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SUMMARY

It is increasingly appreciated that alternative splicing plays a key role in generating functional 

specificity and diversity in cancer. However, the mechanisms by which cancer mutations perturb 
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splicing remain unknown. Here, we developed a network-based strategy, DrAS-Net, to investigate 

over 2.5 million variants across cancer types and link somatic mutations with cancer-specific 

splicing events. We identified over 40,000 driver variant candidates and their 80,000 putative 

splicing targets deregulated in 33 cancer types and inferred their functional impact. Strikingly, 

tumors with splicing perturbations show reduced expression of immune system-related genes, and 

increased expression of cell proliferation markers. Tumors harboring different mutations in the 

same gene often exhibit distinct splicing perturbations. Further stratification of 10,000 patients 

based on their mutation-splicing relationships identifies subtypes with distinct clinical features, 

including survival rates. Our work reveals how single nucleotide changes can alter the repertoires 

of splicing isoforms, providing insights into oncogenic mechanisms for precision medicine.

eTOC BLURB

Li et al. find that DrAS-Net, a network-based method, identifies somatic mutation-mediated 

alternative splicing (AS) and helps prioritize driver mutations. Distinct target AS profiles help 

explain cancer heterogeneity and classify cancer patients into subtypes with distinct clinical 

features.

INTRODUCTION

Phenotypic variation and heterogeneity is far more complex in human compared to other 

species, even though there are similar numbers of genes in the genome. This enigma could 

be at least partially addressed by studying the extent to which different protein isoforms can 

be encoded by each genome. It has been increasingly appreciated that alternative splicing is 

a key factor contributing to protein isoform diversity. In human cancer, for instance, the 

problem of tumor heterogeneity across patient populations is known to involve alternative 

splicing. However, the fundamental question of how genomic mutations influence the 

splicing process leading to cancer is essentially unknown (Figure 1A).
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Alternative splicing (AS) is a highly regulated process that adds complexity to human 

transcriptome, proteome and signal transduction networks in the cell (Braunschweig et al., 

2014). Over 90% of human protein coding genes produce multiple mRNA isoforms (Wang 

et al., 2008), thereby AS is one of the main sources of proteomic diversity (Braunschweig et 

al., 2013). Tissue- and cell-type specific AS patterns have been shown to play critical roles 

in development and differentiation (Buljan et al., 2012; Ellis et al., 2012; Kalsotra and 

Cooper, 2011; Zhang et al., 2016). Aberrant AS events have been implicated in complex 

diseases, including various types of cancer (David and Manley, 2010; Misquitta-Ali et al., 

2011; Xu et al., 2014). AS alterations may confer a selective advantage to the tumor, such as 

cell proliferation, invasion and apoptosis evasion (Dominguez et al., 2016; Oltean and Bates, 

2014). The determination of AS deregulation in cancer is therefore of utmost relevance to 

reveal novel oncogenic mechanisms. Although considerable efforts have been made to study 

AS alterations in individual cancers, the extent to which aberrant AS perturbations 

contribute to cancer progression remains largely unknown.

Besides identification of aberrant AS events across cancer types, identifying molecular 

determinants and mechanisms that perturb AS in cancer is fundamental for the development 

of cancer-specific biomarkers for prognosis and therapy (Barash et al., 2010; Braunschweig 

et al., 2013). Lines of evidence have demonstrated that AS alterations in cancer may be 

caused by changes in expression, amplification and deletions in splicing factors and RNA-

binding proteins (Hollander et al., 2016; Raj et al., 2014; Sebestyen et al., 2016; Sveen et al., 

2016). Given the complexity of AS events, it is not surprising that they are particularly 

susceptible to genomic mutations implicated in human cancer (Lu et al., 2012; Maguire et 

al., 2015; Xing, 2007). Indeed, it has been increasingly appreciated that AS events are 

influenced by genomic mutations. For instance, genetic variants that affect splicing have 

been inferred by deep learning algorithms (Wan et al., 2015) and mutations that lead to 

intron retention have been identified as a pervasive mechanism by which tumor suppressor 

genes are inactivated in certain cancers (Jung et al., 2015). Nevertheless, the general 

principles by which somatic mutations lead to AS alterations across diverse cancer types are 

unknown and have the potential to reveal oncogenic mechanisms in diverse cancers.

Functional networks provide an informative platform to investigate properties of cellular 

systems (Barabasi and Oltvai, 2004; Vidal et al., 2011). Network-based approaches have 

been successfully applied to identifying cancer genes (Barabasi et al., 2011; Sonachalam et 

al., 2012), but the relationships between genomic mutations and global changes in AS are 

currently enigmatic. It is now clear that patients with the same cancer type have highly 

heterogeneous genotypes with diverse genomic alterations (Vogelstein et al., 2013; Zhang et 

al., 2013). Therefore, we urgently need methods to assess the impact of patient-specific 

mutations on AS events from individual tumors in order to discover personalized driver 

mutations.

Toward these goals, we developed an integrated, multi-scale framework (hereafter referred to 

as DrAS-Net; Figure 1B) and performed a large-scale systematic investigation of somatic 

mutation-mediated AS patterns across 33 types of cancer. Our integrated analysis revealed 

widespread AS changes across cancer types. Cancer types with similar tissue origins form 

clusters based on differential AS patterns. By integrating genomic mutations and AS events 
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into functional association networks, we describe a framework to identify patient-specific 

potential driver mutations that mediate AS alterations in cancer. The identified driver 

candidates were enriched in cancer hallmark genes, and that cancer subtypes with distinct 

clinical features could be identified by their AS profiles. In this manner, DrAS-Net provides 

a valuable approach and resource for detecting candidate driver mutation-mediated AS 

events in cancer, and helps explain the heterogeneity observed across diverse patient 

populations.

Results

The alternative splicing landscape across cancer types

The Cancer Genome Atlas (TCGA) RNA sequencing data provide a valuable resource for 

investigating AS patterns in cancer. We focused on the AS patterns in >10,000 samples 

across 33 types of cancer. These cancer types were ordered based on their tissue of origin 

(Figure 1C and Table S1). We identified the frequency of AS events per tumor for each 

cancer type (Figure 1C). The average number of AS events per tumor varied considerably 

between cancer types. In our analysis, AS was categorized into seven classes (Figure S1A): 

exon skipping, alternative donor site, alternative acceptor site, retained intron, mutually 

exclusive exons, alternative terminator and alternative promoter. We analyzed the 

distribution of these AS classes across cancer types, and observed that exon skipping was the 

most frequent class of splice event, while mutually exclusive exons represented a rare class 

(Figure S1B).

Defects in RNA splicing are an important factor contributing to disease, including cancer. 

We therefore examined ‘differential AS events’, defined as significantly altered AS events in 

cancer compared to normal tissues (see details in Methods). We focused on 18 types of 

cancer, each with more than five normal samples (Wilcoxon rank-sum test, false discovery 

rate <0.01). After normalization, our analysis showed larger proportion of differential AS 

events in kidney renal clear cell carcinoma (KIRC, n=5,245) than other cancer types (Figure 

2A), probably due to elevated expression of splicing factors during renal carcinogenesis 

(Piekielko-Witkowska et al., 2010). In contrast, although the number of AS events overall 

(n=50,342) was the highest in esophageal carcinoma (ESCA), the fewest (n=437) differential 

AS events were identified, suggesting that most AS events in this cancer might be 

independent of tumor growth. Moreover, we also found fewer differential AS events in 

reproductive system cancers, such as prostate adenocarcinoma (PRAD) and uterine corpus 

endometrial carcinoma (UCEC), than in most of the other cancer types. To further explore 

the distribution of distinct AS classes among these differential AS events, we observed that 

exon skipping, alternative promoters, and alternative terminators were among the major 

classes (Figure S1C), which in total account for 82.86% of the differential AS events (Figure 

S1D). In contrast, only 0.41% (154/37,723) of the cases belonged to the mutually exclusive 

exons class in the investigated cancer types (Figure S1D). Together, these results provide 

evidence for cancer-specific splice isoforms, suggesting widespread splicing perturbations 

across cancer types.
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Cancer types with similar tissue origins share differential AS patterns

Lines of evidence have indicated that cancer types with similar tissue origins share multiple 

molecular features, such as gene expression, miRNA expression and DNA methylation 

(Hoadley et al., 2014; Yang et al., 2016b). However, whether cancer types with similar tissue 

origins exhibit similar AS patterns is unknown. To address this question, we computed a 

paired similarity score based on differential AS events in each cancer (Figure 2B). 

Hierarchical clustering analysis indicated that cancer types with similar tissue origins 

showed similar differential AS patterns, such as KIRC and kidney renal papillary cell 

carcinoma (KIRP), lung adenocarcinoma (LUAD) and lung squamous cell carcinoma 

(LUSC), colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). These data 

also inform longstanding debates regarding appropriate demarcations of esophageal 

carcinoma (ESCA) and gastric cancer (STAD) which are clearly separated by differential AS 

patterns. This result is consistent with a recent study that demonstrated these two cancer 

types had distinct molecular characteristics in terms of mRNA expression, miRNA 

expression, DNA methylation and copy number variation (Cancer Genome Atlas Research et 

al., 2017). Furthermore, cancer types with similar tissue origins also cluster together based 

on different AS classes (Figure S1E–K). These observations suggest that related 

mechanisms might operate in cancer types with similar tissue origin.

Specificity and generality of AS events in different cancer types

We next investigated the extent to which differential AS events contributed to cancer 

specificity. We found that differential AS tended to be highly cancer type-specific, as 

41.04% (15,482/37,723) of the differential AS events were detected in only one cancer type 

(Figure 2C). To further quantify splicing events, we applied the Percent Spliced In (PSI) 

value (Ryan et al., 2016; Wang et al., 2008), which was defined as the number of reads 

containing a transcript element divided by the total number of reads, including the AS event. 

We observed distinct PSI values in tumor samples compared to matched controls. For 

instance, exon skipping of FGFR1 was detected to be differential in glioblastoma multiforme 

(GBM), and exhibited high cancer-type specificity (Figure 2D). Alternative splicing of this 

gene had been demonstrated to be specific in GBM by exon array analysis and FGFR1 can 

induce GBM radio-resistance (Cheung et al., 2008). These results offered a preclinical proof 

of concept that targeting FGFR1 might be a new method to GBM therapy. In contrast, our 

analysis also revealed a small subset of genes that were differentially spliced across multiple 

cancer types. For example, leukocyte-specific protein 1 (LSP1) is an F-actin binding protein, 

with mutations implicated in many cancer types. Alternative usage of LSP1 promoter had 

been demonstrated to play critical roles in myogenesis (Ehrlich and Lacey, 2013). Here, we 

found that alternative promoter usage of LSP1 occurred in a prevalent manner in 15 types of 

cancer. Consistently, analysis of the PSI distribution showed lower PSI values in cancer 

samples compared with normal controls across many cancer types (Figure 2E). These results 

reveal the existence of AS events that are cancer type-specific and those that are prevalent in 

diverse cancers. For the benefit of the community, the cancer specificity index as well as the 

PSI values for AS perturbation events is provided in Supplementary Table S2. This resource 

can help identify genes and mechanisms that are specific as well as common to different 

cancers for future studies.
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AS perturbation profiles predict immune signatures in cancer

To determine which molecular players were associated with the identified AS alterations in 

cancer, we searched for cellular signaling pathways in tumors with versus without 

differential AS events, as shown above (Figure 2A). We compared the gene expression 

profiles of these tumor samples, and used Gene Set Enrichment Analysis (GSEA) to identify 

pathways whose expression levels were enriched or depleted in tumor samples with 

differential AS perturbations (see details in Methods). This analysis was performed across 

all tumor samples (pan-cancer analysis). Among the pathways up-regulated in tumor 

samples with AS perturbation were those implicated in DNA replication (adjusted p<0.001, 

Figure S2A), cell cycle (adjusted p<0.001, Figure S2B) and DNA repair (adjusted p<0.001, 

Figure S2C). These results suggest that there is increased cell proliferation in tumor samples 

with perturbed AS events. In contrast, most of the down-regulated pathway signatures were 

associated with the immune system, such as CD8 T cell receptor pathway (adjusted p=0.002, 

Figure 2F), chemokine signaling pathway (adjusted p=0.002, Figure 2G) and B cell receptor 

signaling pathway (adjusted p=0.02, Figure 2H). These observations implicate decreased 

activity of immune genes in the tumor microenvironment. Moreover, we applied the cell 

cycle signature score and immune signature score for each tumor sample, which were 

defined as the average expression level of the genes involved in each signature. We found 

that the tumor samples with perturbed AS events exhibited significantly higher cell cycle 

signature score (p=1.96e-10, Wilcoxon rank-sum test, Figure 2I) and lower immune 

signature score (Figure S2D). These results suggest increased cell proliferation and 

decreased immune activity in tumors with AS perturbation. Moreover, tumor aneuploidy and 

mutation load had recently been demonstrated as a possible marker for immune evasion with 

reduced response to immunotherapy (Davoli et al., 2017). We thus investigated whether AS 

perturbation in tumor samples correlated with distinct somatic copy number alteration 

(SCNA) levels. We found that tumor samples with altered AS events had significantly higher 

chromosome SCNA levels (p=4.2e-4, Wilcoxon rank-sum test, Figure S2E), arm SCNA 

levels (p=4.6e-4, Wilcoxon rank-sum test, Figure S2F), focal and normalized SCNA levels 

(p<0.001, Wilcoxon rank-sum test, Figure S2G and S2H), and greater number of mutations 

(p<2.2e-16, Wilcoxon rank-sum test, Figure 2J). In summary, our results indicate that AS 

perturbation in cancer provides a predictor of cytotoxic immune cell infiltration, together 

with other previously described tumor characteristics such as mutation load and aneuploidy. 

These observations suggest that AS perturbation profiling may help identify cancer patients 

most likely to respond to immunotherapy.

DrAS-Net: Network-based framework for identifying somatic mutation-mediated AS across 
cancer types

Our results indicate that there are widespread AS perturbations across cancer types. 

However, how these AS alterations are determined in cancer is unknown. As splicing 

changes may be triggered by genetic mutations (Wan et al., 2015), we investigated the extent 

to which somatic mutations could lead to differential AS of the same or different genomic 

loci across cancer types. Genes in the cellular system do not function insularly but form 

functional networks (Cho et al., 2016; Jia and Zhao, 2014). Thus, we postulated that 

functional association networks could also be leveraged to relate mutations to their 

consequent effect on AS alterations. To address this, we first investigated the interactions 
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between differential AS genes and highly mutated genes in the context of functional 

networks (Rolland et al., 2014). We observed that the network neighbors of highly mutated 

genes (defined as the top 20% of genes in each cancer) were enriched in differential AS 

genes (in 18 types of cancer for which we had sufficient data). In addition, we obtained 

similar results for the top 15% and 25% highly mutated genes. These results indicate that 

mutated genes likely impact the AS alterations of their known interacting partners and 

suggest that network structure could be used to identify potential regulators of AS events.

We devised a network-based framework to identify mutations that could mediate differential 

AS events in cancer, referred to as DrAS-Net (Driver mutation-AS interactome Network; 

Figure 3A and Figure S3A). This model was built upon the idea that gene mutations with 

functional effects on AS exhibited their impact in the functional association networks. In 

addition to identifying common somatic mutations that mediate AS in cancer, characterizing 

personalized genomic mutations in individual cancer patients could reveal new details of 

complex cancer mechanisms. We therefore identified somatic mutation-mediated AS 

alterations in functional networks for each cancer sample. Next, a greedy optimization 

approach was used to detect recurrent mutations that can explain the vast majority of the 

identified AS alterations in cancer (see details in methods). By applying this method to 33 

types of cancer, we identified approximately 60~900 drivers that may determine differential 

AS events for each cancer type (Figure 3B). The total number of drivers varied considerably 

between cancer types and was largely consistent with earlier results, with LUSC, LUAD and 

COAD having higher mutation burdens (Fredriksson et al., 2014). Moreover, we used three 

independent methods to validate the inferences of the DrAS-Net (Figure S3B–E and 

Supplementary Note). All these results indicated the network information is valuable for 

identification of the determinants of AS events.

Network-based model identifies driver genes enriched in cancer-related functions

To investigate whether the network-based method could identify driver genes that were 

functionally related to cancer, we explored multiple functional features of these genes. So 

far, the most widely adopted method to identify driver genes is to search for frequently 

mutated genes within one cancer type (Gonzalez-Perez et al., 2013; Wei et al., 2011). 

Although driver genes identified in our analysis were not the most mutated genes, we 

observed that the mutation frequencies of driver genes were significantly higher than those 

of randomly selected genes in most (75.8%; 25/33) cancer types (Figure 3C, Wilcoxon rank-

sum test p-value<0.05). In addition, the mutation frequencies of driver genes were higher in 

UCEC and SKCM than other cancer types, which may be explained by the higher mutation 

burden (Kandoth et al., 2013). We next assessed the functional relevance of these driver 

genes in cancer by examining the Cancer Gene Census (CGC), a database that catalogues 

genes for which mutations have been causally implicated in cancer (Forbes et al., 2015). The 

candidate driver genes identified here were significantly enriched in CGC genes (Figure 3D, 

hypergeometric test p-value<0.05 in 84.8% or 28/33 cancer types). Moreover, network 

analysis revealed that interacting neighbors of candidate driver genes were also more 

enriched in CGC genes than expected by chance (Wilcoxon rank-sum test p-value<0.05 for 

all cancer types).
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To further explore their roles in cancer, we performed functional enrichment analysis of 

candidate driver genes for cancer hallmarks (Figure 3E). This analysis revealed that one or 

more hallmarks were enriched across different cancer types. Insensitivity to antigrowth 

signals and evading apoptosis were enriched in almost all cancer types and reprogramming 

energy metabolism was also enriched in a significant fraction (11/33) of cancer types. 

Cancer cells with defects in the antigrowth signaling pathway (such as the RB1 and E2F 
transcription factor mutations identified here) are missing a critical ‘gatekeeper’ of cell cycle 

progression, thus cancer cells keep growing and dividing (Hanahan and Weinberg, 2011). 

Altogether, these results indicate that the network-based method that makes use of both the 

cancer specific mutation and AS data could identify candidate driver genes that are likely to 

play a functional role in cancer (Table S3). Moreover, we found the identified driver 

candidate mutations had higher Combined Annotation–Dependent Depletion (CADD) 

scores, higher conservation and depleted in protein domains, but were likely to locate in 

disorder regions and linear motifs (Figure S3F–J and Supplemental Note). To investigate 

whether these mutations led to specific alternative splicing outcomes, we transfected 

HEK293T cells with plasmids encoding for either wild-type genes or identified mutants. Our 

results suggest that different genetic mutations likely influence distinctly different AS events 

in cancer (Figure S3K and Supplemental Note).

Phenotypic heterogeneity explained by somatic mutation-mediated AS

Mutations in the same genes are often associated with multiple clinically distinct 

phenotypes, including different types of cancer. We observed that some mutated genes could 

influence different AS events across different cancer types (Figure 4A). To investigate how 

mutations in the same genes can cause different types of cancer or different subtypes of the 

same cancer, we proposed two models for explaining this heterogeneity: Different mutations 

of the same genes could influence distinct AS events in different patients of the same or 

different cancer types (model-1 and model-2, respectively, in Figure 4B). To determine if the 

models were responsible for cancer heterogeneity, we compared the similarity in mutation-

AS associations between each pair of cancer samples, for both cis (same gene) and trans 
(different genes) configurations. We observed that about 99.4% of the mutation-AS pairs 

were grouped to different mutations-different AS events within the same cancer type (Figure 

4C), while 99.2% when comparing different cancer types (Figure 4D) (Wilcoxon rank-sum 

test p<2.2e-16). Together, our results indicate that different driver candidate mutations are 

likely to influence distinct AS perturbations, accounting for different cancer phenotypes.

To determine the extent to which somatic mutations influence AS perturbations in cancer, 

we first focused on the cis-AS events identified in our study. We found approximately 3.68% 

of differential AS events to be in the cis configuration across all cancer types. This 

proportion was significantly higher than randomly selected pairs (p<0.001, randomization 

test, Figure 4E), suggesting that AS events are likely to be influenced by mutations in the 

same gene. For instance, IKAROS, encoded by the IKZF1 gene, is a pivotal transcription 

factor that plays important roles in cancer. We found that several somatic mutations in 

IKZF1 could influence the AS pattern in cis. In total, five mutations modulated the exon 7–9 

skipping while four mutations influenced the exon-6 skipping in multiple cancer types. 

Specifically, the mutation A79T influenced an AS event (exon 7–9 skipping) in LUAD, 
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resulting in the loss of the Zinc finger type 2–4 domains. Another mutation G43E led to the 

exon-6 skipping in LUSC, which caused the loss of the Zinc finger type-1 domain (Figure 

4F). Moreover, the patient with exons 7–9 skipping showed a shorter survival rate. These 

results suggest that somatic mutations could likely affect the AS profile of the same gene 

(cis configuration), and different mutations of the same gene may result in distinct cis-AS 

alterations.

It is known that RNA-binding proteins (RBPs) could act in trans to trigger specific AS 

changes in other genes in several cancer types (Brooks et al., 2015; Sebestyen et al., 2016). 

We obtained 1,348 genes encoding known and predicted RBPs from one of the previous 

studies (Sebestyen et al., 2016). Our analysis showed that the identified driver genes in our 

study were significantly enriched in RBPs (Figure 4G, hypergeometric test p-value<0.05 for 

81.2% or 27/33 cancer types), pointing to the possible role of these driver genes in AS 

regulation in cancer. Moreover, we integrated the eCLIP-Seq and shRNA-Seq datasets to 

uncover the genome wide RBP-binding profile (Sundararaman et al., 2016; Van Nostrand et 

al., 2016). We found that the mutation-perturbed AS genes we identified were more likely to 

be RBP targets than non-perturbed genes (Figure 4H, p<2.2e-16, Fisher’s exact test).

Our results have provided insights into possible protein-level effects of differential splicing 

in cancer, and have identified perturbations of different types of protein modules that are 

known to mediate crucial functions. For example, EIF4ENIF1 (also known as 4E-T) has 

been demonstrated to play critical roles in cancer (Martinez et al., 2015) and alternative 

splicing of this gene could promote pathological angiogenesis (Chang et al., 2014). Here, we 

found that aberrant splicing in EIF4ENIF1 was likely influenced by mutations in the RBP 

gene EIF4E2 in breast cancer (Figure 4I). In cancer patients, different EIF4E2 mutations 

tended to affect distinct AS events in EIF4ENIF1. For instance, one of the patients harbored 

the R202Q mutation, which likely mediated the skipping of exons 6–7 of EIF4ENIF1. Loss 

of these exons caused the elimination of the EIF4ENIF1 nuclear localization signal motif, 

which is known to impair the nucleocytoplasmic shuttling of EIF4ENIF1 protein as well as 

the coupled nuclear import of EIF4E (Dostie et al., 2000). Therefore this AS event results in 

the loss of important EIF4E nuclear functions (Strudwick and Borden, 2002) (Figure 4J). In 

another patient, the EIF4E2 mutation W148L was identified to influence the skipping of 

exon 12 of EIF4ENIF1, resulting in the loss of residues 505–527 which do not encompass 

any known functional sites of the protein. Intriguingly, we found that these different AS 

perturbations were associated with distinct survival rates, with the former patient shorter 

than the latter one. The former patient was in stage II while the latter one was stage I. These 

results suggest that different mutations result in distinct phenotypes likely by modulating 

different AS events. Besides the loss of signal motifs by AS perturbation, we also observed 

in other patients that aberrant splicing might cause loss of signal transduction domains, non-

domain functional regions, or catalytic domains in cancer (Figure S4). Together, our results 

that link single nucleotide mutations to AS events can provide mechanistic insights into how 

mutations can result in cancer progression. It also suggests that the identification of AS 

profiles mediated by patient-specific mutations could be a valuable strategy and resource to 

help explain the phenotypic heterogeneity in the same or different cancer types.
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Mutation-mediated AS identifies cancer subtypes associated with distinct survival rates

To explore the prognosis potential of AS events, we first divided the tumor samples into 

discovery set and validation set. The Cox regression model was trained using the discovery 

dataset and the trained model was validated in validation set (Figure 5A). The AS events 

identified by DrAS-Net that with concordance index larger than 0.5 and p-value less than 

0.05 were identified as clinical associated AS events (Figure S5A). Next, we grouped cancer 

samples based on these AS events using consensus clustering (Wilkerson and Hayes, 2010). 

In total, we found that a considerable fraction (36.4%; 12/33) of cancer types can be grouped 

into subtypes with distinct survival rates. In addition, we randomly grouped samples into the 

same number of subtypes as consensus clustering, and then the survival rates were compared 

with log-rank test. As a result, we also observed the p-values were significantly less than 

those of random conditions in most cancer types (p-values<0.05; Figure 5B). These results 

indicate that the driver AS events may be promising biomarkers in these cancer types.

For example, this analysis revealed five subtypes in liver hepatocellular carcinoma (LIHC, 

n=371) (Figure 5C and Figure S5B–C). Patients of the same subtype were distributed among 

different tumor stages (Figure S5D), indicating that the AS-based classification is 

independent from tumor stage. A recent large-scale study found that a high body mass index 

(BMI) was associated with an increase in liver cancer risk (Campbell et al., 2016). We thus 

explored whether cancer patients within different subtypes had distinct weight profiles. We 

observed that patients in the subtype-2 group had significantly higher weight than other 

subtypes (Figure S5E). Strikingly, there was a significant difference in the overall survival of 

patients among these subtypes (Figure 5D, log-rank test p-value=4.61e-3). Specifically, 

patients in the subtype-1 and subtype-3 groups were with shorter survival time. Next, we 

investigated whether these AS events in each subtype were driven by distinct mutated genes. 

As shown in Figure 5E, we observed only four mutated genes were shared in these five 

subtypes. Functional enrichment analysis also suggested that these mutated genes of 

different subtypes were enriched in different functions, such as genes in cluster-1 were 

enriched in TNF signaling pathway whereas mutated genes in cluster-3 were enriched in 

Viral carcinogenesis (Table S4). As another validation, we also clustered LGG (n=514) 

samples based on mutation-mediated AS events. Clustering analysis revealed five subtypes 

(Figure 5F) with significantly different survival patterns (Figure 5G, log-rank test p-

value<2.2e-16). Moreover, we found that these distinct subtypes with distinct age of onset 

(Figure S5H) and with mutated genes enriched in different pathways (Figure S5I). 

Furthermore, our results suggest that profiling AS events is an important strategy for subtype 

stratification, which is independent of gene expression deregulation in cancer (Figure S5J–

K). Taken together, our data reveal critical driver mutations, important clinical and biological 

trends associated with AS in cancer, and suggest putative molecular mechanism for 

mutation-mediated regulation of specific AS events.

DrAS-Net interface: A user-friendly online tool to explore mutation-AS relationships in 
cancer

To facilitate researchers to apply the principles described in this work on any mutation or AS 

of interest, we have developed a comprehensive and interactive web resource in DrAS-Net 

(http://www.bio-bigdata.com/dras_net/; and Table S5). The features provided in the 
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resource, which will be continuously updated, should serve as a guide for biologists 

interested in identifying the genetic determinants of splicing specificity for various 

applications (for example, RNA editing and pleotropic studies) and understanding the 

consequences of mutations (for example, driver mutations and natural variation) in cancer 

patients and healthy individuals.

Discussion

In this study, we have performed a systematic characterization of AS across various cancer 

types, and reveal widespread AS perturbations in human cancers. Importantly, cancer types 

with similar tissue origins share common differential AS patterns. Although the majority of 

AS events are cancer type-specific (such as FGFR1), some genes (such as LSP1 and 

KRT222) show consistent AS alterations across various types of cancer. This points to the 

existence of cancer-specific and general mechanisms that might contribute to disease 

progression. Strikingly, we have found that tumors with aberrant splicing isoforms tend to 

exhibit decreased expression levels of immune system-related genes, and increased 

expression levels of cell cycle marker genes. This provides potential immune markers and 

promising targets for immunotherapy in diverse cancer types. Together, the comprehensive 

AS perturbation landscape identified here provides a valuable resource for further 

mechanistic and functional studies for the research community (Table S5).

Given the widespread AS perturbations in cancer, it is important to determine how these AS 

events are mediated. Previous studies have suggested AS alterations in cancer may be caused 

by changes in expression, amplification and deletions in splicing factors and RNA-binding 

proteins (Oltean and Bates, 2014; Sebestyen et al., 2016). Another possibility is alteration in 

DNA methylation and chromatin modifications, which has been observed to be responsible 

for AS aberration (Lev Maor et al., 2015). Moreover, some case studies have demonstrated 

that the AS events are influenced by genomic mutations. But how somatic mutations 

mediate AS events on a pan-cancer scale was unknown. Here, we developed a network-

based framework, DrAS-Net, to identify to what extent the observed AS perturbations are 

regulated by somatic mutations. The application of our method to 33 types of cancer reveals 

mutation-AS functional associations for each cancer patient. In contrast to frequency-based 

approaches, network-based methods can detect moderately or even rarely mutated genes 

with functional relevance. In addition, identifying patient-specific driver mutations and the 

AS events they influence can provide mechanistic insights and enables a more personalized 

approach for cancer treatment.

We provide insights into possible functional consequences of losing crucial protein modules 

(catalytic domains, signaling domains, functional regions and short linear motifs) due to 

differential AS events in cancer that are mediated by somatic mutations (Figure 4 and Figure 

S4). These results indicate that deregulation of AS may rewire cellular networks or signaling 

pathways in cancer. Recently, Yang et al. investigated the interaction profiles of different 

isoforms and proposed a central role for alternative splicing in network organization in 

different tissues of healthy individuals (Yang et al., 2016a). However, the drivers of this 

reorganization, i.e. how interaction networks or signaling pathways are perturbed in specific 

cancer patients remains to be discovered in the future. In this context, our study reveals that 
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mutation-mediated AS events can serve as valuable biomarkers for cancer subtype 

stratification. Further analyses in LIHC and LGG demonstrate that these AS subtypes have 

distinct survival rates. In addition, compared with transcriptome-based cancer subtypes, we 

found that these AS-based subtypes are not driven by gene expression. These observations 

suggest that subtype-specific AS events are an independent and informative measure for 

cancer subtyping. Based on the observation that AS events in each cancer subtype are 

influenced by distinct mutations, we have proposed two models to help interpret the 

phenotypic heterogeneity. Many of the identified mutation-AS events occur in a patient-

specific manner, indicating that somatic mutations are likely an important component in 

determining patient-specific splicing perturbation and tumorigenesis. Furthermore, our 

finding that cancer patients with AS perturbations exhibit reduced immune signature, has 

provided insights into strategies for potential immunotherapy. For instance, differential AS 

profiles of specific membrane proteins in cancer can be exploited for defining epitopes for 

CAR T cell development and design for cancer therapy.

In summary, we have systematically characterized the widespread AS perturbations across 

cancer types and presented a patient-specific mutation-AS network analysis method to 

prioritize cancer driver genes and mutations. Our method and results presented here will be 

useful for investigators who explore cancer genes through rapidly emerging next-generation 

sequencing applications in cancer research and personalized medicine. We hope that the 

resource that we provide in this study will serve as an inspiration for several future 

investigations in diverse cancer types.

Experimental Procedures

Further details and an outline of resources used in this work can be found in Supplemental 

Experimental Procedures.

Construction of DrAS-Net (Driver mutation-AS interactome Network)

We developed an integrated analysis framework to identify the mutation-mediated AS in 

cancer. This approach relates genomic mutations to AS patterns, informed by known 

interactions between genes. Firstly, the genomic mutations in 10,489 samples across 33 

types of cancer were downloaded from TCGA website. For each cancer, we transformed 

these mutations into a gene-patient matrix, M(i, j), which represents a binary matrix to 

indicate whether the mutations were observed in a specific patient.

Next, the AS datasets in each cancer were converted to another gene-patient matrix, AS(i, J). 

This matrix indicates whether the AS of gene i in patient j is different from the population-

level PSI distribution for that gene. Whether an AS event in a specific sample is defined as 

differential, we followed the following rules:
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where Q3 and Q1 were the 75th and 25th percentiles of PSI distribution across all cancer 

samples. We hypothesized that if the mutated genes in a patient can affect the AS of other 

genes, they should have some functional links in known functional networks. Thus, for each 

patient Pk, we identified the gene pair gi-gj that satisfied the following three rules: gi is 

mutated; gj exhibits differential AS and gi and gj interact according to known PPI. Here, a 

systematic unbiased map of ~14,000 high-quality human functional interaction was used in 

our analyses (Rolland et al., 2014). Then we integrated all the gene pairs in each patient and 

constructed the mutation mediated AS network in each cancer. In addition, these pairs were 

divided into cis- and trans-regulation. If the same gene is mutated and also with different AS 

in the same patient, we considered this as cis-regulations otherwise as trans-regulation.

After assembling all the mutated gene-AS associations in each patient, we constructed a 

bipartite network for each cancer. Next, we prioritized the mutated genes by identifying 

genes with the largest extent of AS disruption in cancer. The mutated genes in each bipartite 

network were ranked by degree (the number of mis-spliced events they mediate), and then 

for each iteration, we calculated the saturation index (S) of perturbed AS events, defined by 

the obtained mutation-mediated AS events divided by the total number of perturbed AS 

events in cancer. We chose a mutated gene that covered the largest number of perturbed AS 

events. The greedy algorithm was stopped when all the AS events were covered. Then the 

mutations in the identified genes in the corresponding sample were assembled as driver 

mutations in each cancer. This prioritization was only applied to trans-regulations. All the 

cis-regulated mutations were added to the driver list (Figure S3A). We developed a web 

interface to host the DrAS-Net (http://www.bio-bigdata.com/dras_net/index.jsp), which 

includes a summary of the features in DrAS-Net, describing mutation–induced splicing 

perturbation profiles in cancer. These features allow users to investigate various aspects of 

splicing specificity and patient mutation-specific perturbation information across all human 

cancer types. The R scripts to perform this process can be accessed from GitHub (https://

github.com/lyshaerbin/DrASNet).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Analysis of somatic mutation-mediated alternative splicing helps prioritize 

driver mutations

• Network-based method links single nucleotide changes to splicing alterations 

in each cancer patient.

• Alternative splicing profiles classify cancer patients into subtypes with 

distinct clinical features

• Somatic mutation-mediated alternative splicing helps explain cancer 

heterogeneity
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Figure 1. Systematic Characterization of Mutation-Mediated Alternative Splicing Events across 
33 Cancer Types
(A) Alternative splicing (AS) underlies the complexity of genotype-phenotype relationships.

(B) Flowchart of the mutation-mediated alternative splicing (AS) analysis in cancer. 

Genome-wide mutational profiles of 10,489 samples and AS data from 10,699 samples 

across 33 types of cancer are integrated into functional networks. Four types of analyses are 

shown: I) Identification of genome-wide AS alternations in each type of cancer. Differential 

AS events are identified as cancer-specific splicing compared to controls; II) Prioritization of 

driver somatic mutations based on the functional networks. The functional importance of 

mutations is evaluated; III) Proposed mutation-AS model to explain principles of genetic 
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heterogeneity; IV) Clustering analysis based on AS to identify cancer subtypes with distinct 

clinical features. P, patient.

(C) The average number of AS events per tumor detected in each cancer type from a total of 

10,699 samples.

See also Table S1.
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Figure 2. The Alternative Splicing Landscape in Human Cancer
(A) Number of detected AS events and differential AS events in each cancer. The red line 

corresponding to the right y-axis indicates the total number of AS events detected in each 

cancer type, while the blue bars corresponding to the left y-axis show the number of 

differential AS events in each cancer (n=18). The numbering of cancer types on the x-axis is 

the same as Figure 1.

(B) Clustering of cancer types based on the similarity of differential AS patterns. This 

similarity is computed as the overlap divided by the minimum number of differential AS 
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events between two cancer types. Red and blue colors indicate high and low similarity, 

respectively. Cancer types of similar tissue origins are grouped together.

(C) Distribution of differential AS events over a wide range of cancer specificity indices. 

Cancer specificity index is defined as the number of cancer types where a given differential 

AS occurs; the lower the index, the more specific). Cancer specificity index ranges from 1 

(white) to 15 (blue).

(D) ‘Percent spliced in’ (PSI) index distribution of cancer type-specific differential 

alternative splicing (FGFR1) events in cancer versus normal samples. PSI index indicates 

how efficiently sequences are spliced into transcripts. Red boxplots indicate PSI distribution 

in cancer samples while blue boxplots indicate PSI distribution in normal samples.

(E) PSI index distribution of promiscuous differential alternative splicing (LSP1) across 

multiple cancer types.

(F–H) RNA-seq analysis was performed comparing tumors with versus without differential 

AS events (pan-cancer analysis), considering tumor type as a covariate. GSEA plots, 

enrichment scores (ES), and false discovery rates (FDR; q) are shown for representative 

gene sets depleted in tumors harboring differential AS events.

(I–J) Relationships between the differential AS profiles and cell cycle signature and 

mutation load predictors reported recently. In the box plots, tumors are divided into those 

that carry perturbed AS events (green) and those that do not (gray).

See also Figure S1–2 and Table S2.
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Figure 3. Identification of Drivers based on Alternative Splicing Perturbations across Cancer 
Types
(A) The network-based framework to identify driver mutations and their mediated AS 

targets. Firstly, mutation (blue) and differential AS (green) matrices are constructed. Next, 

patient-specific mutation-mediated AS events are identified based functional network 

structure. All mutation-AS pairs are assembled as a bi-graph and a greedy search method is 

used to identify driver mutations and AS events.

(B) Number of driver genes identified in each cancer. The light blue bars indicate the 

number of trans-genes while the light green bars indicate the cis-genes.
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(C) Mutation frequency of driver genes and randomly selected genes. P-values (Wilcoxon 

rank-sum test) less than 0.05 were marked with red stars. Purple boxes indicate the 

distribution for candidate driver genes, while gray boxes indicate the distribution of 

background control (random genes).

(D) P-values (log10 transformation, hypergeometric test) for driver gene enrichment analysis 

for Cancer Census Genes across cancer types.

(E) Enrichment analysis of driver genes for cancer hallmarks. Each column indicates a 

cancer hallmark-related Gene Ontology (GO) term while each row indicates a type of 

cancer.

GO terms are ranked based on the hallmarks they belong to. Bigger dots indicate small p-

values (hypergeometric test). The ten hallmarks from left to right: self-sufficiency in growth 

signals; insensitivity to antigrowth signals; evading apoptosis; limitless replicative potential; 

sustained angiogenesis; tissue invasion and metastasis; genome instability and mutation; 

tumor-promoting inflammation; evading immune detection; and reprogramming energy 

metabolism.

The numbering of cancer types (B through E) is the same as in Figure 1.

See also Figure S3 and Table S3.
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Figure 4. Somatic Mutation-Mediated Alternative Splicing Helps Explain Genetic Heterogeneity
(A) Frequency of mutated gene-AS gene pairs across cancer types. The lower the cancer 

specificity index, the more cancer type-specific. Higher specificity index indicates a more 

spread-out pan-cancer manner. The majority of pairs are cancer specific while a small subset 

is found in multiple cancer types.

(B) The proposed models to explain genetic heterogeneity in the same cancer type or across 

cancer types. Model-1: different mutations in the same gene affect distinct alternative 

splicing events in cancer patients of the same cancer type. Model-2: different mutations in 

the same gene affect distinct alternative splicing events in cancer patients across different 
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cancer types. (C and D) Fraction of different types of mutation-AS pairs. DM, different 

mutations; SA, same AS event; DA, different AS events. Violin plots show the proportion of 

DM-SA and DM-DA in the same cancer type (C) or across distinct cancer types (D). 

Statistical differences are calculated by Wilcoxon rank-sum test (***, p<1.0e-32).

(E) The number of cis-AS events compared to 1,000 random selections of protein pairs of 

the same number to evaluate statistical significance.

(F) cis-AS example showing mutations in IKZF1 mediating its own AS. The panel shows 

the exon structure and two representative AS events influenced by two mutations in the same 

gene.

(G) P-values (log10 transformation, hypergeometric test) for driver gene enrichment analysis 

for RNA-binding proteins across cancer types. The numbering of cancer types is the same as 

in Figure 1.

(H) Proportion of RBP binding target genes identified by CLIP-seq experiments, for the 

differential AS gene group versus the group of other genes.

(I) trans-AS example showing mutations in the RBP gene EIF4E2 influencing the AS events 

of EIF4ENIF1 in breast invasive carcinoma (BRCA). The panel shows the exon structure of 

the target gene EIF4ENIF1 and two representative AS events in EIF4ENIF1 influenced by 

two EIF4E2 mutations.

(J) Structural and functional features of the EIF4ENIF1 alternative splicing. The structure of 

EIF4ENIF1 is from the PDB database. The lost regions are marked with orange color. The 

possible functional consequences are shown on the right panel.

See also Figure S4.

Li et al. Page 26

Cell Rep. Author manuscript; available in PMC 2017 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Alternative Splicing Perturbation Reveals Cancer Subtypes with Distinct Clinical 
Features
(A) The workflow to discover the clinical associated AS events. The tumor samples in each 

cancer type were divided into discovery set and validation set. Cox regression model was 

trained using the discovery set and validated in the remaining samples. AS events with 

concordance index greater than 0.5 and p-value less than 0.05 were identified as clinical 

associated.

(B) The survival differences of different cancer subtypes revealed by alternative splicing 

clustering analysis. The cancer samples are randomly divided into the same number of 

subtypes as revealed by AS clustering, and the survival difference p-values are calculated by 
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log-rank test. −log10(p) values are plotted as boxplots. The log-rank p values obtained in 

real conditions are marked with red dots. The numbering of cancer types is the same as in 

Figure 1.

(C) Consensus clustering of LIHC patients (n=371) based on the mutation-mediated AS 

events. The color intensity indicates the consistency (ranging from 0 to 1, from light to dark 

blue) for each pair of samples that are clustered together in 100 times of sampling.

(D) Kaplan-Meier plot of survival for five subtypes in LIHC. The survival difference among 

five clusters is calculated by log-rank test (p=4.61e-3).

(E) Overlap of mutated genes that mediate AS events in five subtypes. The top enriched 

functional terms by the mutated genes are marked.

(F) Consensus clustering of LGG patients (n=514) based on the mutation-mediated AS 

events. The color intensity indicates the consistency (ranging from 0 to 1, from light to dark 

blue) for each pair of samples that are clustered together in 100 times of sampling.

(G) Kaplan-Meier plot of survival for five subtypes in LIHC. The survival difference among 

five clusters is calculated by two-sided log-rank test (p<2.2e-16).

See also Figure S5 and Table S4.
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