibition of (left) [3H]DAMGO binding and (right) DAMGO-stimulated [35S]GTPγS 

binding by Salvinorin A (SA) to hMOR-CHO cells.
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Figure 5. 
Structures of DOR-PAM chemotype.
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Figure 6. 
Structures of the racetam family.
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Figure 7. 
4,5-Disubstituted piracetam analogues.

Remesic et al. Page 27

ACS Chem Neurosci. Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Sigma receptor ligands.
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Figure 9. 
N,N-Dialkyl analogues for the sigma-1 receptor.
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Figure 10. 
Structures of CB1 ligands.
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