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Purpose: Segmentation of the prostate on CT images has many applications in the diagnosis and
treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmen-
tation is a challenging task. A learning-based segmentation method is proposed for the prostate on
three-dimensional (3D) CT images.
Methods: We combine population-based and patient-based learning methods for segmenting the
prostate on CT images. Population data can provide useful information to guide the segmentation
processing. Because of inter-patient variations, patient-specific information is particularly useful to
improve the segmentation accuracy for an individual patient. In this study, we combine a population
learning method and a patient-specific learning method to improve the robustness of prostate seg-
mentation on CT images. We train a population model based on the data from a group of prostate
patients. We also train a patient-specific model based on the data of the individual patient and incor-
porate the information as marked by the user interaction into the segmentation processing. We calcu-
late the similarity between the two models to obtain applicable population and patient-specific
knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive
threshold method is developed to convert the likelihood image into a binary image of the prostate,
and thus complete the segmentation of the gland on CT images.
Results: The proposed learning-based segmentation algorithm was validated using 3D CT volumes
of 92 patients. All of the CT image volumes were manually segmented independently three times by
two, clinically experienced radiologists and the manual segmentation results served as the gold stan-
dard for evaluation. The experimental results show that the segmentation method achieved a Dice
similarity coefficient of 87.18 � 2.99%, compared to the manual segmentation.
Conclusions: By combining the population learning and patient-specific learning methods, the pro-
posed method is effective for segmenting the prostate on 3D CT images. The prostate CT segmenta-
tion method can be used in various applications including volume measurement and treatment
planning of the prostate. © 2017 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.12528]
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1. INTRODUCTION

Prostate cancer is one of the leading causes of cancer mortal-
ity in American men. It is estimated that there were 180,890
new cases of prostate cancer in the United States in 2016, and
which accounts for 21% of all cases in men.1 Accurate pros-
tate segmentation on CT images is important for the diagno-
sis and treatment of prostate cancer. Manual segmentation is
time-consuming and depends on the skill and experience of
the clinician. As a result, various efforts have been made to
develop segmentation methods for prostate CT images to
meet the requirements of clinical applications.2 Those meth-
ods include atlas-based approaches, level-sets, genetic algo-
rithms, and deformable shape models.3–13 Since CT images
have low soft-tissue contrast, learning methods with prior
knowledge can be useful to aid in the segmentation of a new

patient data. Learning-based segmentation methods can be
divided into three categories.

The first category of learning-based segmentation meth-
ods is to ascertain a patient-specific model for the prostate
segmentation of the same patient. As the variations in pros-
tate size and shape are small regarding the image data
acquired from the same patient, the model learned from the
images in the same patient can guide the prostate segmenta-
tion. Wu et al.14 utilized the latest image information of the
current patient to construct the dictionary for the
segmentation of a new image. Shi et al.15,16 proposed spatial-
constrained transductive Lasso to generate a 3D prostate-like-
lihood map. They used previous images to obtain the shape
information to obtain the final segmentation of the prostate in
the current image. Liao et al.17 used discriminative,
patch-based features based on logistic sparse Lasso and a
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new multi-atlas label fusion method to segment the prostate
in the new images. They used the segmented images of the
same patient to implement an online update mechanism. Li
et al.18 used the planning image and the previously seg-
mented treatment images to train two sets of location-adap-
tive classifiers for the segmentation of the prostate in current
CT images. Gao et al.19 used sparse representation-based
classification to obtain an initial, segmented prostate. They
used the previous, segmented prostate of the same patient as
patient-specific atlases, aligned the atlases onto the current
image, and adopted a majority voting strategy to achieve the
prostate segmentation.

The second category of learning-based segmentation
methods is to derive a population model from the other
patients for the segmentation of a new patient. When seg-
mented CT images of the same patient are not available, only
population information can be used to guide the prostate seg-
mentation. Mart�ınez et al.20 created a set of prior organ
shapes by applying principal component analysis to a popula-
tion of manually delineated CT images. For a given patient,
they searched the most similar shape and deformed the shape
to segment the prostate, rectum, and bladder in planning CT
images. Gao et al.21 learned a distance transform based on
the planning CT images from different patients for boundary
detection, and integrated the detected boundary into a level
set formulation for segmenting the prostate on CT images.
Chen et al.22 proposed a new segmentation cost function for
the segmentation of the prostate and rectum. The cost func-
tion incorporates learned intensity, shape, and anatomy infor-
mation from the images of other patients. Song et al.23

incorporated the intensity distribution information learned
from other patients into a graph search framework for the
segmentation of the prostate and bladder.

The third category of learning-based segmentation meth-
ods is to combine a population learning method and a
patient-specific learning method together. Although
population data can provide useful information to guide seg-
mentation processing, due to inter-patient variations, patient-
specific information is required to improve the segmentation
accuracy for an individual patient. Park et al.24 utilized a pri-
ori knowledge from population data and the patient-specific
information from user interactions to estimate the confident
voxels of the prostate. Based on these confident voxels, they
selected the discriminative features for semi-supervised learn-
ing to predict the labels of unconfident voxels. Gao et al.25

proposed a novel learning framework to “personalize” a pop-
ulation-based, discriminative appearance model, and to fit
the patient-specific appearance characteristics. They used
backward pruning to discard obsolete, population-based
knowledge and used forward learning to incorporate patient-
specific characteristics. Liao et al.26 learned informative
anatomical features in the training images and current
images. An online update mechanism was used to guide the
localization process. Park et al.24 used user interactions to
select similar images from population data for feature selec-
tion. Gao et al.25 and Liao et al.26 used previous images of
the same patient to guide the segmentation of new images.

In this study, we combine the population learning and
patient-specific learning together for segmenting the prostate
on CT images. Being different from the existing methods, we
train a population model based on the data from different
patients and we consider different distribution patient-specific
models for the base, mid-gland, and apex regions of the pros-
tate because one patient-specific model cannot describe the
shape difference among the three regions. We train three,
patient-specific models based on the information marked by
the user. We compute the similarity of the population model
and three, patient-specific models to obtain the applicable
knowledge for the specific patient, and then use the knowl-
edge for more accurate segmentation of prostate. In our initial
study,27 we tested a learning-based segmentation method in a
small number of 15 patients. In the current study, we propose
new algorithmic aspects and performed a comprehensive vali-
dation study in 92 patients. Each of the CT volumes was seg-
mented three times by two, clinically experienced
radiologists. The manual segmentation was used as the gold
standard for validation of the learning-based segmentation.

The main contributions of this manuscript are summarized
as follows: (a) We combined population learning and patient-
specific learning methods for segmenting prostate CT
images. Our method can maximize the advantage of each
learning method and minimize the disadvantage of each
method, and thereby can achieve better performance than a
pure population learning or pure patient-specific learning
method; (b) We propose a new, adaptive thresholding method
to convert the prostate-likelihood map into a binary image for
the prostate segmentation. The case-specific threshold value
further improves the segmentation accuracy; (c) We use the
information on the base, mid-gland, and apex regions of the
prostate to train three, patient-specific models. With the three
models, our method not only considers the different distribu-
tion in different parts of the prostate, but also incorporates
population information from other patients when the previous
images are not available from the same patient; and (d) Our
method needs the user to select three key slices to build the
patient-specific models for the patient-specific knowledge,
and the result shows that the proposed method is robust to the
selections of the apex, base, and middle slices.

2. METHOD

Our learning-based segmentation method consists of four
components, i.e., feature extraction, population learning and
patient-specific learning, prostate-likelihood prediction by
capturing the population and patient-specific characters, and
adaptively binary prostate segmentation based on the area
distribution model. Figure 1 shows the flowchart of the pro-
posed method.

2.A. Registration

The prostates from different patients have different shapes.
To improve classification performance, we align the prostates
of different patients in the same orientation and in

Medical Physics, 44 (11), November 2017

5769 Ma et al.: Prostate CT segmentation 5769



approximately same location so the features are not affected
by the spatial information.

We randomly select one segmented prostate CT images
as the fixed image and align other segmented prostates
with the fixed one. We use rigid transformation and mutual
information and obtain the optimized, transformed images
when the registration process reaches the specified maxi-
mum number of iterations. We overlay the entire training
images together before and after registration, as shown in
Fig. 2. The transformed images form a prostate shape or
atlas that is helpful for distinguishing between the prostate
and non-prostate pixels, thus improving segmentation
performance.

2.B. Feature extraction

We used six different types of discriminant features to
describe each pixel in the aligned images, including the inten-
sity, multi-scale rotation Local Binary Pattern (mrLBP),
Gray-Level Co-occurrence Matrix (GLCM), Histogram of
oriented gradient (HOG), Haar-like features, and the CTvalue
histogram (CThist). Figure 3 shows the six different discrimi-
nant image features.

2.B.1. Intensity

The intensity value is a useful indicator of the local spatial
variation in the boundary.

2.B.2. Multi-scale rotation local binary pattern

The LBP feature28 is a compact texture descriptor in
which each comparison result between a center pixel and one
of its surrounding neighbors is encoded as a bit. The neigh-
borhood in the LBP operator can be defined very flexibly.
We define a rectangle neighborhood, represented by (P, R),
where P represents the number of sampling points and R is
the radius of the neighborhood. By using the different P and
R, we can achieve multi-scale rotation local binary pattern
(mrLBP) features. In addition, for obtaining a stable LBP
value, we rotate each bit pattern in each scale to the minimum
value and use the minimum as its LBP value. The ranges of P
and R for calculating the LBP feature are set to be (4, 8, 16,
24) and (1, 2, 3), respectively. Therefore, we have 8-D LBP
features (when R = 1, P is 4 or 8, when R = 2, P is 4, 8, or
16, and when R = 3, P is 4, 8, or 24). Figure 4 shows the
mrLBP for the center pixel, represented by a solid, five-
pointed star. In Fig. 4, the hollow and solid circle represents
the comparison result between the center pixel and its sur-
rounding neighbor. The first row gives an example of the
multi-scale LBP feature and the second one shows the
mrLBP feature by rotating each bit for a minimum value.

2.B.3. Gray-level co-occurrence matrix

The gray level co-occurrence matrix (GLCM)29 is a well-
known statistical tool for extracting second-order texture

FIG. 1. Flowchart of the learning-based segmentation method for the prostate on 3D CT images.
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information from images. It can deal with the spatial relation-
ships of pairs of gray values of pixels. A co-occurrence
matrix is a function of distance d, angle h, and grayscales i
and j. Its element is specified by the relative frequencies P(i,
j, d, h) in which two pixels, separated by distance d, occur in
a direction specified by the angle h, one with gray level i and
the other with gray level j. We compute four GLCM with a
distance of one pixel and four directions of 0˚, 45˚, 90˚, and
135˚. For each co-occurrence matrix, we use four criteria to
characterize its statistical behavior, including Energy,
Entropy, Contrast, and Correlation. Therefore, we will have
the 16-D GLCM feature from a small 7 9 7 window centered
at each pixel. Specifically, Energy is a measure of local
homogeneity and it can therefore describe how uniform the
texture is. It can be calculated by

Energyðd; hÞ ¼
X

i

X
j
P2ði; j; d; hÞ: (1)

Entropy can measure the randomness and spatial disorder
of the gray-level distribution. It can be calculated by

Entropyðd; hÞ ¼ �
X

i

X
j
Pði; j; d; hÞ � logðPði; j; d; hÞÞ:

(2)

Contrast is a local grey-level variation in the grey-level co-
occurrence matrix. It can be calculated by

Contrastðd; hÞ ¼
X

i

X
j
ði� jÞ2 � Pði; j; d; hÞ (3)

Correlation measures the joint probability occurrence of
the specified pixel pairs. Let lx, ly, rx, and ry be the mean

FIG. 2. Prostate shape models (a) before and (b) after registration.

(a) (c)

(d) (e) (f)

(b)

FIG. 3. Feature images: (a–f) Original images that are an intensity feature image, mrLBP feature image, GLCM feature image, HOG feature image, Haar-like fea-
ture image, and the CThist feature image.
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and standard deviation of GLCM along row wise x and col-
umns wise y. Correlation can be calculated by

Correlationðd; hÞ ¼
P

i

P
j i � j � Pði; j; d; hÞ � li � ljffiffiffiffiffiffiffiffiffiffiffiffiffi

r2i � r2i
p :

(4)

2.B.4. Histogram of the oriented gradient

The Histogram of the oriented gradient (HOG) feature
is a texture descriptor describing the distribution of image
gradients in different orientations.30 We extract the HOG
feature from a 16 9 16 window centered at each pixel.
We divide the window into smaller rectangular blocks of
8 9 8 pixels and further divide each block into four cells
of 4 9 4 pixels. An orientation histogram which contains
nine bins covering a gradient orientation range of 0°–180°,
is computed for each cell. Then, a block is represented by
linking the orientation histograms of the cells in it. This
means a 36-D HOG feature vector is extracted for each
pixel.

2.B.5. Haar-like features

Haar-like features are regional characteristics based on the
gray distribution.31 Haar-like is the difference between the
sums of pixel gray values in different rectangles which are
designed in advance. There are standard edge, line, and cen-
ter-surround Haar-like features. They are illustrated in Fig. 5.
Considering a 7 9 7 window centered at each pixel, we
design the eight rectangles, after which we can obtain 8-D
Haar-like feature for each pixel.

2.B.6. CT value histogram (CThist)

CTvalue histogram means the histogram of the CT values,
which is the statistic probabilistic distribution of each density
value in a CT image and is invariant in scale, rotation, and
translation. In CT images, the CT values of pixels are
expressed in the Hounsfield value (HU). We compute the his-
togram of CT values over a 7 9 7 window centered at each
pixel. The number of bins in the histogram is 40, because it
obtained the best performance according to.32

2.C. Population learning and patient-specific
learning

In the training stage, we use the populartion learning and
patient-specific learning to obtain population knowledge and
part of the patient-specific knowledge for a new patient,
respectively, by using the Adaboost classifier. Then, we com-
bine the two knowledges together to guide the prostate seg-
mentation for a new patient.

2.C.1. AdaBoost classifier

AdaBoost33 is one of the most popular methods in ensemble
learning. It can combine several learning algorithms (“weak
learners”) to improve the performance in a weighted sum.

Let et be the classification error of t-th weak classifier and
ln() is the log function to the base e, after which the weight of
t-th weak classifier at can be computed by

at ¼ 1
2
ln
� 1� et

et

�
: (5)

Let x be the test sample and T be the number of weak clas-
sifier, after which ht(x) is the hypothesis of t-th weak

FIG. 4. An example of the Multi-scale Rotation Local Binary Pattern (mrLBP) feature.
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classifier. Therefore, Adaboost can construct a “strong” clas-
sifier as a linear combination by

f ðxÞ ¼
XT

t¼1
athtðxÞ (6)

Then AdaBoost offers the final decision according to the
sign of f(x), like

HðxÞ ¼ signðf ðxÞÞ (7)

AdaBoost can force the weak classifier to focus on the
hard examples in the training set by increasing the weights of
incorrectly classified examples and thus it can converge to a
strong learner. Since a decision tree owns the fast speed and
superior performance, usually it is chosen as the week classi-
fier.34 Thus, we adopt the AdaBoost with the decision tree as
our learning method for a good classification performance.

2.C.2. Population knowledge and patient-specific
knowledge

For the population learning, we extract the six discrimi-
nant features of each pixel in the registered prostates from the
training set. We use the Adaboost classifier to train the popu-
lation model, represented by Ada_PO. For the patient-speci-
fic learning, we need the user to provide part of the
information from the new patient. The user provides the con-
tours of the prostate on three slices, i.e., the base, mid-gland,
and apex slices. According to the feature of each pixel and its
label on the three slices, we train three, patient-specific mod-
els represented by Ada_PAB, Ada_PAM, and Ada_PAA.

2.D. Prostate-likelihood prediction based on the
population and patient-specific knowledge

Because the prostates from different patients vary greatly
in size, shape, and position in the CT images, it is not

straightforward to apply prior population knowledge to a new
patient data. The learned patient-specific knowledge based on
the base, mid-gland, and apex slices may have the problem of
overfitting. Therefore, we combine the patient-specific
knowledge with the general population statistics to achieve
more accurate segmentation.

We compute the similarity between the population knowl-
edge and patient-specific knowledge as the useful knowledge
to the new patient, which can be used to predict the proba-
bilities of the pixels on the slices except the base, mid-gland,
and apex slice. Let PPAB(i), PPAM(i), and PPAA(i) be the prob-
ability of the pixel i predicted by the models Ada_PAB,
Ada_PAM, and Ada_PAA, respectively, and S(PO, PAB), S
(PO, PAM), and S(PO, PAA) be the similarity between the
population model and the patient-specific models on the
base, mid-gland, and apex slices, respectively. The final
probability of belonging to the prostate for the pixel i, P(i),
is computed by

PðiÞ ¼ SðPO;PABÞ � PPABðiÞ þ SðPO;PAMÞ � PPAMðiÞ
þ SðPO;PAAÞ � PPAAðiÞ: ð8Þ

For the given model M1 and M2, we use DM2 to present
the pixel set used to train the model M2, NM2 to present the
maximum of the real number of pixels belonging to the pros-
tate and the number of predicted prostate pixels by the model
M2, LM1(k), and True(k) to be the label predicted by the
model M1 and the true label of pixel k, respectively. And use
SIM(L, C) as a function measuring the similarity between the
two labels:

SIMðL;CÞ ¼ 1; if C ¼ L and they are prostate
0; others

�
: (9)

FIG. 5. The standard Haar-like features.
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Then we compute the similarity of the two models, M1
and M2, S(M1, M2), by

SðM1;M2Þ ¼
X

k2DM2

SIMðLM1ðkÞ; TrueðkÞÞ
NM2

: (10)

In (8), we compute the accuracy of the population model on
the base, mid-gland, and apex slices, as the similarity between
the population model and the base, mid-gland, and apex mod-
els, respectively. The accuracy represents the consistency
between the population and patient-specific knowledge. And it
also indicates a proportion of the general population knowl-
edge which is applicable to a specific patient. Then, we multi-
ply the probability obtained by the patient-specific model by
the similarity of the population and patient-specific model, and
use the product as the probability of the pixel belonging to the
prostate. The product can address the influences of applicable
knowledge to capture the patient-specific characters more
accurately and then improve the accuracy of computing the
probability. We combine the probability obtained by the three,
weighted, patient-specific models into a sum to represent the
final probability to improve the stability and accuracy.

2.E. Adaptively binary prostate segmentation based
on the area distribution model

On the basis of the predicted probability belonging to the
prostate, we develop an adaptive threshold selection method
based on the area distribution model to produce the prostate
segmentation. For each patient in the training set, we com-
pute the area of the prostate, i.e., the sum of the number of
pixels belonging to the prostate, on each slice to produce its
area distribution. We then create the model of the prostate
area distribution by averaging the area distribution of each
training 3D prostate image. Let ADM and AD(T) be the area
distribution model and the area distribution of the patient to
be segmented with the threshold T, respectively, and BD(�) be
a Bhattacharyya distance function measuring the similarity of
two discrete or continuous probability distributions. Then the
optical threshold T can be computed by

T� ¼ arg minBDðADM;ADðTÞÞ: (11)

Let p, q be the discrete probability distributions over the
same domain X and BC(p, q) is the Bhattacharyya coeffi-
cient, which is a measure of the amount of overlap between p
and q. Then their Bhattacharyya distance is defined by

BDðp; qÞ ¼ � lnðBCðp; qÞÞ: (12)

And the Bhattacharyya coefficient, BC(p, q), can be calcu-
lated by

BCðp; qÞ ¼
X

x2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞ � qðxÞ

p
: (13)

On the basis of the optimal threshold value, we segment
the probability image into the prostate and non-prostate pix-
els. We then combine these 2D prostate masks to form a 3D
segmented prostate. Finally, we use a Gaussian smoothing
method to achieve a smoothed 3D segmented prostate.

2.F. Evaluation criterion

To evaluate the performance of the segmentation, the Dice
similarity coefficient (DSC), sensitivity, specificity, detection,
false negative rate (FNR) and overlap error (OVE) were
investigated in our segmentation experiments.35

DSC is the relative volume overlap ratio between the bin-
ary masks from our method and the gold standard established
by the expert-defined segmentation. Sensitivity and speci-
ficity are widely used in the medical image analysis and are
essentially two measurements of performance. Sensitivity
measures the proportion of actual positives which are cor-
rectly identified as the prostate. Specificity measures the
proportion of negatives which are correctly identified as non-
prostate. Detection is the detection rate, which is defined as
the number of true positive voxels divided by the sum of the
number of the false positive voxels and the number of
the false negative voxels. The false negative rate (FNR) and
the overlap error (OVE) are the evaluation criterion of error
detection. The FNR was defined as the number of false nega-
tive voxels divided by the total number of the prostate voxels
on the gold standard and the overlap error (OVE) is the
nonoverlap area between the segmented result and the gold
standard.

3. EXPERIMENTAL RESULTS

3.A. Databases and gold standards

We collected 3D CT image volumes from 92 prostate
patients who underwent PET/CT scans. All the collected
prostate CT images are from a GE scanner, and the volumet-
ric data were saved slice by slice in the DICOM format. The
slice thickness is 4.25 mm, and the size of the images is
512 9 512 9 27 voxels. The prostate was manually seg-
mented independently three times by each of two, clinically
experienced radiologists to produce the gold standards, and
any two manual segmentations by the same radiologist were
performed at least 1 week apart to eliminate the interference
of previous manual segmentation. We use G1, G2, and G3 to
represent the three manual segmentations obtained by Radiol-
ogist 1. We use G4, G5, and G6 to represent the three manual
segmentations obtained by Radiologist 2. To obtain a robust
gold standard, we adopt majority voting to fuse the labels
from six manual segmentations to obtain a fused gold stan-
dard, G7. In our experiment, we conducted five-fold cross-
validation experiments of the prostate segmentation using the
seven gold standards.

To assess the inter-observer and intra-observer variability,
we use the DSC to evaluate the segmentation performance.
Tables I and II show the intra-observer variations of the pros-
tate segmentation for Radiologist 1 and Radiologist 2, respec-
tively. In Tables I and II, the DSC values of three times are
close, and thus indicating that the manual segmentations by
the radiologists were robust. The inter-observer variations are
shown in Table III. The DSC varies from 87.12% to 93.73%,
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indicating that the manual segmentation is reliable and suffi-
ciently confident.

3.B. Parameter tuning

The only parameter of our approach is the number of deci-
sion trees (week classifier) in AdaBoost during the training
procedure. As a too large a number leads to long running
time, and a too small a number leads to a bad modeling, we
conducted the five-fold cross-validation experiments in the
training data to test seven numbers, including 10, 20, 30, 50,
100, 150, and 200, to achieve the optimal tradeoff between
the running time and classification accuracy rate. For each
tested number, N, we trained the AdaBoost with N decision
trees on the training data with G7 as the gold standard and
recorded the classification accuracy rate on the training data.
The average results are shown in Fig. 6. The number of 100
was chosen and was used in all of the following experiments.

3.C. The effectiveness of extracted features

To better character the prostate tissue, except for the inten-
sity, we extracted five, different kinds of features, including
mrLBP, HOG, GLCM, Haar like, and CThist. We conducted
the five-fold, cross-validation experiments in the training data
to test the distinguishing ability of features between prostate
pixel and non-prostate pixel. Since the number of non-prostate
pixels is far greater than that of prostate pixels, we computed
the average sensitivity of the prostate for better measuring the
ability to identify the prostate tissue. We show the results in
Fig. 7 in which we can see that each feature can achieve more
than 70% sensitivity and which proves that the features we
chose are discriminant for our prostate segmentation problem.
In addition, we linked these features together to obtain the
combined features. Figure 7 showed that our combined fea-
tures achieve the highest sensitivity and which proves that our
combined features can provide the complementary informa-
tion for better distinguishing between prostate pixel and non-

TABLE I. Intra-observer variation in prostate segmentation for radiologist 1
for three times.

DSC (%)
Radiologist 1,

time 1
Radiologist 1,

time 2
Radiologist 1,

time 3

Radiologist 1,
time 1

100.0 96.68 93.64

Radiologist 1,
time 2

96.68 100.00 93.07

Radiologist 1,
time 3

93.64 93.07 100.0

TABLE II. Intra-observer variation in prostate segmentation for radiologist 2
for three times.

DSC (%)
Radiologist 2,

time 1
Radiologist 2,

time 2
Radiologist 2,

time 3

Radiologist 2,
time 1

100.0 93.91 92.03

Radiologist 2,
time 2

93.91 100.0 95.44

Radiologist 2,
time 3

92.03 95.44 100.0

TABLE III. Inter-observer variation in prostate segmentation for radiologists
1 and 2 for three times.

DSC (%)
Radiologist 2,

time 1
Radiologist 2,

time 2
Radiologist 2,

time 3

Radiologist 1,
time 1

91.67 88.25 87.12

Radiologist 1,
time 2

93.73 89.70 88.40

Radiologist 1,
time 3

91.58 88.31 87.24

FIG. 6. (a) Accuracy and (b) training time for different numbers of decision trees in AdaBoost. [Color figure can be viewed at wileyonlinelibrary.com]
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prostate pixel. Therefore, we can demonstrate that the
extracted features are effective for prostate segmentation.

3.D. The effectiveness of adaptively binary prostate
segmentation based on the area distribution model

To prove that our adaptive threshold obtained by the area
distribution model can improve segmentation performance,
first we show an example of one specific patient in Fig 8 in
which we show the different thresholds, the different similari-
ties of the area distribution model, and the area distributions
obtained by different thresholds as well as the different DSC
values obtained by different thresholds. We can see that we get
17 candidate thresholds, from �2 to 14. For each threshold,
we can obtain a segmented prostate and its area distribution.
Then, we compare its area distribution with the area distribu-
tion model and calculate their distance, as shown as the
stippled bar in Fig. 8. Finally, to see the relationship between
the threshold and segmentation performance, we compute the
DSC between the segmented prostate with different thresholds
and the gold standard, as shown as the striped bar. We find that
the minimum distance corresponds to the best segmentation
performance.

Second, we prove the advantage of our adaptive threshold
selection by comparing the results with a fixed threshold (the
threshold is fixed as zero). We conducted the experiments in
the same way except the binary processing and show the
results in Fig. 9. Our adaptive threshold selection can obtain
a higher DSC and sensitivity as well as a lower false negative
rate and overlap error. This proves that our adaptive threshold
can improve segmentation performance.

3.E. The effectiveness of training three, patient-
specific models

In this study, we train three, patient-specific models to
learn the characteristics of a specific patient. We used the
information on the base, mid-gland, and apex slices to train
three, patient-specific models (3-Model Method) for better
charactering the test patient. To highlight the advantages of
our three, patient-specific models, we compared our method
with the method that uses just one patient-specific model (1-
Model Method). We used the information on the three slices
to train one model rather than three models.

Similarly, let PPA(i) be the probability of the pixel i pre-
dicted by the one patient-specific model and S(PO, PA) be
the similarity between the population model and the patient-
specific model, computed by (10). Therefore, the final proba-
bility of belonging to the prostate for the pixel i, P1(i), is
computed by

P1ðiÞ ¼ SðPO;PAÞ � PPAðiÞ (14)

We then use the adaptive threshold method to obtain the
best threshold. We compare the performance between the
3-Model Method and the 1-Model method and show
the results in Fig. 10, which show that our 3-Model method
can achieve better performance because our method considers
the particular characteristic of the prostate in the base, mid-
gland, and apex regions.

FIG. 7. The sensitivity of each feature and combined features. [Color figure
can be viewed at wileyonlinelibrary.com]

FIG. 8. Different DSCs and distances between the area distribution model and area distributions obtained by different thresholds. [Color figure can be viewed at
wileyonlinelibrary.com]
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3.F. The segmentation performance of the fivefold
cross-validation

The segmented results for the 92 patients’ data are shown
in Table IV. Even for different manual segmentations as the
gold standard, our approach achieved a maximum DSC of
87.18% and a minimal DSC of 83.58%, a maximum sensitiv-
ity of 87.46% and a minimal sensitivity of 83.28%, a maxi-
mum specificity of 97.94% and a minimal specificity of
97.34%, a maximum detection of 3.63 and a minimal detec-
tion of 2.86, a maximum false negative rate of 16.72% and a
minimal false negative rate of 12.54%, and a maximum over-
lap error of 27.81% and a minimal overlap error of 22.61%.
These results are close and our method achieved high seg-
mentation performance no matter which manual segmenta-
tion was used as the gold standard, and thus indicating that
our method is robust and effective.

3.G. The visualization of the segmented prostate

We randomly chose the slices except for the base, apex,
and mid-gland slices from different patients. We applied our
segmented method to obtain the boundary of the prostate on
these slices. Figure 11 shows that our segmented boundary
accurately matches the manual segmentation.

3.H. Comparison with the pure population learning
and pure patient-specific learning methods

To illustrate the effectiveness of our combined method,
we compare it with the pure population learning method
(POL) and the pure patient-specific learning method (PSL).
The POL trains the model based only on the population
data, whereas PSL is based only on the part of the new
patient data. They use their trained models to identify the
class (prostate or non-prostate) of pixels to complete the
prostate segmentation. In our experiments, we use the same
classifier and still conduct the fivefold cross-validation
experiments to segment the prostate for the 92 patients by
using POL, PSL, and our method POPSL. The comparison
results are shown in Fig. 12. The DSC from our method is
highest among the three methods, and the overlap error is
the lowest. Our method achieved the highest performance
compared with the other two, pure learning methods. It
demonstrates that our method can take advantage of each
pure leaning method and overcome the weaknesses of each
learning method by combining the population and patient-
specific characteristics.

3.I. Comparison with the other prostate
segmentation methods

Our method is part of the method combining the popula-
tion learning and patient-specific learning together. To prove
the effectiveness of our method, we compare our method with
the other combination method.24,25 Compared with the
method24 which conducted the prostate segmentation on 30
CT images, method25 used 32 patients, and our database con-
tains 92 patients. We also list the different collection schemes
of the compared methods and our method in the last column
in Table V. Different from the method24 iteratively getting the
patient-specific information, we access the information once.
Different from method,25 we do not need the planning and
treatment images. Our DSC is greater or equal to the one in
method24 and the one in method25 when they used planning
image information. Therefore, we recognize that our method
is effective compared with the other methods.

FIG. 9. The average of the dice similarity coefficient, sensitivity, false negative rate, and overlap error from data from 92 patients for our adaptive threshold selec-
tion and the fixed threshold method. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. The average of dice similarity coefficient, sensitivity, false negative
rate, and overlap error from 92 patients’ data for our 3-Model method and the
1-Model method. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE IV. The dice similarity coefficient, sensitivity, specificity, detection, false negative rate, and overlap error, of 92 CT images in the 5-fold cross-validation
for different gold standards (G1-G7), where the bold values denote the best results among the seven gold standards.

1 2 3 4 5 Average

DSC (%)

G1 86.78 � 4.76 85.82 � 4.10 86.69 � 2.92 87.15 � 2.85 85.73 � 5.07 86.43 � 3.98

G2 87.38 � 3.13 86.53 � 3.89 87.27 � 2.86 87.10 � 2.64 87.60 � 2.51 87.18 � 2.99

G3 87.11 � 4.47 84.69 � 5.64 86.96 � 2.94 86.83 � 3.06 87.04 � 3.96 86.52 � 4.14

G4 83.17 � 6.35 84.08 � 5.30 84.46 � 4.12 86.21 � 3.01 86.97 � 3.63 84.98 � 4.74

G5 81.15 � 6.09 82.35 � 5.84 83.97 � 4.95 85.86 � 4.01 84.55 � 6.99 83.58 � 5.77

G6 81.84 � 4.95 82.06 � 5.47 83.76 � 4.67 85.73 � 4.44 85.02 � 6.30 83.68 � 5.31

G7 84.79 � 6.87 84.32 � 4.36 83.80 � 4.84 86.67 � 3.05 85.58 � 5.18 85.22 � 4.99

SE (%)

G1 85.58 � 8.49 84.51 � 7.21 85.34 � 5.02 91.54 � 3.26 85.90 � 9.49 86.58 � 7.34

G2 86.65 � 4.67 84.73 � 6.56 86.85 � 4.88 90.20 � 4.21 88.87 � 5.12 87.46 � 5.37

G3 86.02 � 8.84 82.38 � 10.17 85.56 � 5.76 88.65 � 4.99 86.81 � 7.88 85.88 � 7.84

G4 81.35 � 9.00 80.19 � 9.48 84.6 � 7.86 88.54 � 5.08 86.44 � 7.47 84.23 � 8.33

G5 79.57 � 7.73 79.81 � 9.74 84.28 � 8.40 88.39 � 4.35 84.33 � 10.26 83.28 � 8.79

G6 81.22 � 8.98 80.53 � 9.93 84.45 � 5.88 88.96 � 5.76 84.54 � 9.50 83.94 � 8.55

G7 84.02 � 10.94 80.66 � 8.06 84.49 � 7.58 88.96 � 4.77 84.79 � 10.45 84.91 � 8.84

SP (%)

G1 97.69 � 0.77 97.34 � 1.51 97.82 � 1.07 96.99 � 0.86 97.37 � 0.88 97.44 � 1.07

G2 97.28 � 2.05 97.65 � 1.13 97.72 � 0.94 97.21 � 0.75 97.24 � 1.29 97.42 � 1.30

G3 97.98 � 0.65 97.85 � 1.10 98.12 � 0.89 97.66 � 0.68 97.89 � 0.82 97.90 � 0.84

G4 97.49 � 1.22 98.17 � 0.80 97.56 � 0.83 97.53 � 0.79 97.89 � 0.84 97.73 � 0.92

G5 97.19 � 1.10 97.67 � 1.08 97.52 � 0.90 97.42 � 1.16 97.45 � 1.21 97.45 � 1.08

G6 97.10 � 1.18 97.42 � 1.03 97.32 � 1.02 97.36 � 1.28 97.52 � 0.90 97.34 � 1.07

G7 97.86 � 0.92 98.36 � 0.84 97.60 � 1.07 97.84 � 0.55 98.05 � 0.90 97.94 � 0.89

DET

G1 3.63 � 1.14 3.42 � 1.64 3.43 � 0.88 3.58 � 0.95 3.34 � 1.06 3.48 � 1.14

G2 3.68 � 0.98 3.66 � 1.82 3.60 � 0.86 3.54 � 0.85 3.67 � 0.75 3.63 � 1.10

G3 3.73 � 1.20 3.30 � 1.78 3.50 � 0.80 3.47 � 0.81 3.63 � 1.00 3.53 � 1.16

G4 2.87 � 1.19 3.10 � 1.62 2.93 � 0.88 3.29 � 0.82 3.61 � 1.10 3.16 � 1.16

G5 2.43 � 0.95 2.75 � 1.52 2.92 � 1.09 3.26 � 0.89 3.24 � 1.29 2.92 � 1.18

G6 2.48 � 0.96 2.51 � 0.80 2.80 � 0.86 3.28 � 1.02 3.24 � 1.14 2.86 � 1.00

G7 3.24 � 1.18 3.03 � 1.45 2.80 � 0.80 3.42 � 0.81 3.30 � 1.08 3.18 � 1.09

FNS (%)

G1 14.42 � 8.49 15.49 � 7.21 14.63 � 5.02 8.46 � 3.26 14.10 � 9.49 13.42 � 7.34

G2 13.35 � 4.67 15.27 � 6.56 13.15 � 4.88 9.80 � 4.21 11.13 � 5.12 12.54 � 5.37

G3 13.98 � 8.84 17.62 � 10.17 14.44 � 5.76 11.35 � 4.99 13.19 � 7.88 14.12 � 7.84

G4 18.65 � 9.00 19.81 � 9.48 15.4 � 7.86 11.46 � 5.08 13.56 � 7.47 15.78 � 8.33

G5 20.43 � 7.73 20.19 � 9.74 15.72 � 8.40 11.61 � 4.35 15.67 � 10.26 16.72 � 8.79

G6 18.78 � 8.98 19.47 � 9.93 15.55 � 5.88 11.04 � 5.76 15.46 � 9.50 16.06 � 8.55

G7 15.98 � 10.94 19.34 � 8.06 15.51 � 7.58 11.04 � 4.77 15.21 � 10.45 15.09 � 8.84

OVE (%)

G1 23.09 � 6.93 24.63 � 6.33 23.39 � 4.52 22.67 � 4.47 24.66 � 7.36 23.69 � 5.95

G2 22.29 � 4.86 23.54 � 6.14 22.48 � 4.40 22.76 � 4.15 21.98 � 3.88 22.61 � 4.66

G3 22.59 � 6.61 26.17 � 8.41 22.97 � 4.51 23.16 � 4.67 22.76 � 5.92 23.53 � 6.18

G4 28.34 � 9.06 27.12 � 7.98 26.69 � 6.11 24.12 � 4.63 22.89 � 5.60 25.83 � 6.99

G5 31.32 � 8.47 29.61 � 8.50 27.34 � 7.29 24.59 � 5.90 26.20 � 9.82 27.81 � 8.26

G6 30.46 � 7.09 30.09 � 7.58 27.69 � 6.75 24.74 � 6.47 25.61 � 8.76 27.72 � 7.55

G7 25.88 � 9.44 26.87 � 6.61 27.62 � 6.80 23.41 � 4.65 24.90 � 7.43 25.49 � 7.13
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3.J. The robustness of our method

Finally, we test the sensitivity of our method to the selec-
tion of the apex, middle, and base slices. Our method requires
the user to select three slices to obtain the patient-specific
information for guiding the segmentation. To evaluate the
effect of selecting the three slices, we perform our segmenta-
tion method on the neighboring slices around the apex, mid-
dle, and base slices. If S(A), S(M), and S(B) are the selected
slices at the apex, mid-gland, and base, respectively, then the
neighboring slices are S(A + 1), S(A-1), S(M + 1), S(M-1),
S(B + 1), and S(B-1). We randomly choose five patients and
use the neighboring slices to test the segmentation individu-
ally and jointly. We show the evaluation results in Fig. 13 in
which the standard deviations of the five patients are very
small. This proves that our method is robust regarding the
selection of apex, middle, and base slices.

4. DISCUSSION

We proposed and evaluated a learning-based segmentation
algorithm for the prostate in 3D CT images. The method
combines the population and patient-specific learning meth-
ods to improve the segmentation performance. The main con-
tributions of this manuscript include (a) the combination of
population and patient-specific knowledge, (b) the adaptive

selection of the threshold value for binarization, and (c) the
robustness of our segmentation method.

We used the data from the other patients to obtain the gen-
eral knowledge and used partial data from the new patient to
obtain the specific knowledge. We combined them together to
achieve the applicable population and patient-specific knowl-
edge. Because the prostates from different patients may have
different size or shape and because of the inter-patient varia-
tions, some population knowledge may not be applicable to a
new patient. For the apex region, the mid-gland region and the
base region, we choose three slices of the new patient to train
three, patient-specific models for a better description of the pros-
tate of the new patient. The combined population and patient-
specific knowledge can maximize the useful knowledge and min-
imize contradictory knowledge for a specific patient to improve
the segmentation performance. The experimental results show
that our combined method outperforms any single, learning-
based method alone. Our method is robust to the user interaction
and the training data. Our method can compute the likelihood of
each pixel in the CT image belonging to the prostate region more
accurately. Hence, compared with the other combined learning
methods, our method is effective and robust.

After obtaining the prostate likelihood for each pixel of
the new patient image using the combined learning, we did
not use a fixed threshold value to obtain the prostate or non-
prostate pixels. We calculated an adaptive value which was

(a)

(c) (d)

(b)

FIG. 11. The segmented prostate on 2D slices (a)–(d) where the dash red boundaries were obtained by our method and the solid blue boundaries were obtained
by manual segmentation. [Color figure can be viewed at wileyonlinelibrary.com]
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closely related to the specific patient to binary the prostate or
non-prostate pixels. We considered both the general shape of
the prostate and the specific prostate likelihood to obtain a
case-specific value for a good performance. As shown in the
experimental results, the calculated adaptive threshold value
can achieve higher segmentation performance compared with
the other values.

To evaluate the robustness of the selection of the slices, we
recorded the slice numbers of the apex slice, middle slice, and
base slice from the gold standards and we found that there is up
to �1 slice difference between every two gold standards. We
performed our segmentation method using the � neighboring
slices and also achieved satisfactory DSC values. It indicates that
our method is robust to the user selection of the slices.

The proposed method was implemented in MATLAB
codes. The algorithm takes approximately 11.31 s to segment
one prostate volume in 3D CT images in a Windows 7 desktop
with a 32 GB RAM and 3.40 GHz processor. It contains

approximately 10.95 s for recognition, 0.18 s for binarization,
and 0.18 s for smoothing. Our code is not optimized and does
not use multi-thread, GPU acceleration or parallel program-
ming. The segmentation method can be further speeded up for
many applications in the management of prostate cancer
patients.

5. CONCLUSION

We propose a learning-based segmentation scheme that
combines the population learning and patient-specific learn-
ing together for segmenting the prostate on 3D CT images.
The method overcomes the inter-patient variations by taking
advantage of the patient-specific learning. It also takes

FIG. 12. (a) The dice similarity coefficient, (b) sensitivity, (c) specificity, (d) detection, (e) false negative rate, and (f) overlap error for the 92 patient data by using
the pure population learning method (POL), the pure patient-specific learning method (PSL), and our method (POPSL). [Color figure can be viewed at wileyonli-
nelibrary.com]

TABLE V. Comparison with the other prostate ct segmentation methods.

Method Database DSC
Collection of patient-specific

information

Method24 30 CT images 0.865–0.872 Manual annotation iteratively

Method25 32 patients with
478 images

0.89 Manual annotation in
one planning image and
four treatment images

0.85 Manual annotation in a
planning CT

Ours 92 patients with 92
CT images

0.872 Manual annotation on
three slices

FIG. 13. The effect of selecting three, key slices on the segmentation perfor-
mance for five, random patients. [Color figure can be viewed at wileyonline-
library.com]
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advantage of the population learning to improve the segmen-
tation performance. We use an adaptive threshold method to
improve segmentation accuracy. Experimental results demon-
strate the effectiveness and robustness of the method. The
learning-based segmentation method can be applied to pros-
tate imaging applications, including targeted biopsy, diagno-
sis, and treatment planning of the prostate.
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