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Abstract

Background—The link between PM2.5 exposure and adverse health outcomes is well 

documented from studies across the world. However, the reported effect estimates vary across 

studies, locations and constituents. We aimed to conduct a meta-analysis on associations between 

short-term exposure to PM2.5 constituents and mortality using city-specific estimates, and explore 

factors that may explain some of the observed heterogeneity.

Methods—We systematically reviewed epidemiological studies on particle constituents and 

mortality using PubMed and Web of Science databases up to July 2015. We included studies that 

examined the association between short-term exposure to PM2.5 constituents and all-cause, 

cardiovascular, and respiratory mortality, in the general adult population. Each study was 

summarized based on pre-specified study key parameters (e.g., location, time period, population, 

diagnostic classification standard), and we evaluated the risk of bias using the Office of Health 

Assessment and Translation (OHAT) Method for each included study. We extracted city-specific 

mortality risk estimates for each constituent and cause of mortality. For multi-city studies, we 

requested the city-specific risk estimates from the authors unless reported in the article. We 

performed random effects meta-analyses using city-specific estimates, and examined whether the 

effects vary across regions and city characteristics (PM2.5 concentration levels, air temperature, 
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elevation, vegetation, size of elderly population, population density, and baseline mortality) can 

explain the observed heterogeneity.

Results—We found a 0.89% (95% CI: 0.68, 1.10%) increase in all-cause, a 0.80% (95% CI: 

0.41, 1.20%) increase in cardiovascular, and a 1.10% (95% CI: 0.59, 1.62%) increase in 

respiratory mortality per 10 µg/m3 increase in PM2.5. Accounting for the downward bias induced 

by studies of single days, the all-cause mortality estimate increased to 1.01% (95% CI: 0.81, 

1.20%). We found significant associations between mortality and several PM2.5 constituents. The 

most consistent and stronger associations were observed for elemental carbon (EC) and potassium 

(K). For most of the constituents, we observed high variability of effect estimates across cities.

Conclusions—Our meta-analysis suggests that (a) combustion elements such as EC and K have 

a stronger association with mortality, (b) single lag studies underestimate effects, and (c) estimates 

of PM2.5 and constituents differ across regions. Accounting for PM mass in constituent’s health 

models may lead to more stable and comparable effect estimates across different studies.

Systematic review registration—PROSPERO: CRD42017055765
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1 Introduction

Ambient air pollution, one of the leading causes of mortality and disability worldwide, was 

associated with approximately 3.7 million premature deaths (6.7% of all deaths) in 2012 

(Lim et al., 2012, WHO, 2014). Air pollution is usually described in terms of the criteria air 

pollutants: particulate matter (PM), ozone (O3), sulfur dioxide (SO2), nitrogen oxides (NOx), 

carbon monoxide (CO), benzene, and lead (Pb). Of these, PM affects more people than any 

other pollutant (Brook et al., 2010).

Air quality standards and regulatory guidelines for inhalable PM (PM10, PM with 

aerodynamic diameter ≤ 10 µm) and fine PM (PM2.5, PM with aerodynamic diameter ≤ 2.5 

µm) have been established by health and regulatory authorities across the world. Air quality 

standards are usually set mostly based on epidemiological studies, and to a lesser extent on 

toxicological studies, examining the effects of PM mass on human health (McClellan, 2002). 

PM2.5 can reach deep into the lungs, and the associations between PM2.5 and cardiovascular 

and respiratory mortality and morbidity are well documented (WHO, 2013).

However, PM2.5 is a complex mixture of several constituents with different physicochemical 

properties and toxicity, the proportion of which over the total particle mass varies by source 

and season (Son et al. 2012; Valdés et al., 2012; Dai et al., 2014; Basagaña et al., 2015). For 

example, Elemental (or Black) and Organic Carbon (EC/BC, OC), are emitted from traffic 

(EC) and combustion sources (EC,OC), vegetation (OC), and atmospheric photochemical 

reactions (OC); and have been previously associated with short-term cardiovascular (CVD) 

and respiratory diseases (Delfino et al., 2010; Janssen et al., 2012; Kim et al., 2012). Other 

combustion sources such as biomass burning (potassium, K, as the main trace element) have 
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been associated with CVD and respiratory admissions, as well as CVD mortality (Mar et al., 

2006; Andersen et al., 2007; Sarnat et al., 2008). Oil combustion particles, particularly 

vanadium (V) and nickel (Ni), have been associated with CVD and respiratory hospital 

admissions (Andersen et al., 2007; Zanobetti et al., 2009; Kioumourtzoglou et al., 2014a). 

Nitrate (NO3
−) and sulfate (SO4

2−) are secondary ions formed from the oxidation of 

nitrogen oxides and sulfur gases emitted during fossil and coal combustion and biogenic 

activities. Epidemiological evidence has also implicated exposure to NO3
− and SO4

2− in 

increased CVD (Zanobetti et al., 2009; Ito et al., 2011; Kioumourtzoglou et al., 2014a) and 

respiratory (Atkinson et al., 2010; Kim et al., 2012; Son et al., 2012) hospital admissions.

The underlying biological mechanism by which PM2.5 constituents and sources are 

associated with cardiorespiratory health effects has been proposed by several studies. For 

example, transition metals (e.g., V) enhance inflammation and oxidative stress (Brook et al. 

2010) and can be mobilized by SO4
2− (Ghio et al., 1999); BC and SO4

2− have been 

associated with changes in vascular (O’ Neill et al., 2005) and lung function (Lepeule et al., 

2014); BC has also been associated with decreased DNA methylation which leads to 

oxidative stress and CVD (Baccarelli et al., 2009); and wood smoke with systemic oxidative 

stress, coagulation, inflammation and lipid peroxidation (Barregard et al., 2006).

Identifying the PM2.5 constituents that are the most harmful to human health can help 

regulatory authorities, researchers, and physicians to reduce or prevent exposure to those 

constituents and sources. Yet, there is substantial inconsistency in the observed health effect 

estimates between epidemiological studies, and it is still not clear which constituent(s) are 

associated with the highest risks to human health (Cassee et al., 2013; Wyzga and Rohr, 

2015). Atkinson et al. (2015) performed a meta-analysis on the adverse health effects of 

PM2.5 constituents based on epidemiological time-series studies conducted up to 2013. The 

strongest association was found for EC but the number of existing studies was insufficient to 

perform a meta-analysis for metals.

Between 2013 and 2015, a large number of studies on the health effects of short-term 

exposure to PM2.5 constituents, covering a broad spectrum of elements and geographic 

locations, have been published. We performed an extended meta-analysis of studies on short-

term exposure to PM2.5 constituents and mortality using city-specific estimates, and 

explored factors that may explain some of the potentially observed heterogeneity. We 

systemically reviewed observational epidemiological studies regarding PM composition and 

mortality, and used the city-specific effect estimates to explore the variability of the effect 

estimates across locations.

2 Methods

Details of the protocol for this systematic review were registered on PROSPERO and can be 

accessed at https://www.crd.york.ac.uk/PROSPERO/display_record.asp?

ID=CRD42017055765. A complete PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) checklist (Moher et al., 2009) can be found in the 

supplementary material.

Achilleos et al. Page 3

Environ Int. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42017055765
https://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42017055765


2.1 Studies selection

We conducted a systematic search for studies on particle constituents and mortality using 

PubMed and Web of Science databases up to July 31, 2015. We also searched for additional 

studies using the ‘similar articles’ tool in PubMed, and the reference lists of the eligible 

studies. Since BC has been described by several terms in past studies, we conducted a 

separate search for BC to include all possible terms. For this reason, we used two separate 

keyword sets: (“particulate” OR “particles” OR “PM”) AND (“metals” OR “sulfates” OR 

“sulfate” OR “nitrate” OR “nitrates” OR “ammonium” OR “carbon” OR “elements” OR 

“constituents” OR “species”) AND “mortality”; and (“black carbon” OR “black smoke” OR 

“light reflectance” OR “blackness” OR “light absorption” OR “soot”) AND “mortality.” 

Synonyms of PM, constituents, and mortality were included using Medical Subject 

Headings (MeSH) terms. Following the PRISMA guidelines, article titles and abstracts were 

first reviewed independently by two of the authors (SA, SIP) to include epidemiological 

studies on particle constituents and mortality. The final inclusion of studies was based on 

full text evaluation. In case of disagreement, a third researcher (JS) resolved any 

discrepancies. Studies were considered eligible, if: i) they examined and reported a risk 

estimate for the association between exposure to PM2.5 constituent and mortality in the 

general adult population, and ii) they were published in a peer-reviewed journal.

2.2 Data extraction

For each study, the two independent reviewers (SA, SIP) extracted information on location, 

time period, sample size, population, diagnosis standard (mortality International 

Classification of Diseases, ICD, code), study design (e.g., time-series), study characteristics, 

particle constituents examined, lag pattern used, and health model covariates into Microsoft 

Word. We then entered into a Microsoft Excel sheet the city-specific regression coefficients 

and their standard errors (reported in the study, or calculated from reported relative risk or 

percent change in mortality and their 95% confidence intervals) for each constituent and 

cause of mortality for the meta-analysis. For multi-city studies, we requested the city-

specific regression coefficients and standard errors from the authors unless they were 

reported in the article. The extracted data was independently reviewed by a third investigator 

(MAK) for quality assurance/quality control.

Based on previous studies, we used the lag with the strongest association for each mortality 

cause: the previous day (lag 1) for all-cause and respiratory mortality and same day (lag 0) 

for cardiovascular mortality (Peng et al., 2005; Son et al., 2012; Krall et al., 2013). While 

higher associations of air pollution and respiratory mortality had been found for longer 

exposure windows than one day before death (Zanobetti et al., 2003; Grass and Cane, 2008), 

most of the studies examined lag 1 day. Therefore, in the meta-analysis, we included the 

studies with lag 1 or 0–1 average for all-cause and respiratory mortality, and lag 0 or 0–1 

average for cardiovascular mortality. Studies with distributed lag models 0–3, 0–5, and 0–6 

were also included.

2.3 Risk of bias assessment

To our knowledge, there is no established tool for risk of bias assessment for time series and 

case-crossover studies. Therefore, we assessed the risk of bias within each study based on 
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the Office of Health Assessment and Translation (OHAT) tool by the National Institutes of 

Environmental Health Sciences-National Toxicology Program (NIEHS-NTP), and the 

Navigation Guide by the University of California, San Francisco (OHAT, 2015; Lam et al., 

2016). Both of these tools assess the risk of bias of individual studies based on several risk 

of bias domains (e.g., selection bias, confounding, measurement, missing data, reporting) in 

a similar way. Each domain is evaluated as “low”, “probably low”, “probably high”, “high”, 

or “not applicable” risk according to specific criteria. We assessed our studies for selection 

bias, confounding, exposure assessment, outcome assessment, incomplete outcome data, 

selective reporting, and conflict of interest based on pre-specified criteria (Table A.1).

Based on OHAT guidelines, it is recommended to remove studies for which the key elements 

(for observational human studies: exposure assessment, outcome assessment, and 

confounding) and most of the other criteria are characterized as ‘high’ or ‘probably high’ 

risk.

2.4 Data analysis

Our analysis focused on PM2.5 mass and its constituents: SO4
2−, NO3

−, ammonium (NH4
+), 

EC, black smoke (BS), OC, sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), 

chlorine (Cl), K, calcium (Ca), titanium (Ti), V, manganese (Mn), iron (Fe), Ni, Cu, and Zn, 

and their association with all-cause non-accidental, cardiovascular, and respiratory mortality 

for the entire population (all ages). For black carbon, we used all three measurement 

methods, referred to as EC (thermal optical transmittance, and reflectance) and BS (optical 

method). We did not convert BS to EC because their relation depends on geographic location 

and season (Janssen et al., 2011). In addition, we used both PM2.5 and PM10 SO4
2− since 

most SO4
2− is present mostly in the fine fraction (Masri et al., 2015). Also, since most sulfur 

(S) is in the SO4
2− form in fine particles (Masri et al., 2015; Achilleos et al., 2016), we 

converted S effect estimates to SO4
2− estimates by dividing the regression coefficients and 

SEs by their molar mass ratio (SO4
2−/S). Similarly, organic carbon matter (OCM) 

coefficients were converted to OC coefficients (OC = OCM/1.4) for comparability with the 

rest of the studies (Krall et al., 2013).

We first estimated the pooled effect estimates for total PM2.5 mass. We applied a random-

effects meta-analysis, using the inverse of the effect estimates variance (within plus the 

between-studies/cities variance) as weights, to estimate the association between PM2.5 and 

cause-specific mortality (Berkey et al., 1998). The same approach was used for constituents 

of PM2.5, for which we had at least three coefficient estimates. We performed a separate 

analysis for the population ≥65 years of age. It should be noted that the PM2.5 meta-analysis 

includes only studies that also reported constituent-specific effect estimates and we did not 

conduct an exhaustive literature review on papers only assessing the association between PM 

and mortality.

One of the main objectives of the study was to estimate pooled constituent-specific effect 

estimates from city-specific estimates. Most studies we included did not account for 

potential confounding by the total PM mass in any way. However, since recent studies have 

shown that the association between a PM2.5 constituent and a health outcome could indeed 

be confounded by total mass, some more recent studies accounted for this in the health 
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models (Mostofsky et al., 2012). The studies we included in the meta-analyses did so by 

including an interaction term between the proportion of the constituent concentration to total 

PM2.5 mass and PM2.5 mass in the health model. In doing so, they estimated whether the 

increased contribution of that specific constituent to the total mass modified the association 

between the average PM and mortality. Since these are two separate ways to assess 

constituent-specific associations, we ran separate meta-analyses for these two types of effect 

estimates. For studies that did not account for total PM2.5 mass, we simply pooled the 

constituent specific effect estimates. For the studies that used an interaction between the 

proportion of the component to total PM2.5 mass concentrations and PM2.5 mass, we pooled 

the interaction coefficients. These correspond to the additive effect estimate to the average 

PM2.5 effect estimate (i.e. the main effect of PM2.5 in the model) if all of the PM2.5 mass 

were the studied constituent.

We also tested for inter-city heterogeneity in the reported effect estimates, and we provided 

the p-values of the I2-based Cochran Q test and the I2 metric of inconsistency (Der Simonian 

and Laird, 2015). We considered I2 >50% to represent substantial heterogeneity (Higgins et 

al., 2003). We screened for publication bias using funnel plot analysis with standard error as 

the measure of study size and Egger’s regression test of asymmetry (Egger et al., 1997; 

Sterne and Egger, 2001), and adjusted for publication bias following the “trim and fill” 

method if needed (Duval and Tweedie, 2000). These statistical methods were applied for the 

PM constituents with more than 10 estimates as suggested by Sterne et al. (2011).

To explore factors that explain the potentially observed heterogeneity across the city-specific 

estimates, and whether they modify the association between constituents and mortality, we 

ran meta-regression models including (a) an indicator variable for lag pattern to examine the 

difference between single and average lag days, and (b) an indicator variable for region to 

examine regional differences, including only the regions with data from more than one city. 

US cities were further classified according to NOAA US climate regions (http://

www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php): Northwest, West, 

Southwest, West North Central, East North Central, Central, South, Northeast, and 

Southeast. We combined West North Central and East North Central US regions because 

data were available for only one city in the West North Central region (Omaha, NE); we 

referred to the two combined regions as the North Central US.

We also examined city characteristics (PM2.5 concentration levels, air temperature, 

elevation, vegetation, the size of the elderly population, population density, and baseline 

mortality) that were found to influence mortality in previous epidemiological studies 

(Zanobetti et al., 2012; Burtscher, 2014; Shi et al., 2015), to explain some of the observed 

heterogeneity by including each city-specific variable separately in the meta-regression 

model (Table B.1). Since some of these variables are correlated, we also conducted a factor 

analysis using a non-orthogonal rotation method and regressed the city-specific effect 

estimates on the identified factors in the meta-regression.

Meta-regression analyses were performed only when a significant association and 

substantial heterogeneity (I2>50%) were found and when more than five city effect estimates 

were available.
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Statistical significance was assessed at the α = 0.05 level, unless otherwise reported. For our 

statistical analyses, we used the “meta”, “rmeta” and “mvmeta” packages in R Statistical 

Software, version 3.2.1 (The R Foundation for Statistical Computing, Vienna, Austria).

3 Results

3.1 Studies and cities included

A total of 3,850 peer-reviewed articles were identified from our search, and one additional 

study through references screening. Of the 3,851 articles, 837 studies were identified from 

BC/BS search. The number of included studies was reduced to 148 after title and abstract 

screening (Fig. 1). The association between chronic exposure to PM constituents and 

mortality is not extensively studied, and therefore we did not identify many original cohort 

studies since most of them were reanalyzing previous published data. Hence, we combined 

the time-series and case-crossover design studies to examine the association between short-

term exposure to PM2.5 constituent and all-cause, cardiovascular, and respiratory mortality. 

Studies were screened for overlapping population and final inclusion was based on the most 

recent publication date and largest number of deaths; 37 studies were excluded for 

overlapping population. We identified 41 studies (142 cities) that met inclusion criteria and 

were included in the meta-analysis; 37 studies were used for all-ages analysis and nine for 

the subgroup analysis of the population ≥65 years of age (Table 1, Table C.1).

Eighteen studies were conducted in Europe, ten in the USA, five in West Pacific, six in 

Canada, and two in South America. However, we had more cities from USA than any other 

region. From the 41 selected studies (14 multi-city and 27 single-city studies), we were able 

to obtain the city-specific estimates from 11 multi-city studies. Therefore, the main analysis 

included 129 city-specific estimates from 38 studies. We repeated the analysis using study-

specific estimates (single city estimates and the pooled estimate from multicity studies) in 

order to include the remaining three multicity studies. These three studies examined the 

association between PM2.5 constituents and all-cause mortality and they refer to the same 

population.

Two of our all-ages studies (76 cities) examined the association between PM2.5 constituents 

and mortality by including an interaction between the proportion of constituent to PM2.5 

mass concentrations and total PM2.5 mass (Valdés et al., 2012; Dai et al., 2014). One study 

(4 cities) reported the association of non-adjusted and PM-adjusted effect estimates using the 

constituent residual method (Basagaña et al., 2015). For the latter, we used only the un-

adjusted estimates because it was the only study applying the residual method.

3.2 Risk of bias assessment

The risk of bias ratings for the individual studies are shown in Table 2 and more analytically 

in Appendix D. Most of the studies were rated with ‘low risk’ in most domains, except for 

exposure assessment which was rated mostly as ‘probably low’ risk and in some cases it 

reached to ‘high’ risk. In these types of studies design, we always have some risk of 

exposure misclassification because it is very difficult to assess the true average population 

exposure that gives attenuated effect estimates (Dominici et al., 2000; Zeger et al., 2000). 
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The risk is higher for more spatially heterogeneous pollutants, e.g. BC which is a traffic 

tracer with local sources, versus SO4
2− that is more homogeneous in space (Sarnat et al., 

2010).

None of our studies had a ‘high’ or ‘probably high’ risk rating in all of the key elements 

(exposure assessment, outcome assessment, and confounding) and therefore no studies were 

excluded from the analyses.

3.3 Pooled effect estimates

For the meta-analysis, we used mortality city-specific effect estimates for PM2.5 mass and 

constituents, derived from time-series and case-crossover studies.

3.3.1 All-cause mortality—We found a 0.89% (95% CI: 0.68, 1.10%; number of cities, 

ncities=114) increase in all-cause mortality per 10 µg/m3 increase in PM2.5, and a significant 

heterogeneity in the PM2.5 effect estimates across the cities (Table E.1).

The pooled mortality effect estimates of each constituent, expressed as percent change per 

inter-quantile range (IQR; the average of IQRs across studies) of each constituent, are 

presented in Figure 2.

We observed significantly positive associations between all-cause mortality and BS (pooled 

effect estimate, βpooled : 6.00×10−4; 95% CI: 4.04×10−4, 7.96×10−4), EC (βpooled : 

6.00×10−3; 95% CI: 2.28 ×10−3, 9.72×10−3), OC (βpooled : 2.10×10−3; 95% CI: 0.73×10−3, 

3.47×10−3), SO4
2− (βpooled : 8.00×10−4; 95% CI: 4.08×10−4, 1.19×10−3), Na (βpooled : 

1.36×10−2; 95% CI: 0.28×10−2, 2.44×10−2), and Si (βpooled : 1.42×10−2; 95% CI: 

0.32×10−2, 2.52×10−2). The results also suggested an association between all-cause 

mortality and NO3
− (βpooled : 7.00×10−4; 95% CI: −8.40×10−5, 1.48×10−3), K (βpooled : 

1.31×10−2; 95% CI: −2.19×10−3, 2.84×10−2), and Mn (βpooled : 1.70; 95% CI: −0.21, 3.62). 

We observed significant heterogeneity (I2 >50%) for BS (I2=60%), OC (I2=60%), Ca 

(I2=86%), Mn (I2=91%), Fe (I2=90%), Cu (I2=90%), and Zn (I2=93%) effect estimates 

across cities. In addition, we observed positive associations with EC (βpooled : 1.03×10−2; 

95% CI: 1.08×10−4, 2.05×10−2), K (βpooled : 7.22×10−2; 95% CI: 2.07×10−2, 1.24×10−1), 

and Cu (βpooled : 0.77; 95% CI: 0.19, 1.35) in the meta-analysis from the adjusted models 

(number of studies, nstudies=1, ncities=75).

In addition, we performed the meta-analysis for EC, BS, and SO4
2− mortality effect 

estimates among the elderly population (≥65 years of age). EC (2.35%; 95% CI: 1.05, 

3.66 % increase per 2.6 µg/m3; nstudies =3, ncities=4) and BS (0.74%; 95% CI: 0.46, 1.02% 

increase per 10 µg/m3; nstudies=2, ncities=15) were statistically significantly associated with 

all-cause mortality. None of the studies examining associations among the elderly adjusted 

for PM2.5 mass.

3.3.2 Cardiovascular mortality—We found a 0.80% (95% CI: 0.41, 1.20%; ncities=89) 

increase in cardiovascular mortality per 10 µg/m3 increase in PM2.5, and a significant 

heterogeneity in the PM2.5 effect estimates across the cities (Table E.2).
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The observed pooled associations between PM constituents and cardiovascular mortality 

were not as consistent as all-cause mortality. Positive associations were observed with BS 

(βpooled : 7.00×10−4; 95% CI: 5.04×10−4, 8.96×10−4), EC (βpooled : 5.70×10−3; 95% CI: 

1.19×10−3, 1.02×10−2), NH4
+ (βpooled : 4.40×10−3; 95% CI: 1.26×10−3, 7.54×10−3), NO3

− 

(βpooled : 1.50×10−3; 95% CI: 0.32×10−3, 2.68×10−3), Cl (βpooled : 2.64×10−2; 95% CI: 

0.48×10−3, 4.80×10−2), and Ca (βpooled : 4.77×10−2; 95% CI: 1.48×10−2, 8.06×10−2); with 

some evidence for SO4
2− (βpooled : 9.00×10−4; 95% CI: −8.00×10−5, 1.88×10−3), Fe 

(βpooled : 5.17×10−2; 95% CI: −8.47×10−3, 1.12×10−1), K (βpooled : 2.77×10−2; 95% CI: 

−3.07×10−3, 5.85×10−2), and Mg (βpooled : 0.19; 95% CI: −0.02, 0.40) (Fig. 3). We did not 

observe any significant heterogeneity of the estimates across cities (Table D.2). No 

significant associations were found for the PM2.5 adjusted effect estimates, except for V 

(βpooled: 2.60; 95% CI: 0.27, 4.93; nstudies=1, ncities=75).

3.3.3 Respiratory mortality—We found a 1.10% (95% CI: 0.59, 1.62%; ncities=86) 

increase in respiratory mortality per 10 µg/m3 increase in PM2.5, and no significant 

heterogeneity in the PM2.5 effect estimates across the cities (Table E.3). Among PM 

components, we found positive associations between respiratory mortality and BS only 

(βpooled : 1.10×10−3; 95% CI: 0.60×10−3, 1.50×10−3) (Fig. 4). High heterogeneity was 

detected for EC, OC, and Cl across cities (I2 >50%). We observed positive associations with 

the PM2.5-adjusted V (βpooled : 5.15; 95% CI: 0.42, 9.89; nstudies=1, ncities=75) and Zn 

(βpooled : 1.00×10−3; 95% CI: 2.00×10−5, 1.98×10−3; nstudies=2, ncities=76), with some 

evidence for SO4
2− (βpooled : 6.10×10−3; 95% CI: −4.48×10−3, 1.67×10−2; nstudies=2, 

ncities=76), as well.

3.3.4 Additional analyses—The meta-analysis was repeated using study-specific 

estimates to include the three multi-city studies for which we did not obtain the city-specific 

estimates, and results are included in the supplementary material (Tables E.1–E.3, Fig. F.1–

F.4). We were able to assess for publication bias for PM2.5 (all-cause, cardiovascular, 

respiratory) and SO4
2− (all-cause, cardiovascular) effect estimates. Even if there was some 

asymmetry in the funnel plots (e.g., PM2.5 and all-cause), Egger’s test showed no 

statistically significant asymmetry in the plots and therefore no further adjustments for 

publication bias were made (Fig. G.1–G.5).

The results of the study-specific analysis were in good agreement with the city-specific 

analysis.

3.4 Meta-regression analyses

We found significant heterogeneity in PM2.5 effect estimates and in many unadjusted 

constituent estimates. In contrast, the heterogeneity among the adjusted effect estimates was 

low (I2<25%) for all constituents and mortality causes (see Tables E.1–E.3). Meta-regression 

analyses were performed only when a significant association and substantial heterogeneity 

(I2>50%) were found and when more than five city effect estimates were available.

3.4.1 Exposure window—First, we explored whether the effect estimates for the all-age 

population varied by the exposure window examined, namely, a single-day exposure versus 
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a two-day average exposure. However, we were not able to assess the impact of exposure 

duration in the associations between constituents and mortality, since most studies used a 

single day exposure window and thus, no constituent satisfied our criteria for meta-

regression except PM2.5 mass. The all-cause mortality effect estimate of PM2.5 for a single 

day exposure (0.50%; 95% CI: 0.06, 0.94%; ncities=29; lag1) was statistically significantly 

lower than the two-day average exposure (1.01%; 95% CI: 0.77, 1.26%; nc =85; lag0–1). 

Similar effects, but not statistically significant, were observed for cardiovascular and 

respiratory mortality.

3.4.2 Regional differences—We also explored whether the associations between short-

term exposure to PM2.5 and EC, and all-cause mortality vary across the regions (Fig. 5). 

Among the constituents, only EC satisfied the criteria for inclusion in the meta-regression. 

Our analysis included PM2.5 and PM-unadjusted EC city-specific effect estimates from the 

US (ncities-PM2.5=101, ncities-EC=72), Europe (ncities-PM2.5=6, ncities-EC=4), and West 

Pacific (ncities-PM2.5=5, ncities-EC=4). Table H.1 presents the cities we included in each 

region. The highest effect estimates on all-cause mortality were observed in North Central 

US (PM2.5: 1.74%; 95% CI: 0.97, 2.50% per 10 µg/m3), and Europe (EC: 4.45%; 95% CI: 

−0.44, 9.42% per 2.6 µg/m3). Regional differences explained most of the variability in the 

PM2.5 (difference in the I2 before and after adding the regions, ΔI2=28%), and EC 

(ΔI2=84%) effect estimates. The remaining heterogeneity in PM2.5 (I2=23%) was still 

statistically significant (Q=130.7, p=0.03) after inclusion of the regions.

3.4.3 City characteristics—We also observed modification of the association between 

PM2.5 mass, and its constituents, and mortality by several variables. In the case of PM2.5 and 

all-cause mortality, we controlled for the exposure window (single day versus two-day 

average exposure) in the meta-regression models to avoid bias caused by the lag pattern. We 

found higher PM2.5 effect estimates in cities with lower summer temperatures (ΔI2=16%), 

and with some evidence for higher elevation (ΔI2=1%, p-value of elevation = 0.065). No 

effect modification was observed for cardiovascular mortality. BS showed stronger 

association with all-cause mortality in cities with lower elevation (ΔI2=9%), vegetation 

(ΔI2=3%), and temperature difference (ΔI2=9%). Stronger associations were also found in 

cities with low vegetation (ΔI2=70%) for EC, and higher altitudes (ΔI2=91%) for EC and OC 

(ΔI2=60%).

We identified five factors that explained 82% of the variance of the city-specific variables: 

PM2.5 concentration, winter temperature, temperature difference, vegetation (annual and 

summer), elevation, size of elderly population, population density and baseline mortality. 

Factor 1 was described by high vegetation and low elevation; factor 2 by high elevation and 

temperature difference, and low winter temperature; factor 3 by high mortality rate and 

elderly population; factor 4 by population density; and factor 5 by high vegetation and low 

PM2.5 levels. However, these factors did not explain the observed variability across the 

cities.

We repeated the meta-regression analyses using only the US cities effect estimates on all-

cause mortality. The city-specific variables and their factors did not explain the observed 

variability.
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4 Discussion

Our systematic review identified studies that examined the association between short term 

exposure to PM2.5 constituents and mortality in the Americas, Europe, and Western Pacific. 

SO4
2− has been the most studied PM constituent, followed by EC/BC. BS has been studied 

only in Europe since 1990s.

In this meta-analysis, we derived the pooled effect estimates for PM2.5 and for each of the 

constituents on mortality using city specific effect estimates. PM2.5 had a stronger 

association with respiratory mortality, than with all-cause and cardiovascular mortality. We 

also found that studies using a single day of PM2.5 as the exposure variable under-estimated 

the effect of PM mass on mortality compared to studies using a two-day average, which 

could be useful for future studies and risk assessments.

We found significantly positive associations for several PM2.5 constituents: EC, BS, OC, 

SO4
2−, Na, and Si with all-cause mortality with some evidence for NO3

−, Mn, and K; BS, 

EC, NH4
+, NO3

−, Cl, and Ca, with cardiovascular mortality, with some evidence for K; and 

BS with respiratory mortality. The association between mortality and EC and BS was 

stronger among the elderly. Restricting to studies that controlled for PM mass, we found 

associations with EC, K, and Cu (for all-cause deaths); V (for cardiovascular and respiratory 

deaths); and Zn (for respiratory deaths).

Our analysis based on PM2.5 unadjusted estimates suggests that Na and Si have the highest 

effect (coefficient) on all-cause mortality, and Cl on cardiovascular mortality. However, we 

are not convinced that these elements have the highest toxicity among all PM2.5 constituents 

for several reasons. First, we found high heterogeneity in the effect sizes in the unadjusted 

meta-analyses, but much less heterogeneity in the meta-analysis of the PM2.5 adjusted city 

coefficients. This indicates that failure to control for PM2.5 mass is contributing to 

substantial variability in the estimates, which may obscure detecting which components truly 

have the highest toxicity. Moreover, the effects from the PM2.5-unadjusted models may be 

confounded by total PM2.5 and other constituents that co-vary, since some constituents are 

present in high proportion or highly correlated with the total mass. In this case, the health 

effects of the constituent(s) may be due to the total PM2.5 mass or other constituents that are 

emitted from the same sources (Mostofsky et al., 2012). Controlling for PM2.5 mass, EC, K, 

and Cu were associated with all-cause mortality, and V with cardiovascular and respiratory 

mortality. The consistency of the EC and K associations in the two analyses are more 

convincing of a true effect.

Second, the exposure measurement error of each constituent is different and potentially 

larger than that of the total PM2.5. In time-series studies, larger exposure measurement error 

is expected to result in attenuated effect estimates (Zeger et al., 2000). Measurement error 

can be caused by measurement/analytical errors, indoor-outdoor relationships which are 

affected by weather, and source spatial heterogeneity (Koutrakis et al., 2005; Sarnat et al., 

2010; Bell et al., 2011). For example, traffic emissions exhibit large spatial variability, 

whereas this is not the case for regional pollutants like SO4
2− (Sarnat et al., 2010). 

Moreover, larger contribution of locally-generated particles has been shown to result in 
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significantly increased measurement error due to spatial heterogeneity in the PM2.5 mass 

concentrations (Kioumourtzoglou et al., 2014b). BC, even though it is a heterogeneous 

pollutant, it appears to be an important predictor of health effects suggesting that it is either 

directly toxic or acts as a surrogate of harmful traffic emissions.

The included studies varied in several study design characteristics, which could bias and 

modify the estimates, such as: i) method of chemical analysis (e.g., some constituents can be 

measured with ion chromatography, inductively coupled plasma mass spectrometry, or X-ray 

fluorescence; EC with reflectance or thermal optical method) since the form of the 

constituent studied (elemental or ion) can give different results (Cao et al., 2012), ii) number 

and type of constituents examined, iii) sampling frequency; most of the studies used daily 

PM2.5 mass data but PM2.5 constituent’s measurements were available in a more reduced 

frequency (e.g., every third or sixth day) which could introduce error in the estimated effects 

(Klemm et al., 2011), iv) number and type (e.g., background, urban) of sites per city, v) 

specifications of the health regression model (e.g., degrees of freedom (df) used per year for 

time variable, adjusting or not for influenza and holidays, lag and df used to control for 

weather variables), and vi) mortality cause; most of the studies examined the association 

with all-cause mortality but very few studies examined other causes of death (e.g., Chronic 

Obstructive Pulmonary Disease, ischemic heart disease).

We observed large variability among mortality effect estimates across cities and studies. The 

coefficients of PM2.5 constituents were too few to explore the impact of study-specific 

characteristics and whether these modify the association between constituent and mortality, 

except in the case of the exposure window (single versus average lag exposure). Regional 

differences explained most of the observed variability. The regional differences in the effect 

estimates are probably due to spatial variation in PM2.5 composition and sources, and 

individual or community characteristics such as income, education, smoking, prevalence of 

air conditioning use, and other potential effect modifiers that vary across locations (Bell et 

al., 2011; Dai et al., 2014; Kioumourtzoglou et al., 2016). However, we were not able to 

explain much of the variability in the effect estimates with city-specific variables (PM2.5 

concentration, temperature, elevation, vegetation, population density, baseline mortality, 

elderly population size). Even though some city characteristics explained some of the 

observed variability, their effect did not remain statistically significant when non-US cities 

were removed from the analysis. These include summer temperature that showed a negative 

effect, elevation a positive effect, and vegetation that resulted in a negative and positive 

effect. Among these, elevation had the most consistent positive effect and agrees with 

Burtscher (2014) findings.

To our knowledge, this is the first meta-analysis on PM2.5 constituents (ions, metals, 

elements) and mortality. One other strength of this analysis is the use of city-specific 

estimates that gave the ability to: i) exclude duplicate populations without excluding studies, 

since some multi-city studies were overlapping; and ii) explore whether city characteristics 

can modify the effect estimates. Our studies were selected based on a priori protocol and the 

analysis included studies that examined the same lag exposure to ensure comparability. 

However, the exposure window was selected based on the strongest association between 
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mortality and PM2.5, but not with PM2.5 constituents since there is no sufficient evidence per 

constituent about this.

5 Conclusions

In our meta-analysis, we found high variability among the individual time-series studies and 

their conclusions on which constituent(s) has (have) the highest association with mortality. 

This makes it difficult to conclude which component per se has the highest toxicity, but from 

both estimates (PM2.5 - adjusted and unadjusted), EC and K, traffic and wood combustion 

elements, had a stronger association with mortality than other constituents.

The observed variability across constituent’s effect estimates remains a key question. For 

this reason, further research is needed to improve air pollution health models. For example, 

accounting for PM mass in constituent’s health models may lead to more stable and 

comparable effect estimates across different studies. Future studies can also examine the 

effect of other PM constituents and properties (e.g., oxidative stress) and whether these may 

explain some of the observed variability across the effect estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A meta-analysis of acute effects of PM2.5 constituents on mortality was 

conducted.

• EC and K had the strongest and most consistent association with mortality.

• Single lag studies underestimate effects.

• Mortality effects of PM2.5 and constituents differ across regions.
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Figure 1. 
PRISMA flow diagram (modified from Moher et al. 2009).
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Figure 2. 
All-cause mortality pooled effect estimates using city-specific estimates, expressed in 

percent change in mortality per IQR* increase in PM2.5 constituent with 95 % confidence 

intervals. (*BS:10, EC:2.6, OC:6.1, NH4
+:4.7, NO3

−:5.0, SO4
2−:5.1, Na:0.48, Mg:0.17, Si:

0.21, Cl: 1.1, K:0.53, Ca:0.17, Ti:0.017, V:0.007, Mn:0.009, Fe:0.15, Ni:0.005, Cu:0.014, 

Zn:0.054) µg/m3).
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Figure 3. 
Cardiovascular mortality pooled effect estimates using city-specific estimates, expressed in 

percent change in mortality per IQR* increase in PM2.5 constituent with 95 % confidence 

intervals. (*BS:10, EC:2.6, OC:6.1, NH4
+:4.7, NO3

−:5.0, SO4
2−:5.1, Na:0.48, Mg:0.17, Si:

0.21, Cl: 1.1, K:0.53, Ca:0.17, Ti:0.017, V:0.007, Mn:0.009, Fe:0.15, Ni:0.005, Cu:0.014, 

Zn:0.054) µg/m3).
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Figure 4. 
Respiratory mortality pooled effect estimates using city-specific estimates, expressed in 

percent change in mortality per IQR* increase in PM2.5 constituent with 95 % confidence 

intervals. (* BS: 10, EC: 2.6, OC: 6.1, NH4
+: 4.7, NO3

−: 5.0, SO4
2−: 5.1, Na: 0.48, Mg: 0.17, 

Si: 0.21, Cl: 1.1, K: 0.53, Ca: 0.17, Ti: 0.017, V: 0.007, Mn: 0.009, Fe: 0.15, Ni: 0.005, Cu: 

0.014, Zn: 0.054 µg/m3).
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Figure 5. 
All-cause mortality combined effect estimates, expressed in percent change in mortality per 

10 µg/m3 increase in PM2.5 (a), and 2.6 µg/m3 increase in EC (b). C-US indicates Central 

US; NC-US, North Central US; S-US, Southern US; SE-US, Southeastern US; NE-US, 

Northeastern US; W-US, Western US; NW-US, Northwestern US; SW-US, Southwestern 

US; EU, Europe; WP, West Pacific.
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Table 1

Studies included in the meta-analysis.

# Study
Cities Additional comments

All ages ≥65 years old

1 Basagaña et al. 2015 4EU

2 Kim et al. 2015 1 USA

3 Li et al. 2015 1 WP

4 Ostro et al. 2015 2 EU 2 EU

5 Wilson et al. 2015 1 USA

6 Dai et al. 2014 75 USA

7 Heo et al. 2014 1 WP

8 Geng et al. 2013 1 WP 1 WP

9 Krall et al. 2013 72 USA

10 Huang et al. 2012 1 WP

11 Sacks et al. 2012 1 USA

12 Son et al. 2012 1 WP

13 Valdés et al. 2012 1 SA

14 Fischer et al. 2011 1 EU Country of Netherlands

15 Klemm et al. 2011 1 USA

16 Atkinson et al. 2010 1 EU

17 Cakmak et al. 2009 1 SA

18 Fischer et al. 2009 1 EU Country of Netherlands

19 Carder et al. 2008 3 EU

20 Brook et al. 2007 10 CA City-specific estimates were not provided

21 Stankovic et al. 2007 1 EU 1 EU

22 Analitis et al. 2006 11 EU

23 Burnett et al. 2004 12 CA City-specific estimates were not provided

24 Filleul et al. 2004 1 EU 1 EU

25 Aga et al. 2003 14 EU

26 Fairley et al. 2003 1 USA

27 Villeneuve et al. 2003 1 CA

28 Ballester et al. 2002 6 EU

29 Le Tertre et al. 2002 3 EU

30 Anderson et al. 2001 1 EU

31 Goldberg et al. 2001a 1 CA Not included in the meta-analysis with the studies specific estimates because of 
duplicate population with Burnett et al. 2004

32 Goldberg et al. 2001b 1 CA 1 CA

33 Katsouyanni et al. 2001 11 EU

34 Samoli et al. 2001 2 EU

35 Burnett et al. 2000 8 CA City-specific estimates were not provided

36 Gwynn et al. 2000 1USA

37 Hoek et al. 2000 1 EU Country of Netherlands

38 Klemm et al. 2000 6 USA
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# Study
Cities Additional comments

All ages ≥65 years old

39 Lippmann et al. 2000 1 USA

40 Anderson et al. 1996 1 EU

41 Ballester et al. 1996 1 EU

EU, European Union region; CA, Canada; SA, South America; USA, United States of America; WP, West Pacific
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Table 2

Risk of bias rating for each study.
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