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Purpose: In-treatment imaging using an electronic portal imaging device (EPID) can be used to con-
firm patient and tumor positioning. Real-time tumor tracking performance using current digital megavolt
(MV) imagers is hindered by poor image quality. Novel EPID designs may help to improve quantum
noise response, while also preserving the high spatial resolution of the current clinical detector. Recently
investigated EPID design improvements include but are not limited to multi-layer imager (MLI) architec-
ture, thick crystalline and amorphous scintillators, and phosphor pixilation and focusing. The goal of the
present study was to provide a method of quantitating improvement in tracking performance as well as
to reveal the physical underpinnings of detector design that impact tracking quality. The study employs a
generalizable ideal observer methodology for the quantification of tumor tracking performance. The
analysis is applied to study both the effect of increasing scintillator thickness on a standard, single-layer
imager (SLI) design as well as the effect of MLI architecture on tracking performance.
Methods: The present study uses the ideal observer signal-to-noise ratio (d0) as a surrogate for track-
ing performance. We employ functions which model clinically relevant tasks and generalized fre-
quency-domain imaging metrics to connect image quality with tumor tracking. A detection task for
relevant Cartesian shapes (i.e., spheres and cylinders) was used to quantitate trackability of cases
employing fiducial markers. Automated lung tumor tracking algorithms often leverage the differences
in benign and malignant lung tissue textures. These types of algorithms (e.g., soft-tissue localization
– STiL) were simulated by designing a discrimination task, which quantifies the differentiation of tis-
sue textures, measured experimentally and fit as a power-law in trend (with exponent b) using a
cohort of MV images of patient lungs. The modeled MTF and NPS were used to investigate the effect
of scintillator thickness and MLI architecture on tumor tracking performance.
Results: Quantification of MV images of lung tissue as an inverse power-law with respect to fre-
quency yields exponent values of b = 3.11 and 3.29 for benign and malignant tissues, respectively.
Tracking performance with and without fiducials was found to be generally limited by quantum noise,
a factor dominated by quantum detective efficiency (QDE). For generic SLI construction, increasing
the scintillator thickness (gadolinium oxysulfide – GOS) from a standard 290 lm to 1720 lm reduces
noise to about 10%. However, 81% of this reduction is appreciated between 290 and 1000 lm. In com-
paring MLI and SLI detectors of equivalent individual GOS layer thickness, the improvement in noise
is equal to the number of layers in the detector (i.e., 4) with almost no difference in MTF. Further,
improvement in tracking performance was slightly less than the square-root of the reduction in noise,
approximately 84–90%. In comparing an MLI detector with an SLI with a GOS scintillator of equiva-
lent total thickness, improvement in object detectability is approximately 34–39%.
Conclusions: We have presented a novel method for quantification of tumor tracking quality and
have applied this model to evaluate the performance of SLI and MLI EPID designs. We showed that
improved tracking quality is primarily limited by improvements in NPS. When compared to very
thick scintillator SLI, employing MLI architecture exhibits the same gains in QDE, but by mitigating
the effect of optical Swank noise, results in more dramatic improvements in tracking performance.
© 2017 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12572]
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1. INTRODUCTION

Lung tumors may exhibit substantial intrafractional respira-
tory motion sometimes accompanied by baseline drift.1,2 This
motion reduces the accuracy of radiotherapy delivery, neces-
sitating the use of enlarged treatment margins to ensure ade-
quate delivery of radiation to the target.

When deployed during radiation therapy delivery, elec-
tronic portal imaging devices (EPIDs) enable anatomical
visualization from the beam’s-eye-view.3,4 Tumor tracking
protocols designed with3 and without5,6 fiducial markers are
limited by EPID image quality. The low quantum detective
efficiencies (QDE), or absorption, at megavoltage (MV) ener-
gies result in images with very high noise and low inherent
contrast. Similarly, detective quantum efficiencies (DQE) for
MV EPID images have been measured to be around ~2%.7

Recently, much work has been devoted to the improvement
of EPID image quality through the advancement of detector
design. Concepts including (but not limited to) multi-layer ima-
ger (MLI) design, scintillator pixilation,8 and structured phos-
phors,9,10 have been proposed to improve EPID DQE and
image quality. Previous studies have investigated the effect of
acquisition technique and detector performance on tracking
quality.11,12 In the present study, we develop a generalized plat-
form for analyzing the relationship between image quality and
tracking performance. Using standard imaging metrics, such as
modulation transfer function (MTF) and noise power spectrum
(NPS), the efficacy of tumor tracking either with or without the
use of fiducial markers may be analyzed for clinically available
and theoretical imagers. This methodology is applied to analyze
detector design principles, including Gd2O2S:Tb scintillator
(GOS) thickness as well as EPID architecture. In the latter anal-
ysis, we compared a conventional single-layer imager (SLI)
configuration to a novel MLI design, where four complete ima-
ger layers – consisting of copper buildup, GOS, and thin-film
transistor (TFT) readout matrix – are stacked. We compare the
propagation of MTF and NPS through each detector to illumi-
nate physical design considerations that affect the quality of
tumor tracking.

2. THEORY AND METHODS

2.A. Ideal observer signal-to-noise ratio

To quantitate tracking performance, the ideal observer sig-
nal-to-noise ratio (SNR) was used as a surrogate figure-of-
merit (FOM). Also known as the detectability index (d0), it is
calculated by13–20:

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Z

SNR2ðfx; fyÞdfxdfy
s

; (1)

where f is the spatial frequency along the data- (x-) and gate-
line (y-) directions of the detector and SNR2(fx,fy) is defined as:

SNR2ðfx; fyÞ ¼
½Kc taskðfx; fyÞ

�� ��Tðfx; fyÞ�2
Sðfx; fyÞ : (2)

Here, T and S denote the detector MTF and NPS. The
terms task and Kc define the imaging task function in ques-
tion and its contrast. The task function is given by Eq. (3) as:

taskðfx; fyÞ ¼ hypAðfx; fyÞ � hypBðfx; fyÞ (3)

as the difference (in Fourier space) of two imaging hypotheses
(hyp), that is, “A” versus “B”. While d 0 is not a direct measure
of tracking quality, it does provide insight into the relationship
between a system’s imaging performance, measured as resolu-
tion and noise, and the ability of that system to accomplish the
designated task, that is, to distinguish and detect objects and
image textures. Since d 0 is conceptually and mathematically
related to SNR and contrast-to-noise ratio (CNR)13,14 and
because SNR and CNR are fundamentally correlated with
tracking performance,21 appropriate selection of imaging task
may be reasonably equated with tracking performance.

2.A.1. Fiducial marker tracking: detection task

Tumor tracking with fiducial markers leverages the addi-
tional contrast the objects create with respect to background
tissue, improving SNR of the region-of-interest (ROI). This
effect may be modeled by employing a simple detection task,
according to:

taskðfx; fyÞ ¼ Oðfx; fyÞ � 0; (4)

where the task hypothesis describes signal present, O(fx,
fy), versus signal absent. O is defined as the object spectrum
of the fiducial marker in question: in this study, either a
sphere or a cylinder. The formulation of a sphere in the fre-
quency domain is given by22:

OSphðfx; fyÞ ¼ 2r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q J1ð2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
Þ; (5)

where r describes the sphere radius and J1 denotes a first-
order Bessel function of the first kind. A cylinder is given
by22:

OCylðfx; fyÞ ¼ 2rL
2fx

J1ðpdfxÞ sinðLfyÞLfy
: (6)

Here, the longitudinal axis is oriented along the y-direc-
tion. L denotes the length of the cylinder in question. For a
cylinder oriented along the x-direction, the terms, fx and fy are
interchanged.

2.A.2. Markerless tracking: discrimination task

Implantation of fiducial markers for lung tumors is associ-
ated with clinical complications such as pneumothorax,23

necessitating markerless tracking techniques and algorithms.
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Some automatic markerless tracking tools such as the soft-tis-
sue localization (STiL)24 algorithm analyze local regions of
increased variance or noise to differentiate the texture in areas
of interest. To provide a measure of efficacy for this type of
analysis, a discrimination task may be formulated:

taskðfx; fyÞ ¼ Omalðfx; fyÞ � Obenðfx; fyÞ; (7)

where Omal and Oben describe the object spectra (i.e., the quan-
tified texture) of malignant and benign tissues, respectively.
Human tissue (tis), both malignant and benign, as presented by
X-ray images, has often been described as following a power-
law in the frequency domain according to25–30:

Otisðfx; fyÞ ¼
ffiffiffiffiffiffiffi
j
af b

r
; (8)

where j is the measured image contrast within the tissue, f
the radial frequency according to f = (fx

2 + fy
2)0.5, b is the

frequency correlation due to tissue variation (i.e., texture),
and a a scaling factor used to preserve units. Human tissue is
often expressed as power spectra. For Otis acting as a signal
(as opposed to noise or power spectra), as is the case for
Eq. (7), the square-root of the power spectrum is evaluated as
in Eq. (8).

2.B. Quantification of tissue texture

Calculation of d0 using Eq. (7) requires accurate quantifi-
cation of Omal and Oben. Typically, NPS analysis is performed
on the tissue of interest where the lower frequency range is
fitted to a power-law: the square of Eq. (8).25,27–31 However,
due to the relatively large pixel sizes of both prototype and
SLI EPIDs, region-of-interest (ROI) sizes may be composed
of too few pixel elements to adequately sample the relevant
frequency range of the NPS or the limited number of total
realizations would result in overly noisy data. Therefore, tex-
ture was measured using a “blanket-counting” approach32 for
quantification of tissue fractal dimension (FD). Fractal analy-
sis has been used extensively in the past to classify and quan-
titate tissue textures in lung,33–36 breast,32,37–39 and chest40

imaging. Furthermore, clear linear relationships have been
defined between FD and b of Eq. (7)32,41–43:

b ¼ 8� 2FD: (9)

To measure FD, a square (m x m) ROI was represented as
a three-dimensional (3D) contour, where pixel intensity was
treated as the vertical axis. This organizes the ROI as a matrix
of rectangular columns with square tops. Surface area (A), a
measure related to the complexity of the image as a function
of e, the measurement precision in terms of number of pixels,
was calculated according to:

AðeÞ ¼
X
x;y

e2 þ
X
x;y

e½jIðx; yÞ � Iðxþ 1; yÞj

þjIðx; yÞ � Iðx; yþ 1Þj�:
(10)

I is the intensity or column height in terms of e, where a
pixel (p) in the vertical (z-) direction is defined as the image
dynamic range divided into m segments according to:

p ¼ e
R
m
: (11)

R denotes the dynamic range. A is calculated for a series
of values for e, and the relationship is fit to:

AðeÞ ¼ ke2�FD; (12)

where k is a simple scaling constant equal to 1.
To assess and quantitate power-law noise, a collection of

in-treatment EPID images were used for the analysis of tissue
textures. Specifically, 40 unique patients including 184
regions-of-interest (ROIs) of anterior-posterior (AP) and pos-
terior-anterior (PA) images of healthy lung tissues were ana-
lyzed. Furthermore, a collection of 149 unique cases with
1600 ROIs were used for tumor data. All cases were imaged
at an energy of 6 MV, using a Varian AS-1200 EPID.

2.C. Monte Carlo modeling

2.C.1. Single-layer imager model

To analyze the effect of GOS thickness on tracking per-
formance for an SLI detector, a previously validated Monte
Carlo (MC) model based on GATE is used to simulate an
SLI of generic structure (seen in Fig. 1).44 Briefly, a GOS
scintillator was placed between a 1 mm copper buildup
layer and a 0.7 mm layer of SiO2, representing the amor-
phous silicon (a-Si) TFT readout layer. A lead metal alloy
was modeled below the detector to shield back-scattered
electrons.

The MTF and normalized NPS (qNNPS) were simulated
for a 6 MV X-ray exposure via MC calculations. Cubic-
spline interpolation was performed at each modeled fre-
quency bin to generate MTF and qNNPS curves as a function
of GOS thicknesses not simulated by the MC model (Fig. 2).

2.C.2. Multi-layer imager model

The MLI was modeled with the same validated MC simu-
lation as in Section 2.C.1. Briefly, the detector was modeled
as four separate stacks, where each consisted of 1 mm of Cu
buildup, GOS phosphor (either 290 lm or 430 lm in thick-
ness), and 0.7 mm of SiO2 to model the a-Si readout layer. A
lead metal alloy was modeled below the four stacks to shield
back-scattered electrons. A comparison of the measured and
modeled MTF and qNNPS may be seen in Fig. 3.

FIG. 1. Diagram of Monte Carlo simulated SLI EPID. Radiation is incident
from the top.

Medical Physics, 44 (11), November 2017

5652 Hu et al.: A method for quantification of tumor tracking 5652



3. RESULTS

3.A. Task functions

3.A.1. Object spectra – Cartesian shapes

The evaluation of Eqs. (4) and (5) may be seen in Fig. 4,
which depicts surface plots of the object spectra for a 2 mm
sphere and a 5 9 0.5 mm cylinder, oriented with the long
axis parallel to the y-direction. The object spectrum of the
sphere is distributed isotropically. The short axis (the diame-
ter) of the cylinder, as seen in Fig. 4(b), results in increased
signal power at higher frequencies, while the length limits the
object spectra in the fx-direction to a lower bandwidth.

3.A.2. Lung tissue texture

Table I tabulates the fractal dimensionality (FD) results as
well as the translated values for the correlative index of the
power-law, b. A two-sample t-test reveals that the difference
in FD between benign and malignant tissue is statistically sig-
nificant (P < 0.00001).

A comparison of the quantified textures of benign and
malignant tissue may be found in Fig. 5(a). Figure 5(b)
depicts a surface plot of the discrimination task as calculated
by Eq. (7), assuming equivalent tissue contrast, as is reason-
able for soft tissues imaged at 6 MV.

3.B. Tracking performance as a function of GOS
thickness

Figure 6 plots the total noise power (a), total signal power
(b), and d0 (c) as a function of GOS thickness. Total noise

power and total signal power are defined as the integration of
NPS and signal power over all frequencies. Total signal
power and d0 are normalized to the value at which GOS is
equal to 290 lm, which represents a typical, commercially
available EPID.

Total signal power is degraded as GOS thickness increases
as seen in Fig. 6(b), with losses amounting to approximately
28%, 41%, and 21% for the spherical detection, cylindrical
detection, and discrimination tasks, respectively, at a GOS
thickness of 1720 lm in comparison to a 290 lm detector.
However, at 1720 lm, total noise power is also reduced to
about 10% of the value at 290 lm, resulting in improvements
to d0. Although total noise power decreases monotonically
with GOS thickness, the improvement tapers, improving only
by 9% between values of 1000 lm and 1800 lm in compar-
ison to an improvement of 81% between 290 lm and
1000 lm.

3.C. MLI – the effect of using multiple detector
layers

Figure 7 plots a comparison of MTF (a) and qNNPS (b)
for a variety of SLI and MLI detector configurations. For 290
and 430 lm SLI and MLI detectors, the MTF are essentially
equivalent with the exception of an observed low-frequency
drop. An SLI equipped with a scintillator of the same thick-
ness as the sum of all MLI layers (i.e., 1720 lm) exhibits an
MTF significantly lower at all frequencies in comparison to a
290 lm SLI. Losses were most severe at 0.44 cycles/mm,
representing a loss of approximately 18%.

Losses in the MTF are relatively small in comparison to
the gains in the qNNPS. Increasing scintillator thickness

FIG. 2. Interpolation of MTF and qNNPS as a function of GOS thickness at 1.25 cycles/mm. Interpolation was performed at each modeled frequency bin to gen-
erate MTF and qNNPS curves at GOS thicknesses not simulated by the MC model.

FIG. 3. Comparison of the measured (solid lines) and modeled (dashed lines) MTF (a) and NPS (b) for the prototype (430 lm GOS) MLI detector.
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results in lower noise in all cases, which is also illustrated by
Fig. 6(a) for SLI detectors. The MLI decreases noise com-
pared to the SLI by roughly a factor equal to the number of
total layers. As a result, qNNPS for the MLI is roughly 4
times lower than that of an SLI imager with equivalent indi-
vidual GOS layer thickness. For the 1720 lm SLI, above

FIG. 4. Object spectra for a 2 mm sphere (a) and a 5 9 0.5 mm cylinder (b) oriented with the long axis parallel to the x-direction. [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE I. Measures of texture quantification for benign and malignant tissue.

Fractal dimension (FD) b

Benign tissue 2.3534 � 0.0044 3.2932 � 0.0089

Malignant tissue 2.4445 � 0.0016 3.1103 � 0.0033

FIG. 5. Log-log plot of the modeled power-law measures for benign and malignant tissue textures (a) as well as a surface plot of the tissue discrimination task for
projection images (b). Error bars are plotted as horizontal lines in Fig. 6(a). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Plot of total noise power (a), normalized signal power (b) and normalized d0N (c) as a function of GOS thickness. The plotted total signal power and d0N
represent values normalized to the value where GOS thickness was 290 lm, typical of a current state-of-the-art EPID. [Color figure can be viewed at wileyonline-
library.com]
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0.3 cycles/mm, the noise performance is roughly equivalent
to the 430 lm MLI. However, low-frequency qNNPS is con-
siderably higher.

Figure 8 plots the signal power for each studied task – the
detection of a 2 mm sphere (a) and a 5 9 0.5 mm cylinder
(b) as well as the discrimination of malignant from benign
tissue textures (c). Losses in signal power for the MLI in
comparison to the SLI are appreciated below 0.1 cycles/mm
and are transferred from the low-frequency drop observed
Fig. 7(a). These losses are approximately 7% at maximum
when compared to the SLI detector. The cylindrical detection
task exhibits the greatest loss in signal power at all frequen-
cies, particularly above 0.2 cycles/mm.

3.D. MLI tumor tracking

3.D.1. Using fiducial markers

In Fig. 9, the SNR2(fx) is plotted for each fiducial shape.
Employing MLI over SLI architecture results in gains of a
factor of ~4 at all frequencies due to the improvement in

NPS. However, as may be observed in the data tabulated in
Table II, the gain in d0 is less than 2 as would be expected
strictly by improving the NPS by a factor of 4. In comparing
the 430 lm MLI to the 1720 lm SLI, dividing the GOS bulk
between four layers results in improvements in performance
of 30–40%. In comparing the prototype (430 lm) MLI
detector to a current, state-of-the-art portal imager such as
the Varian AS-1200 EPID (a 290 lm SLI), improvements in
detectability for all cases are greater than a factor of 2.

3.D.2. Texture tracking

The SNR2 for the discrimination task is seen in Fig. 10.
Since tumor texture was implemented with the underlying
assumption of image contrast being equivalent for both
malignant and benign tissue, the resulting signal power of the
discrimination task has no response at zero-frequency. Again,
the MLI outperforms the SLI design by a factor of four at all
frequencies when the thickness of individual scintillator lay-
ers are equal. The performance of the 1720 lm SLI is
exceeded by both MLI detectors.

FIG. 7. Comparison of MTF (a) and NPS (b) for SLI (dashed lines) and MLI (solid lines) detectors of varying thickness. The heavier point lines indicate the SLI
with a thickness of 1720 lm. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. Plot of the signal power for the detection of 2 mm spherical objects (a) and 5 9 0.5 mm cylindrical objects (b), as well as for the discrimination between
malignant and benign tissue textures (c) for both MLI (solid lines) and SLI (dashed lines) EPIDs. The SLI with a thickness of 1720 lm is indicated by the heavier
point line. [Color figure can be viewed at wileyonlinelibrary.com]
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4. DISCUSSION

4.A. Tracking performance as a function of GOS
thickness

A summary of the effects of varying GOS thickness on
image quality is plotted in Fig. 6. The monotonic decrease in
signal power observed in Fig. 6(a) is explained by losses in
MTF due to increased blurring from optical photon spread.45

Thicker scintillation materials afford a longer path by which
optical photons may blur. This effect is particularly apparent
for the modulation of a cylindrical fiducial marker, which
represents the object with the highest frequency information
(particularly along the short axis of the object). Since object
functions for the spherical fiducial detection and discrimina-
tion tasks are largely extant below 0.3 cycles/mm, they are
less affected by additional optical photon spread – which is
appreciated as high-frequency losses in the MTF – incurred
by thicker GOS layers.

Despite signal power losses as a function of GOS thick-
ness, d0 increases due to the lower total noise power, which is
the result of improved QDE. Reduction of noise power tapers
as a function of GOS thickness, which is explained by the
increased effect of optical Swank noise from the thicker scin-
tillator.46,47 Briefly, the number of optical photons received
by the detector readout changes as a function of depth of
x-ray interaction. Increasing the thickness of the scintillation
material results in increased uncertainty of optical photon
gain, resulting in increased noise.

4.B. MLI – the effect of using multiple detector
layers on NPS, MTF

The issues diminishing improvements in d0 (i.e., spread of
optical photons, Swank noise) are effectively reduced by

implementing MLI architecture. Comparing SLI and MLI
detectors of equivalent individual layer GOS thickness as well
as equivalent total GOS thickness as in Fig. 7 illustrates these
concepts. The changes in MTF plotted in Fig. 7(a) are rela-
tively small when comparing 290 and 430 lm SLI and MLI
detectors. However, a low-frequency drop is observed. MLI
construction necessarily involves a thicker total structure,
which represents more material through which radiation can
scatter and backscatter.44 Scatter and backscatter are observed
as a low-frequency drop in the MTF48,49 and is consistent
with previous validation of the MC MLI data. In general,
increasing the thickness of an individual scintillator layer
results in lower MTF. When each layer in the SLI and MLI
are equivalent, the detectors exhibit similar high-frequency
MTF. However, an SLI equipped with a scintillator of the
same thickness as the sum of all MLI layers (i.e., 1720 lm)
exhibits an MTF that is significantly lower at all frequencies
due to the increase in optical spread.

In comparing the NPS Fig. 7(b), increasing scintillator
thickness translates to improved QDE and NPS. As was dis-
cussed in Section 4.A., optical Swank factor increases the rel-
ative amount of noise due to additional uncertainty in optical
photon gain. Splitting the scintillator thickness over several
readout layers results in mitigation of Swank factor by effec-
tively reducing the uncertainty of optical gain for each layer.

FIG. 9. Plot of SNR2(fx) as a function of spatial frequency (cycles/mm) for detection tasks of 2 mm spheres (a) and 5 9 0.5 mm cylinders (b) using SLI (dashed
lines) and MLI (solid lines) detectors. The SLI with a thickness of 1720 lm is indicated by the heavier point line. [Color figure can be viewed at wileyonlineli-
brary.com]

TABLE II. Relative tracking performance (d0), normalized to SLI perfor-
mance.

d0MLIð290lmÞ
d0
SLIð290lmÞ

d0MLIð430lmÞ
d0
SLIð290lmÞ

d0MLIð430lmÞ
d0
SLIð430lmÞ

d0MLIð430lmÞ
d0
SLIð1720lmÞ

2 mm sphere 1.90 2.08 1.86 1.34

5 9 0.5 mm cylinder 1.89 2.06 1.84 1.39

Tissue texture 1.90 2.07 1.85 1.34

FIG. 10. Plot of the SNR2(fx) as a function of spatial frequency for the dis-
crimination between malignant and benign tissue textures for both SLI
(dashed lines) and MLI (solid lines) detectors. The SLI with a thickness of
1720 lm is indicated by the heavier point line. [Color figure can be viewed
at wileyonlinelibrary.com]
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So, while total absorption and QDE might be equivalent – as
is the case with the 430 lm MLI as compared to a 1720 lm
SLI – splitting the thickness of the scintillation material
decreases the low-frequency noise.

4.C. Quality of tumor tracking

4.C.1. Using fiducial markers

Overall, as seen in Fig. 9, losses incurred in the MTF and
signal power due to the additional scattered and back-scat-
tered radiation, are dominated by improvements in the NPS.
Further Fig. 8 suggests that for the spherical object detection
task (a), signal power is retained at a sufficiently low fre-
quency (i.e., < 0.5 cycles/mm) and that MTF degradation
due to greater severity of optical spread from thicker GOS
layers is minor (particularly in comparison to an improvement
in NPS of a factor of 4). For the cylindrical detection task (b),
however, the retention of signal power above 0.3 cycles/mm
furthers the significance of MTF degradation due to
increased optical spread. For these higher frequency objects,
MLI construction may be more beneficial.

The SNR2 is relatively insensitive to the high-frequency
degradation of the MTF in comparison to the improvements
in NPS for all studied detector configurations. Further, in
comparing detectors with equivalent total scintillation mate-
rial thickness (i.e., the 430 lm MLI vs. the 1720 lm SLI),
where each detector should have theoretically equal X-ray
absorption, the reduction in optical Swank noise and optical
photon spread achieved by MLI architecture provides further
benefits in tumor tracking employing fiducial markers.

4.C.2. Texture tracking

Because there is no response observed at zero-frequency
for the discrimination task, the low-frequency drop incurred
by the MLI architecture is unappreciated. Also, since the dif-
ferences in textures are most evident below 0.3 cycles/mm
(Fig 8), losses in MTF, signal power, and subsequently, SNR2

due to optical spread (which are most severe above 0.4 cy-
cles/mm) are minimal. Thus, the effect of MTF losses
incurred by very thick scintillators, as in the 1720 lm SLI, is
relatively minimal in contrast to objects with non-negligible
zero-frequency signal power and/or greater high-frequency
information. However, despite this relatively small effect of
MTF degradation, texture tracking is still dominated by
improvements in the NPS, resulting in improvements in d0

and SNR2 of a factor of 4 for an MLI detector of equivalent
individual layer thickness.

4.D. Implications on detector design

The results of the present study suggest that gains in track-
ing performance are driven primarily by improvements in
NPS, which is directly affected by maximizing QDE. Losses
due to MTF for the studied tasks are largely negligible. Thus,

improvements in tracking performance may be most easily
realized through an increase in scintillator thickness, with
diminishing returns above approximately 500 lm for GOS.
Generally, increasing GOS thickness may result in more sev-
ere image blur from the spread of optical photons and further
degrade the MTF. However, for the studied tasks, which exhi-
bit sufficiently low-frequency signal power, the loss in resolu-
tion is outweighed by improvements in the QDE and
subsequently the NPS. Although MTF losses may not be
entirely relevant for the studied tasks, the increased effect of
optical Swank noise incentivizes the use of MLI architecture.
MLI construction enables an increase in effective scintillator
thickness without incurring additional optical Swank noise.
Furthermore, for smaller object tracking or discrimination
between subtler, high-frequency textures, losses in MTF may
become a more important factor. This would suggest
improvement may be best achieved by increasing the number
of scintillator layers, while maintaining the thickness of each
layer below a value that is adequately able to resolve the fea-
tures of interest. While ideally, many thin layers may opti-
mize imaging performance, limitations of production cost
may inhibit practical implementation of such an imager.

Although the present study outlines some of the physical
parameters that could improve MLI performance, some typi-
cal limitations of beam’s-eye view tracking remain unad-
dressed. Since the detector is based on the same platform as
current, clinically available SLI, beam modulation, temporal
resolution, and latency are unchanged for the prototype MLI.

4.E. Limitations and clinical implications

The present manuscript is based on linear systems
assumptions and the limitations of such have been described
in great detail, previously. Specifically, linear systems assume
stationarity of response, which is not strictly true for analysis
of tissue and tumor textures. Thus, the analysis is not applica-
ble to measurements of absolute detectability for all patients
over all regions of the lung. Further, reductions in absolute
tracking performance may be observed when tumors are
obstructed by overlying structures such as bony anatomy and
organ tissue. However, the modeled results are a representa-
tion of a comparison of typical performance of SLI and MLI
detectors when tasked with differentiating tumor textures
located within primarily lung tissue.

Finally, direct correlation between d0 and absolute binary
tracking ability (i.e., can the tumor be tracked or not) has not
been studied. However, the analysis quantifies a global
expected improvement based on image quality and detector
performance for both fiducial marker tumor tracking and
markerless tumor tracking performance by maximizing sig-
nal-to-noise ratio at relevant spatial frequencies. It should
also be noted that d0 has been compared to both human obser-
ver performance as well as the Rose Criterion as a limit of
system performance.13,14 Broadly, improvements in tracking
performance may eventually lead to improvements in-treat-
ment delivery such as reduced planned margins.
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5. CONCLUSIONS

In the present manuscript, we have demonstrated a novel,
generalizable method for quantification of tracking perfor-
mance based on simple imaging metrics, such as MTF and
NPS and applied the model to evaluate single and multi-layer
EPID designs. We showed that in general, blurring in the
MTF is largely irrelevant due to the object spectra of a typical
therapeutic imaging task and that decreasing noise (increas-
ing quantum efficiency) is the primary driver for improving
tracking quality. We have also shown that a MLI design can
yield greater improvements in NPS than an SLI design with
the same total scintillator thickness. This suggests that imple-
mentation of MLI design may offer superior performance for
tracking applications when compared to typical SLI
architectures.
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