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ABSTRACT

Although the outcome of patients with colorectal cancer (CRC) has improved 
significantly, prognosis evaluation still presents challenges due to the disease 
heterogeneity. Increasing evidences revealed the close correlation between aberrant 
expression of certain RNAs and the prognosis. We envisioned that combined multiple 
types of RNAs into a single classifier could improve postoperative risk classification and 
add prognostic value to the current stage system. Firstly, differentially expressed RNAs 
including mRNAs, miRNAs and lncRNAs were identified by two different algorithms. 
Then survival and LASSO analysis was conducted to screen survival-related DERs 
and build a multi-RNA-based classifier for CRC patient stratification. The prognostic 
value of the classifier was self-validated in the TCGA CRC cohort and further validated 
in an external independent set. Finally, survival receiver operating characteristic 
analysis was used to assess the performance of prognostic prediction. We found that 
the multi-RNA-based classifier consisted by 12 mRNAs, 1miRNA and 1 lncRNA, which 
could divide the patients into high and low risk groups with significantly different 
overall survival (training set: HR 2.54, 95%CI 1.67-3.87, p<0.0001; internal testing 
set: HR 2.54, 95%CI 1.67-3.87, p<0.0001; validation set: HR 5.02, 95% CI 2.2–11.6; 
p=0·0002). In addition, the classifier is not only independent of clinical features but 
also with a similar prognostic ability to the well-established TNM stage (AUC of ROC 
0.83 versus 0.74, 95% CI = 0.608-0.824, P =0.0878). Furthermore, combination of 
the multi-RNA-based classifier with clinical features was a more powerful predictor 
of prognosis than either of the two parameters alone. In conclusion, the multi-RNA-
based classifier may have important clinical implications in the selection of patients 
with CRC who are at high risk of mortality and add prognostic value to the current 
stage system.

INTRODUCTION

Despite advances in screening, diagnosis, and 
curative resection, colorectal cancer (CRC) is still the 
third most common epithelial malignancy and the fourth-
leading cause of mortality around the world [1–3]. At 
present, the tumor, node, and metastasis (TNM) staging 
is the only well-recognized stratification system used in 

clinical practice to guide therapy decision and predict 
CRC patients’ prognosis [4]. However, TNM staging fails 
to evaluate survival outcomes accurately in many patients 
undergoing surgical resection [5]. Conflict outcomes 
even existed among patients with same stage category 
[6, 7]. Besides that, although the version of TNM staging 
has been continuously updating in the past decade, the 
prognosis value does not increase significantly [8]. All the 
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above factors highlight the urgent need to identify reliable 
prognostic factors for a more precise prediction in CRC 
patients [9–11].

The accumulation of basic research revealed that 
certain molecules which intimately associated with 
tumor phenotype and clinical behavior, maght be with 
better predictive value than clinicopathological features 
[12]. Indeed, many previous studies had confirmed that 
the discovery and application of individual biomarkers 
could facilitate the prognostic evaluation [9–11]. But 
due to their specificity and sensitivity, individual 
molecular alone or in combination with clinical 
features also do not predict the survival of CRC patients 
accurately [13].

Given the heterogeneity of CRC and the multitude 
of variables influencing clinical progress, the multi-
molecular signatures provide a more comprehensive 
prognostic information. Expression levels of thousands 
of molecular are now widely evaluated simultaneously 
by microarray, sequencing and mass spectrometry due to 
huge breakthrough of high-throughput technology during 
the last decade [14]. Therefore, expression profiling 
especially mRNA, miRNA and lncRNA, has shown 
great prospect in clinical practice to predict the long-term 
outcome of individual patient. Moreover, many researches 
have demonstrated that, notwithstanding the importance 
of individual RNA, intrinsic multi-RNA profiles of CRC 
may have greater prognostic value. Ramon Salazar et al. 
reported an expression profiling study and screened 18 
mRNAs that could significantly improve the prognostic 
accuracy in patients with stage II and III CRC [15]. In 
another study, by integrating 7 genes into a single model, 
Anita Sveen et al constructed a prognostic classifier for 
stage III CRC patients and validated that the classifier is a 
clinically feasible prognostic predictor of poor prognosis 
[16]. Besides that, MicroRNAs (miRNAs) and long non-
coding RNAs (lncRNAs) as key ingredients of expression 
profiling involved in directly regulating approximately 
30% of protein-encoding genes [17]. Although functions 
of miRNAs are far from being fully understood, growing 
evidences indicated that aberrant expression of miRNAs 
meet the requirement of ideal biomarkers for cancer 
detection [18], which were not only stable in plasma 
and cuticle at detectable levels [19], but also showed a 
good sensitivity and specificity [20]. Thus, the prognostic 
value of individual miRNA in CRC was continuously 
being reported [21, 22] since it was first discovered by 
Lee in 1993 [23]. Similarly, recent investigations on 
various human cancers demonstrated that lncRNAs may 
be an overlooked source of biomarkers and therapeutic 
targets [24]. Although only a limited number of lncRNAs 
have been well characterized on biological mechanism, 
accumulating evidences have suggested that lncRNAs 
may have significant prognostic value in many types of 
cancers [25] including breast cancer [26], prostate cancer 
[27] and CRC [28, 29].

Despite much was known about RNAs in CRC, 
previous studies mainly focused on them separately. 
It is still unknown whether combining different types 
of RNAs could substantially increase the prognostic 
value. Therefore, the aims of this present work was 
to construct a multi-RNA-based classifier based on 
exploring the lncRNA, miRNA and mRNA profiles of 
CRC patients. The prognostic value of the classifier was 
investigated in training cohort and further confirmed in 
independent validation cohort. Our findings suggest that 
the multi-RNA-based classifier could effectively stratify 
CRC patients who are at high risk of mortality and add 
prognostic value to the current stage system.

RESULTS

Clinicopathological features of patients in the 
TCGA and validation CRC cohort

Two CRC cohort and corresponding clinical data 
were downloaded from the publicly available TCGA and 
GEO database, respectively. After removal of the samples 
with inadequate clinical information, a total of 663 CRC 
patients including 338 females (mean age 66.04 ± 13.76 
years) and 325 males (mean age 66.63 ± 11.43 years), were 
analyzed in the present study (median follow-up: 23.98 
months). All the included patients were pathologically 
diagnosed with CRC and undergone surgical resection, in 
which 598 patients from TCGA database were randomly 
divided into training set (n=498) and internal testing set 
(n=100) separately, and 65 patients from GEO database 
(GSE29623) possessing lncRNA, miRNA and mRNA 
profiles simultaneously were set as validation set [30]. Of 
note, 50 patients with expression profiles derived from 
adjacent non-tumor tissues were specifically assigned to 
training set for analyzing the differential expression of 
RNAs. Demographic and clinical data for the training, 
internal testing and independent validation set were 
summarized in Table 1. As we expected, no significant 
difference was observed in the major clinicopathological 
characteristics. However, owing to the high censoring 
rate in the TCGA CRC cohort(67.15%), remarkable 
difference existed in overall survival status(p<0·0001). 
Thus, Kaplan-Meier tests were subsequently conducted 
to evaluate the accuracy of the survival data. As clearly 
indicated in Figure 1, although containing a majority of 
censored data, the survival information in the TCGA CRC 
cohort was significantly related to the well-established 
TNM stage, which means its accuracy was appropriate for 
use in further studies.

Construction of prognostic classifier from the 
training sets

Aberrant expression of RNAs which mediated 
tumor initiation, progression, and metastasis is the 
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potential prognostic biomarker. To obtain robust and 
reproducible differentially expressed RNAs (DERs), 
global expression profiling was conducted on TCGA 
training set including 498 CRC specimens and 50 
adjacent normal tissues, by using redgeR and limma 
respectively. A total of 1786 DERs were preliminarily 
screened by both the algorithms with the threshold of 
|log2FC| >2 and adj.P.Value < 0.05, in which the number 
of mRNA, miRNA and lncRNA was 1247, 163, 376 
respectively (Figure 2A). The details of DERs was 
comprehensively displayed in circos plot (Figure 2B). 
Moreover, as shown in Figure 2C, using unsupervised 
hierarchical clustering based on those DERs, the 

samples of tumor and normal were clearly separated 
into two discrete groups which indicated that the DERs 
identified in the present study were credible. Based on 
univariate survival analysis, the DERs in which not 
significantly correlated with overall survival was further 
filtered out. Then, a relative regression coefficient was 
calculated by LASSO analysis based on the survival-
related DERs. By forcing the sum of the absolute value 
of the regression coefficients to be less than a fixed 
value, certain coefficients were shrunk exactly to zero 
and the most powerful prognostic marker of all the 
CRC survival-associated DERs were selected including 
12 mRNAs, 1miRNA and 1 lncRNA (Figure 2A). As 

Figure 1: Kaplan-Meier estimates of overall survival stratified by the tumor, node, metastasis system and TNM stage 
in the TCGA CRC cohort. (A-C) Local invasion stage (T1, T2, T3, T4), lymph node metastasis (N0, N1, N2), distant metastasis (M0, 
M1); overall log-rank test, p-value <0.0001. (D) TNM stage, overall log-rank test, p-value <0.0001. The differences between the two curves 
were determined by the two-sided log-rank test.
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Table 1: Clinical features for the CRC patients in the training set, testing set and validation set

Characteristics TCGA cohort Validation cohort P-valuea

Training set n = 498(%) Testing set n =100(%) Independent set n = 65 (%)

Age (years)

  < 60 144(28.9%) 28(28.0%) 20(30.8%)
0.8696

  ≥ 60 354(71.1%) 72(72.0%) 45(69.2%)

Sex

  Female 255(51.2%) 52(52.0%) 31(47.6%)
0.1705

  Male 243(48.8%) 48(48.0%) 34(52.4%)

Local invasion

  T1–T2 107(21.4%) 21(21.0%) 13(20.0%)
0.9091

  T3–T4 391(78.6%) 79(79.0%) 52(80.0%)

Lymph node 
metastasis

  N0 303(60.8%) 61(61.0%) 38(58.4%)

0.1583  N1 108(21.6%) 20(20.0%) 20(30.7%)

  N2 87(17.6%) 19(19.0%) 7(10.9%)

Distant metastasis

  M0 419(84.1%) 81(81.0%) 47(72.3%)
0.04777

  M1 79(15.9%) 14(14.0%) 18(27.7%)

TNM stage

  I 96(19.2%) 19(19.0%) 7(10.8%)

0.0514
  II 197(39.5%) 41(41.0%) 22(34.0%)

  III 126(25.3%) 26(26.0%) 18(27.6%)

  IV 79(16.0%) 14(14.0%) 18(27.6%)

Resection Margin 
Status

  R0 454(91.1%) 91(91.0%) 57(87.6%)

0.05582  R1 5(1.0%) 11(11.0%) 3(3.0%)

  R2 39(7.9%) 88(88.0%) 7(7.6%)

Tumor grade

  Well 398(81.3%) 79(79.0%) 51(79.6%)

0.8549  Mod 65(13.1%) 14(14.0%) 10(15.3%)

  Poorly 35(5.6%) 77(77.0%) 4(5.1%)

Relapse status

  No 377(75.7%) 73(73.0%) 51(78.4%)
0.8549

  Yes 121(24.3%) 27(27.0%) 12(21.6%)

Survival status

  No 413(83.0%) 79(79.0%) 40(61.5%)
< 0.0001

  Yes 85 (17.0%) 21(21.0%) 25(38.5%)

aPearson chi-square test or Fisher exact test was used for comparison between subgroups. Bold type indicates statistical significance.
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summarized in Table 2 , ten were associated with high 
risk (FAM132B, CPB1, NXPH4, OSR1, PCOLCE2, 
RNF112, TNNT2, GABRD, MIR27A, HOTAIR, HR>1) 
and four were shown to be protective (MMP1, MS4A1, 
IZUMO2, GIF, HR<1). Combine the relative expression 
levels of the DERs in the classifier and corresponding 
LASSO coefficients, a risk score (RS) was calculated for 

each patient in the TCGA training set. The cutoff point 
of RS for dividing the high-risk and low-risk patients 
was generated according to the optimum sensitivity 
(74.27%) and specificity (84.68%) based on ROC curve 
for predicting 5-year survival. Patients with a RS greater 
than or equal to 0.2835 were assigned to high-risk group 
and the rest patients belonged to low-risk group (Figure 

Figure 2: Differentially expressed RNAs(DERs) in colorectal cancer vs adjacent normal tissues. (A) Volcano Plot 
visualizing the DERs which was screened by both limma and edgeR. The colorized points in scatter plot represent the DERs with statistical 
significance (adj.P.Value<0.05, |logFC|>2). Green, red and blue point represent mRNA, miRNA, lncRNA respectively. (B) The distribution 
and variation trend of each DERs on chromosomes was shown in Circos plots. Color gradient from red to blue represent the logFC of 
DERs, the gene symbol of each DERs was displayed in outermost region and been pointed to a specific location on chromosome by a 
connecting line. (C) Two-way hierarchical clustering of 498 tumour tissues and 50 adjacent normal mucosa with the 2114 differentially 
expressed RNAs using Euclidean distance and average linkage clustering. Every row represents an individual gene, and each column 
represents an individual sample. color gradient from green to red indicate expression levels from low to high on a normalized value(-10 to 
10). The clustering of samples were mainly divided into two major clusters, one was the normal tissue samples and the other was cancer 
tissue samples.
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3B). As shown in Figure 3C and 3D, we found that 
patients with high RS tended to express high-risk RNAs, 
whereas tumors with low RS incline to express protective 
RNAs.

Validation of the integrated classifier for survival 
prediction in the TCGA and validation CRC 
cohort

To investigate the relationship between RS and 
survival status of CRC patients, Kaplan-Meier analysis 
and log-rank test were conducted on the training sets. 
Obviously, patients with higher RS generally had a 
significantly worse overall survival (OS) than those 
with lower RS (p<0.0001; Figure 4A ). As the majority 
of events occurred within 5 years, time-dependent ROC 
curves were used to assess the prognostic power based 
on OS at 1, 3, 5 years respectively (Figure 4A). The 
cumulative 5-year OS rate was 79.7% (95% CI 68.4–
92.8) for the low-risk group, whereas it was only 15.7% 
(95% CI 5.2–47.1) for the high-risk group (hazard ratio 
[HR] 5.63, 95%CI 3.44–9.24; p<0·0001; Figure 2A). In 
addition, we did the same analyses on the internal testing 
set. As shown in Figure 4B, the results were similar to 
what we observed in the training set (HR 2.54, 95%CI 
1.67-3.87; p<0.0001).

To validate whether our prognostic classifier also 
had similar predictive ability in different populations, we 
applied it to the independent set. There were only a limited 
number of patients (N=65) in the independent set because 
of lack of published datasets that have the mRNA, miRNA 
and lncRNA profiles for the same CRC patients. However, 
the variables (N= 15) to sample size (n=65) ratio was 
enough to accurately estimate the regression coefficients 
based on ridge regression. By using the same prognostic 
model and cutoff value (RS = 0.2835), the classifier can 
also successfully subdivide patients into high risk (n = 28) 
or low risk (n = 37) groups with remarkable differences in 
overall survival (HR 5.02, 95% CI 2.2–11.6; p=0·0002; 
Figure 4C). In consistence with the results demonstrated 
above, 5-year OS was 68.4% (95% CI 51.6–90.6) for the 
low-risk group, whereas it was only 27.2% (95% CI 12.8 
–57.4 ) for the high-risk group.

Prognostic value of the integrated classifier is 
independent of clinical feature

To assess whether the prognostic classifier 
represents an independent indicator in CRC patients, the 
effect of each clinicopathologic feature on survival was 
analyzed by Cox regression. As shown in Table 3 , after 
multivariable adjustment, the multi-RNA-based classifier 

Table 2: The RNA in the multi-RNA-based classifier significantly associated with survival of CRC patients in 
training set

Symbol Chromosome 
location

Type Univariate Cox regression analysis LASSO 
coefficientHR 95% CI P value

Protective RNAs

MMP1 11q22.3 mRNA 0.854 0.784-0.932 0.001 -0.068643

MS4A1 11q12 mRNA 0.869 0.799-0.945 0.001 -0.030945

IZUMO2 19q13.33 mRNA 0.897 0.822-0.945 0.014 -0.024213

GIF 11q13 mRNA 0.881 0.806-0.961 0.005 -0.014259

Risky RNAs

FAM132B 2q37.3 mRNA 1.140 1.001-1.297 0.048 0.003712

CPB1 3q24 mRNA 1.110 1.019-1.207 0.016 0.007147

NXPH4 12q13.3 mRNA 1.108 1.023-1.200 0.012 0.008292

OSR1 2p24.1 mRNA 1.172 1.048-1.312 0.005 0.014616

PCOLCE2 3q21-q24 mRNA 1.135 1.038-1.240 0.005 0.025477

RNF112 17p11.2 mRNA 1.276 1.082-1.495 0.003 0.035002

TNNT2 1q32 mRNA 1.236 1.089-1.410 0.002 0.045565

GABRD 1p36.3 mRNA 1.315 1.096-1.577 0.003 0.046474

MIR27A 19p13.13 miRNA 1.191 1.035-1.370 0.015 0.016724

HOTAIR 12q13.13 lncRNA 1.112 1.027-1.203 0.008 0.004548

HR, hazard ratio; CI, confidential interval.
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remained a powerful and independent factor in training 
set, testing set and independent set. Additionally, time-
dependent receiver operating characteristic (ROC) was 
applied to compare the predictive accuracy between the 
multi-RNA-based classifier and the other independent 
clinical factors (Figure 5). By calculating the area under 
the curve (AUC) of ROC, we found that the multi-RNA-
based classifier had significantly higher prognostic 
accuracy than any other factors except TNM stage (0.83 
versus 0.74, 95% CI = 0.608–0.824, P =0.0878). Although 
TNM stage is a well-recognized prediction system for 
prognosis, conflict outcome existed among patients with 
same stage category. To investigate whether the multi-
RNA-based classifier adds prognostic value to the current 
system, data stratification analysis was performed. As 
shown in Figure 6, within each stratum (stage II-IV), our 

classifier could further subdivide the patients into longer 
survival and shorter survival group (Figure 6B–6D). More 
importantly, the multi-RNA-based classifier combined 
with clinical features achieved the greatest area under 
the curve of ROC which was significantly greater than 
classifier alone (0.89 versus 0.83, 95% CI 0.801–0.926, 
P=0.0106). These results demonstrated that combining the 
multi-RNA-based classifier with clinical features could 
further improve the capacity for predicting outcome. 
Therefore, we constructed a nomogram that integrated 
both the classifier and clinicopathological features to 
predict survival probability of patients who had undergone 
surgical resection (Figure 7A). Calibration plot showed 
that predicting 3-year and 5-year survival probabilities 
corresponded closely to the actual observed proportions 
(Figure 7B).

Figure 3: Construction of the integrated prognostic classifier. (A) LASSO coefficient profiles of the 14 survival-related RNAs. 
(B-D) Prognostic classifier analysis of the training set patients. (B) The distribution of risk score. (C) Patients survival time and status. 
The black dotted line represents the optimum cutoff dividing patients into low-risk and high-risk groups. (D) Heat map of the RNAs in 
prognostic classifier.
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DISCUSSION

The increasing evidences are improving the 
understanding that, despite the importance of individual 
molecules, tumorigenesis and prognosis is strictly 
controlled by the interactions between the myriad of 
cellular constituents including DNA, RNA, proteins and 
small molecules [31]. Even a discrete biological function 
can rarely be ascribed to an individual molecule [32]. 
Therefore, based on an oversimplified model, which 
has dominated medical research for the past century, no 

longer applies to the current situation of data explosion in 
medical. The breakthrough of high-throughput technology 
was now powerful enough to measure each component of 
transcript in the tissue or cell at any given time [33, 34]. 
According to the estimate, the amount of bioinformation 
in the world doubles every 20 month, which promises 
to promote understanding of disease at the integration 
level and add new dimensions to our ability to predict the 
prognosis of an individual patient [35].

As being recognized previously, ribonucleic acid 
(RNA) is a polymeric molecule essential in various 

Figure 4: The distribution of risk score, time-dependent ROC curves and Kaplan-Meier survival based on the 
integrated classifier in the training, internal testing, and independent validation sets. ROC, receiver operator characteristic. 
AUC, area under the curve. (A) Training cohort. (B) Internal testing cohort. (C) Independent validation cohort. We used AUCs at 1, 3, and 
5 years to assess prognostic accuracy, and calculated p values using the log-rank test.
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Table 3: Univariate and multivariate analyses of prognostic factors and overall survival of patients in the study

Variables Categories Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Training set, n=498

Age ≧60/<60years 1.263 (0.767-
2.081) 0.358

Sex male/female 1.177 (0.767-
2.081) 0.465

Local invasion T3-T4/T1-T2 3.798 (1.752-
13.14) 0.013 2.206 (1.139-

7.029) 0.027

Lymph node metastasis N0/N1-N2 3.207 (2.026-
5.075) <0.0001 1.172 (0.672-

2.044) 0.576

Distant metastasis M0/M1 3.289 (3.397-
7.235) <0.0001 2.464 (1.363-

4.453) 0.003

TNM stage I-II/III-IV 4.348 (2.661-
7.104) <0.0001 2.151 (1.165-

3.971) 0.014

Risk score(RS) High/low 5.641 (3.441-
9.245) <0.0001 4.463 (2.687-

7.413) <0.0001

Testing set, n=100

Age ≧60/<60years 1.126 (0.972-
1.305) 0.112

Sex male/female 0.948 (0.864-
1.041) 0.271

Local invasion T3-T4/T1-T2 2.008 (1.129-
3.571) 0.017 1.503 (0.8583-

2.634) 0.153

Lymph node metastasis N0/N1-N2 2.729 (1.655-
4.501) 0.0001 2.928 (0.197-

3.933) 0.478

Distant metastasis M0/M1 2.383 (1.906-
2.978) <0.0001 2.951 (1.122-

7.759) 0.028

TNM stage I-II/III-IV 3.177 (1.995-
5.061) <0.0001 3.548 (1.037-

12.13) 0.009

Risk score(RS) High/low 2.542 (1.671-
3.879) <0.0001 2.206 (1.139-

7.029) 0.004

Independent set, n=65

Age ≧60/<60years 1.247 (0.446-
2.318) 0.612

Sex male/female 1.642 (0.845–
3.120) 0.385

Local invasion T3-T4/T1-T2 1.677 (0.394-
7.141) 0.483

Lymph node metastasis N0/N1-N2 2.969(1.123-
7.845) 0.028 2.281 (1.189-

3.784) 0.021

(Continued)
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Figure 5: Time-dependent ROC curves compare the prognostic accuracy among the prognostic classifier, 
clinicopathological features and mRNA, miRNA, lncRNA alone in 598 patients.  Local invasion(T1-T4), lymph node 
metastasis(N0-N2), distant metastasis(M0-M1), TNM stage(I-IV), prognostic Score(risk score). Only lncRNA (HOTAIR), only mRNA 
(FAM132B, CPB1, NXPH4, OSR1, PCOLCE2, RNF112, TNNT2, GABRD, MMP1, MS4A1, IZUMO2, GIF), only miRNA (MIR27A). 
The 95%CI of AUC were calculated from 1000 bootstrap of the survival data. p values show the AUC at 5 years for multi-RNA-based 
classifier vs the AUC at 5 years for other features. ROC, receiver operator characteristic. AUC, area under curve.

Variables Categories Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Distant metastasis M0/M1 3.289 (3.397-
7.235) <0.0001 2.367 (1.394-

4.019) 0.001

TNM stage I-II/III-IV 5.008 (2.242-
11.410) <0.0001 2.138 (1.047-

3.841) 0.025

Risk score(RS) High/low 5.025 (2.259–
11.643) 0.0002 4.247 (2.132-

8.463) <0.0001

HR, hazard ratio; CI, confidential interval.
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biological roles and many of which have been identified 
as prognostic biomarkers [18, 25]. Given the tumor 
heterogeneity and the multitude of variables involved in 
influencing clinical progress, combination of multiple 
RNA provides a more comprehensive prognostic 
information. Indeed, many former researches have 
revealed the great prospect in clinical utility of multi-
RNA-based classifiers [36–38]. For example, using 
miRNA microarrays, Zhang et al. analysed 40 paired 
colon tumor and adjacent normal tissues and found 
that a six-miRNA-based classifier could predict disease 
recurrence and serve as an indicator of efficacy for 

adjuvant chemotherapy [39]. More importantly, the six-
miRNA-based classifier even had better prognostic value 
than TNM stage and mismatch repair status. Additionally, 
it has been clarified recently that lncRNA is another 
dimension of transcription-regulatory networks [25, 37, 
40, 41]. Aberrant expression of lncRNA is associated 
with tumorigenesis, tumor progression and metastasis 
[41]. Until now, although only a few lncRNAs have 
been investigated in CRC, existing results demonstrated 
that lncRNAs may be ideal prognostic biomarkers [25]. 
Thus, Hu et al. performed lncRNA expression profiling 
in large CRC cohorts from GEO and established a set 

Figure 6: Kaplan-Meier survival analysis for 633 patients according to the prognostic classifier stratified by TNM 
stage. Patients were stratified based on TNM stage (stage I, stage II, stage III and stage IV), and then Kaplan–Meier plots were used to 
visualize the survival probabilities for the low-risk versus high-risk group. (A) Kaplan–Meier curves for stage I (N=122); (B) Kaplan–
Meier curves for stage II (N=250); (C) Kaplan–Meier curves for stage III (N=162); (D) Kaplan–Meier curves for stage IV (N=99).
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of six lncRNAs that may be an efficacy tool for clinical 
prognosis evaluation [28]. Duo to the great power of 
multi-RNA-based risk stratification, its clinical utility has 
recently been approved by the FDA for making treatment 
decisions in early-stage breast cancer(MammaPrint; 
Agendia, Amsterdam, the Netherlands) [42, 43].

Although much is known about RNAs in CRC, 
previous studies mainly focused on them individually. The 
prognostic value of combining different type of RNAs is 
still not elucidated. More importantly, as the third most 
common epithelial malignancy, prognosis evaluation of 
patients with CRC based on current prognostic system still 
presents challenges [8]. Therefore, in the present study, 
we first constructed a novel multi-RNA-based classifier 
consisting of 12 mRNA, 1 miRNA and 1 lncRNA, which 
was validated as an independent predictor for CRC 
patient survival. Our data revealed that this classifier 
can successfully subdivide CRC patients into high and 
low risk groups with remarkable differences in overall 
survival. The results was further validated by a internal set 
and an independent external set, which reflects the good 
reproducibility of the classifier. In addition, even stratified 
by TNM stage, the CRC patients could also be divided 
into longer survival and shorter survival group by the 
multi-RNA-based classifier. And this further indicated that 
our classifier could act as an independent factor for CRC 
prognosis. More importantly, it is well known that CRC 
prognosis is highly stage dependent, however, dilemmas 
still exist in making appropriate treatment decisions, 
especially for a stage II patient. Therefore, identification 
of high-risk subgroup among stage II CRC patients by 
a reliable indicator is of great clinical need. Our data 
demonstrated that the multi-RNA-based classifier could 
be a promising biomarker to stratify stage II patients into 
distinct risk subgroup and guide individualized therapy 
choices.

Moreover, it was fascinating to find that the 
multi-RNA-based classifier and TNM stage had a 
similar prognostic ability and were independent of each 
other, which means the classifier may be used to refine 
the current prognostic model and facilitate further 
stratification of patients with CRC in the same TNM 
stage. Indeed, our ROC analysis indicated that a stronger 
power for prognostic prediction could been achieved 
by a combination of the multi-RNA-based classifier 
and clinicopathologic risk factors, which at least in 
part confirmed above conclusion. Intuition tells us that 
integrating different types of survival-related RNAs 
into a single model, instead of study on them separately, 
was expected to increase prognostic value substantially. 
Comparing the AUC of the ROC curve, we clearly found 
that removing any RNA type would significantly decrease 
the predictive ability. Therefore, single selective type 
of RNA was difficult to construct an sufficient precise 
prognosis model.

In this study, we evaluated the correction between 
survival and all the DERs, only CRC survival-related 
DERs were chosen to further analysis in LASSO 
algorithm. Finally, in our multi-RNA-based classifier, 
only 12 mRNA, 1 miRNA and 1 lncRNA were retained. 
Among them, MIR27A [44, 45], HOTAIR [46], MMP1 
[47], MS4A1 [48], GIF [49] were previously reported 
to be related with CRC patient prognosis. As the only 
miRNAs, MIR27A directly downregulated the tumor 
suppressor FBXW7 and mediate selective activation 
of NOTCH, JUN and MYC signaling [45]. Moreover, 
long non-coding RNA HOTAIR in our classifier also 
silenced metastasis suppressor genes by recruiting the 
PRC2 complex to specific target genes [50]. These basic 
findings may, in part, account for the risky role of the two 
RNAs in classifier(HR > 1). Moreover, to our knowledge, 
we are the first to report the prognostic value of the other 

Figure 7: Nomograms to predict 3-year and 5-year survival probability in colorectal cancer. (A) Total points were obtained 
by adding up the corresponding points of each individual covariate on the points scale. Then directly convert total points to particular 
3–year and 5–year related survival probabilities. (B) Calibration plot for the nomogram. Dashed line indicates ideal reference line where 
predicted probabilities would match the observed proportions. Dashes represent nomogram-predicted probabilities grouped for each of the 
there groups, along with the respective confidence Intervals.
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9 RNAs(FAM132B, CPB1, NXPH4, OSR1, RNF112, 
TNNT2, IZUMO2, OSR1, PCOLCE2), which may 
provide valuable directions for the future research.

In summary, we constructed a powerful multi-RNA-
based classifier which could effectively stratify CRC 
patients into groups at low and high risk of mortality. 
Further analysis revealed that our classifier was not 
only independent of clinical features but also with a 
similar prognostic ability to the well established TNM 
stage. Furthermore, to help clinician to evaluate survival 
probability of CRC patients, we integrated the multi-
RNA-based classifier with traditional clinicopathological 
risk factors to make a quantitative nomogram. Base on 
our knowledge, this is the first report that combines 
multiple type of RNA to improve the current CRC 
prognosis. However, there were still some limitations 
in this research. In particular, some clinical information 
was incomplete, which made our study susceptible to the 
inherent biases. Moreover, the censoring rate of TCGA 
dataset was too high , which may affecte the reliability of 
this study. Clearly, our results should be further validated 
by prospective study in multicentre clinical trials.

MATERIALS AND METHODS

Data collection

All 635 patients’ data of CRC including RNA 
expression (mRNA, miRNA and lncRNA) and 
corresponding clinical information were retrieved from 
The Cancer Genome Atlas (TCGA) data portal. Both 
the expression profiles and clinical outcome are publicly 
available and open-access. Among the TCGA CRC 
cohort, 50 patients have expression data from both normal 
and tumor tissue simultaneously were used to screen 
differentially expressed RNAs (DERs). To validate the 
prognostic value of the integrated classifier obtained 
from the TCGA CRC cohort, external published datasets 
which have mRNA, lncRNA and miRNA profiles for the 
same CRC patients were retrieved from Gene Expression 
Omnibus(GEO). Finally, independent expression datasets 
with a total of 65 CRC patients were downloaded. 
Owing to the data were separately stored in different 
files, the barcodes of each sample were used to cross-
reference the expression profiles and clinical outcome. 
The data collection was conducted in compliance with the 
publication guidelines and policies for the protection of 
human subjects provided by TCGA and GEO.

Before analyze the downloaded data, mRNA 
and miRNA expression profiles were annotated based 
on Refseq transcript ID and/ or Ensembl gene ID as 
previously described [2]. In addition, LncRNA expression 
profiles from patients in TCGA were retrieved from the 
Atlas of Non-coding RNAs in Cancer (TANRIC, http://
bioinformatics.mdanderson.org/main/TANRIC:Overview) 

database [51], and any lncRNAs that overlapped with 
any given mRNAs were filtered out. By analysis of the 
download data, some patients do not meet the following 
criteria were eliminated in the present study: (1) a 
histological diagnosis of CRC (2) patients with fully 
clinical features including sex, age, tumor location, 
local invasion, lymph node metastasis, distal metastasis, 
differentiation grade, pathologic stage, survival 
information (Table 1); (3) patients were still alive at least 
1 month after initial pathologic diagnosis.

Identification of differentially expressed RNAs 
between CRC and normal tissue

The analysis was carried out in training set which 
contain 50 adjacent normal and 498 CRC sample, 
by using the R/Bioconductor package of redgeR and 
limma respectively, as previous described in detail. The 
expression differences were characterized by logFC 
(log2 fold change) and associated adj.P.Value. LogFC 
indicates the fold change in expression of each miRNA 
from CRC to normal tissue. Down and up-regulated RNAs 
were assigned a logFC < −2 and logFC >2 respectively, 
with adj.P.Value < 0.05. The RNAs identified to be 
differentially expressed by both of the algorithms were 
selected as DERs. In order to further assess the accurate of 
the DERs, hierarchical clustering analysis was also applied 
to categorize the data based on the similar expression 
patterns by using heatmap.2 function of the R/package 
gplots with complete linkage.

Survival analysis

The differences clinical features including sex, age, 
tumor location, local invasion, lymph node metastasis, 
distal metastasis, differentiation grade, pathologic 
stage, survival status between training set, internal 
testing set and independent validation set were analyzed 
using the chi-square test. A univariate Cox model was 
performed to investigate the relationship between the 
continuous expression level of each DERs and OS, and 
for preliminary screening of clinical variables that were 
correlated with the OS of patients with CRC. Hazard 
ratios (HRs) and P-value from univariate Cox regression 
analysis were used to identify candidate survival-related 
DERs. DERs with HR for death > 1 were defined as 
high-risk RNAs a and those with HR < 1 were defined 
as a protective RNAs. The common DERs meet criteria 
of P-value <0.05 were selected as survival-related DERs 
and further analyzed in LASSO regression to identity 
the most powerful prognostic markers. Finally, a multi-
RNA-based classifier was constructed for predicting the 
OS. In order to quantify the risk of OS, a standard form 
of risk score(RS) for each CRC patient was calculated 
combine the relative expression levels of the RNAs (Expi) 
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and LASSO coefficients (Li), Risk score =∑ ×
=

Exp Lii

n

i1

. To divide the patients into the high or low risk group, 
the best cutoff RS was determined when the sensitivity 
and specificity in the ROC curve achieved optimum for 
predicting 5-year survival of the training set. Kaplan-
Meier curves were used to estimate the survival for 
patients in training, testing and validation set between high 
risk and low risk group. As a powerful predictive factor, 
whether the prognostic value of the multi-RNA-based 
classifier is independent of clinical feature was assessed 
by multivariate Cox regression model. More importantly, 
to investigate the performance of the prognostic classifier 
and clinical features in predicting CRC patient outcome, 
the area under the curve (AUC) of the receiver-operator 
characteristic (ROC) was calculated and compared.

We used R software version 3.3.3 and the 
“TimeROC” package to do the time-dependent ROC curve 
analysis. Moreover, “glmnet” package was used to do the 
LASSO Cox regression model analysis. Nomogram plots 
were done with the rms package. All the other statistical 
tests were done with R software version 3.3.3 and 
corresponding fundamental package.
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