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In medical image processing, robust segmentation of inhomogeneous targets is a 
challenging problem. Because of the complexity and diversity in medical images, 
the commonly used semiautomatic segmentation algorithms usually fail in the 
segmentation of inhomogeneous objects. In this study, we propose a novel algo-
rithm imbedded with a seed point autogeneration for random walks segmentation 
enhancement, namely SPARSE, for better segmentation of inhomogeneous objects. 
With a few user-labeled points, SPARSE is able to generate extended seed points 
by estimating the probability of each voxel with respect to the labels. The random 
walks algorithm is then applied upon the extended seed points to achieve improved 
segmentation result. SPARSE is implemented under the compute unified device 
architecture (CUDA) programming environment on graphic processing unit (GPU) 
hardware platform. Quantitative evaluations are performed using clinical homoge-
neous and inhomogeneous cases. It is found that the SPARSE can greatly decrease 
the sensitiveness to initial seed points in terms of location and quantity, as well as the 
freedom of selecting parameters in edge weighting function. The evaluation results 
of SPARSE also demonstrate substantial improvements in accuracy and robustness 
to inhomogeneous target segmentation over the original random walks algorithm.
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I.	 INTRODUCTION

Segmentation of medical images is a significant and challenging task for disease diagnosis(1,2) 
and treatment planning.(3-5) It can be roughly classified into three categories, namely, manual, 
semiautomatic (interactive), and automatic segmentation.(6) Manual segmentation is usually 
time-consuming and experience dependent. Automatic segmentation cannot guarantee optimal 
results due to the complexity and diversity of the medical images, and often requires a physi-
cian’s further intervention. Interactive segmentation,(7) which allows the physician to incorporate 
their professional knowledge and the specific clinical criteria and saves physicians’ time with 
computer aid, is more attractive than other two.
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In the past decade, efforts have continued towards developing interactive segmentation 
methods. One of the popular interactive segmentation methods is random walks (RW),(8) 
where the users achieve segmentation through estimating the probability that a random walker 
starting at each voxel to reach the labeled initial seed points (SPs). The RW algorithm has 
several drawbacks in practice. Firstly, RW relies on the location and quantity of the initial SPs 
to a large extent. It has been demonstrated that RW is stable to changes of the SPs only when 
the changes of location and quantity are below 10% and 50%, respectively.(9) Moreover, to 
obtain satisfactory segmentation results, the quantity of initial SPs should be sufficient to be 
representative of almost all intensity levels in the target. However, in practice, it is tedious 
and laborious to place sufficient SPs on the target, especially in a 3D scenario. In this sense, 
a stable segmentation result may not be guaranteed when insufficient SPs are used, especially 
for medical inhomogeneous targets, which are common in clinical studies. 

Great efforts have been made to improve RW by reducing its reliance on the SPs. Dong et 
al.(10) proposed a novel SPs selection method composed of a region growing technique and 
morphological operation to promote the RW segmentation of ventricle in 3D dataset. But, it 
is limited to cavity or cavity wall extraction. Li et al.(11) extended the RW by incorporating 
a prior shape to relieve the requirement of the SPs. However, this method works under the 
assumptions of slight occlusion, similar background, and illumination changes in the pedestrian 
images, which has limited application in medical images. Moreover, a proper prior shape is 
usually difficult to obtain because of the diversified shapes of clinic targets. Onoma et al.(12) 
proposed an improved RW by initializing the SPs automatically via fuzzy-C means to yield 
better segmentation of lung tumor. However, it fails in the segmentation of lesions with complex 
shapes and inhomogeneous uptake. Cui et al.(13) described a SPs automatic selection strategy 
for RW-based segmentation of lung tumor in computed tomography (CT) image by using the 
positron emission tomography (PET) image as the prior. But the availability of the PET image 
may restrain its application to segmentation tasks in other image modalities.

In this paper, we propose a novel algorithm imbedded with seed point autogeneration for 
random walks segmentation enhancement (named SPARSE). A previous study(9) has shown 
that more SPs generally provide more useful information in the target region and background, 
and thus more robust segmentation results can be guaranteed. With a limited number of user-
labeled initial SPs, we have developed a SPs autogeneration scheme to obtain extended seed 
points (ESPs) by estimating the probability of each voxel with respect to a certain label. The RW 
algorithm is then applied upon the ESPs to achieve improved segmentation result. The SPARSE 
is implemented using compute unified device architecture (CUDA) on a graphic processing unit 
(GPU) platform to improve computation efficiency. The performance of SPARSE is evaluated 
using homogeneous and inhomogeneous cases. It is found that the SPARSE is robust to the 
initial SPs in terms of location, quantity, and the selection of parameter β in edge weighting 
function. Furthermore, SPARSE improves the segmentation accuracy when compared with 
the original RW and another state-of-the-art interactive segmentation algorithm — the graph 
cut (GC) method.(14)

 
II.	 MATERIALS AND METHODS

A. 	 Review of the RW
RW(8,15) is used to solve the segmentation problem by calculating the probability that a random 
walker starting at each voxel will first reach one of the labeled SPs. A graph consisting of a pair 
G = (V,E) with vertices (nodes) v∈V and edges e∈E is first created based on the image I to be 
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segmented. The edge e spanning two vertices, vi and vj, is denoted by eij. The connectivity of 
two adjacent vertices on an edge is weighted by ωij, such as

	 ωij = exp(−β (Ii − Ij)
2)	 (1)

where Ii and Ij indicate the image intensity at voxel i, j, respectively. β represents the only free 
parameter. 

The desired random walker probabilities x on vertices v∈V can be obtained by solving the 
following combinatorial Dirichlet problem:

	 	 (2)

where xi and xj are the random walker probabilities on vertices vi, vj, respectively. L is the 
Laplacian matrix:

 			 
		  (3)
	

 is the degree of a vertex for all edges eij incident on vi. The Laplacian matrix is a 
sparse matrix. It is built according to four-connectivity and six-connectivity for 2D and 3D 
scenarios, respectively.

The vertices can be partitioned into two sets, VM (labeled vertices) and VU (unlabeled ver-
tices) such that VM ∪ VU = V and VM ∩ VU = ∅. In this way, Eq. (2) can be decomposed into

		  (4)
	

where xM and xU correspond to the probabilities of the labeled and unlabeled voxels, respectively. 
Differentiating D[xU] with respect to xU and finding the critical point yields

	 LUxU = −BT xM	 (5)

The probabilities xU for those unlabeled voxels can be easily calculated by solving the above 
sparse, positive definite linear Eq. (5). Denoting the probability assumed at node vi for each 
label s, by xs

i, the final segmentation is obtained by assigning each node vi the label correspond-
ing to maximum probability maxs(x

s
i ). Usually, at least two groups of labels (s ≥ 2) need to be 

supplied manually (i.e., SPs inside the region to be segmented (named foreground points) and 
SPs at the background (named background points)).

B. 	 Seed point autogeneration
In the 2D homogenous scenario, only a small number of SPs are needed to be labeled to yield 
a satisfactory segmentation. For the 3D segmentation task, it would be tedious and sometimes 
impractical to specify all the SPs on each slice of a 3D volume. Moreover, if the target to be seg-
mented is not homogeneous, but contains highly diversified materials instead, using only a small 
number of SPs usually fails to provide enough information of the target, and thus satisfactory 
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result cannot be obtained. In this study, we propose a SPs autogeneration scheme to obtain the 
ESPs for RW by estimating the probability of each voxel with respect to a certain label.

Specifically, let us assume that there are k(k ≥ 2) labels sk, and denote the labeled SPs and 
the corresponding intensities as Ssk, tsk

c  respectively, where c is the number of the labeled SPs 
Ssk. The intensity distribution probability p(i|sk) of voxel i in image I with respect to label is 
thus given by

	 	 (6)

where σ  is a tuning parameter that reflects the rigor level of the similarity criteria, and N sk is 
a normalizing constant for label sk:

	 	 (7)

where m = max max (Ii – Ij),∀i, j.
Once p(i|sk) is available, the probability p(sk|i) of voxel i to the chain of label sk can be 

simply calculated as 

	 	 (8)

with 1 representing the highest probability. In this way, we can obtain the probability maps Psk 
with respect to label sk for each voxel in image I. 

Region growing(16) is then performed on the probability maps Psk with the initially labeled 
SPs Ssk as the SPs and p(sk|i) > PT

sk as the growing condition to yield the ESPs Esk, where PT
sk  

is the threshold to filter those points with high similarity to the label sk. For simplicity, we set  
PT

sk = PT for ∀sk in this study. The final segmentation is then completed by performing the  
RW with Esk for each label sk. The above ESPs generation scheme is summarized in Fig. 1.

C. 	 Implementation
The proposed algorithm is implemented on a platform equipped with an NVIDIA Tesla C1060 
card with a total number of 240 1.3 GHz processors, and a 4 GB DDR3 memory shared by all 
processors. This platform enables parallel processing of the same operations on different CUDA 
threads simultaneously, which speeds up the entire algorithm. In order to efficiently parallel-
ize RW in the CUDA environment, the data parallel portions of the algorithm are identified 
and grouped into the following kernels: 1) an edge kernel to build a graph with vertices and 
edges; 2) a weighting kernel to compute ωij; 3) a normalization kernel to normalize ωij; and 
4) a Laplacian kernel to create the Laplacian sparse matrix. Moreover, we adopt the CUSP (a 
CUDA-based library for sparse linear algebra and graph computations)(17) to solve the sparse 

Fig. 1.  The flowchart of ESPs generation.
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linear Eq. (6). Sparse matrices are stored using the Coordinate (COO) format. The conjugate 
gradient (CG) method is used as the iterative solver with relative tolerance of 10-6 and maximum 
iteration 1000 as the stopping criteria.

D. 	 Evaluation data
The performance of SPARSE is evaluated using a synthetic phantom and four clinical 2D 
(cases 1-4) and twenty (cases 5-24) 3D CT/ MR images. The synthetic phantom (Fig. 2) 
contains a ground truth target which is made up of piecewise blocks with different intensity 
values representing inhomogeneous anatomical structures. The image resolution of the phan-
tom is 256×256, and Gaussian noise with variance of 20 is added to the phantom, yielding a 
signal-to-noise ratio of roughly 25 in it. For clinical cases, Cases 1-4 are 2D cases including: 
a fibula CT image of resolution 128×128 (case 1); a lung CT image of resolution 512×512 
(case 2); a corpus callosum T2 MR image of resolution 320×320 (case 3); and an abdomen CT 
image of resolution 512×512 (case 4). Cases 5-24 are 3D cases including: three high-dose-rate 
(HDR) brachytherapy CT images with tandem and cylinder (T&C) applicator of resolution 
256×256×85 (cases 5, 11), 256×256×60 (case 12); five HDR CT images with tandem and ovoid 
(T&O) applicator of resolution 256×256×55 (case 6), 256×256×75 (case 13), 256×256×60 
(case 14), 256×256×58 (case 15), and 256×256×82 (case 16); three T1c MR images of resolu-
tion 256×256×100 (cases 7, 17-18); three T2, T1c, and FLAIR MR image series of resolution 
160×216×176 (cases 8-10, 19-24). In this study, we classify all the evaluated cases into two 
categories, namely “homogeneous” and “inhomogeneous”, according to the variance of the 
intensity levels of the segmentation target. Specifically, given the ground truth segmentation, 
the intensity of the target is first normalized between [0,1], and the standard deviation (SD) 
is calculated. For those cases with target SD values smaller than a predefined threshold (0.1 
is used in this study), they can be regarded as “homogeneous”; otherwise, they are classified 
as “inhomogeneous”. The target SD value for the synthetic phantom is around 0.22, and the 
target SD values for other clinical cases are listed in Table 1. By using this metric, we classify 
cases 3, 7 and 17-18 as the homogeneous cases, while the others cases, including the synthetic 
phantom, as the inhomogeneous cases. 

Fig. 2.  The synthetic phantom segmentation results. (a) A synthetic phantom with an inhomogeneous ground truth target 
(green contour). The overlaid digits indicate the intensities in each piecewise block. (b) Initial foreground (green) and 
background (red) SPs; (c) segmentation by RW; (d) segmentation by GC; (e) segmentation by SPARSE. The segmenta-
tions in (c) ~ (e) are shown in red contour.

Table 1.  The target SD values of all clinical cases.

	Case #	 SD

	 1-12	 0.17(+)	 0.12(+)	 0.08(-)	 0.15(+)	 0.21(+)	 0.26(+)	 0.09(-)	 0.17(+)	 0.18(+)	 0.11(+)	 0.16(+)	 0.17(+)
	13-24	 0.21(+)	 0.19(+)	 0.21(+)	 0.19(+)	 0.09(-)	 0.09(-)	 0.10(+)	 0.12(+)	 0.10(+)	 0.11(+)	 0.11(+)	 0.10(+)

- = homogeneous; + = inhomogeneous
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E. 	 Quantifications of segmentation performance
To quantitatively evaluate the segmentation performance, we employ three similarity metrics: 
the Dice’s coefficient (DC),(18,19) the percent error (PE), and the Hausdorff distance (HD).(20)  
Given the ground truth segmentation region A and the calculated segmentation region B, and 
their corresponding boundary point sets A

→ = {a1,…, ap,}and B
→ = {b1,…, bq,}, the DC is defined 

as DC=2(A ∩ B)/(A + B), which ranges from 0 to 1, corresponding to the worst and the best seg-
mentation, respectively. The PE is defined as PE=(A ∪ B – A ∩ B)/A, with 0 representing the best
segmentation. The HD is defined as HD = max(h(A

→
, B

→
), h(B

→
, A

→
), where  

→ →

→ →
 

and  is the L2 norm on the points of  and B
→

. For all the evaluated cases (expect for cases 
7-10 and cases 17-24 where the ground truths are available), the targets are delineated manually 
by three experienced physicians, and the optimal combination of these three raters is estimated 
using the SPAPLE algorithm(21) and serves as the surrogate of the ground truth segmentation 
for each case. All the generated ground truth segmentations are then used for segmentation 
accuracy studies between the RW, GC, and SPARSE with the above quantitative metrics. 

 
III.	 RESULTS 

A. 	 Synthetic phantom results
Figure 2 illustrates the comparison results of the synthetic phantom using the RW, GC, and 
SPARSE algorithm. This simple phantom contains an inhomogeneous target made up of nine 
blocks with different intensities ranging from 25 to 255 (Fig. 2(a)), and the same SPs for RW, 
GC, and SPARSE are only seeded in five of them (Fig. 2(b)). We can see that the RW and GC 
algorithm both fail in segmenting the entire target blocks (Fig. 2(c) and (d)). The SPARSE, in 
contrast, yields a successful segmentation (Fig. 2(e)).

B. 	 Influence of initial seed points: quantity and location
Figure 3 demonstrates an example segmentation of the fibula using RW, GC, and SPARSE with 
different seed points (case 1). Figure 3(a) shows that RW, GC, and SPARSE can yield satisfac-
tory segmentation results with sufficient SPs (Fig. 3(a)-2,-3,-4). When one (Fig. 3(b)-1) or two 
SPs (Fig. 3(c)-1) inside the fibula are removed, keeping the others at their original positions, 
RW, GC, and SPARSE deteriorate, although SPARSE behaves much better than RW and GC. 
Figure 4 shows another comparison of segmenting a lung tumor with SPs of different locations 
and quantities (case 2). Figure 4(a) shows that RW, GC, and SPARSE can yield similar satisfac-
tory results when sufficient SPs are labeled (Fig. 4(a)-2,-3,-4). However, when reducing the 
number of the SPs as well as changing their locations (Figs. 4(b)-1, 4(c)-1), the segmentation 
deteriorates (Fig. 4(b)-2,-3), or even fails (Fig. 4(c)-2,-3) by RW and GC. In contrast, SPARSE 
produces more robust segmentation results (Figs. 4(a)-4 to (c)-4).

The synthetic phantom and three challenging cases (cases 1, 2, and 4) with inhomogeneous 
targets are used for further assessment of the impact of SPs’ quantity and location on segmen-
tation performance. To analyze the sensitivity of SPs’ quantity, certain amounts of initial SPs 
are first labeled on the images, and then gradually reduced by random down-sampling with 
interval of 5% of the original number. The corresponding segmentation results are tracked on 
each reduction step and quantitatively measured by three similarity metrics: DC, PE, and HD. 
Figure 5 shows the comparison results of the segmentation response to SPs reduction, with RW 
and SPARSE. For all the evaluated cases, SPs reduction of less than 80% are seen to produce 
only minor changes in the resulting segmentation using both RW and SPARSE, while sharp 
drops in segmentation quality occur when the reduction is larger than 80%. Perturbations of 
segmentation performance in SPARSE is slightly larger than RW; however, SPARSE always 
has superior segmentation results than RW for all three metrics. 



393    Chen et al.: SPARSE in MR and CT images	 393

Journal of Applied Clinical Medical Physics, Vol. 16, No. 2, 2015

To analyze the sensitivity of SPs’ location, arbitrary SPs placement is simulated by shift-
ing the labeled SPs with a random direction and amplitude. Specifically, given certain initial 
labeled SPs, the shift amplitude of each SPs is given by multiplying the minimum distance 
from its current location to the boundary points on the ground truth segmentation with a random 
number in the range (0,1). The shift direction is randomly assigned. Perturbing in this way, the 
initial SPs can only move within a reasonable distance without crossing over (e.g., moving the 
foreground points into the background). The segmentation results are tracked on each random 

Fig. 3.  Fibula segmentation with different SPs (case 1). Segmentation of the fibula with one background SP outside of the 
fibula (red point), and three/two/one foreground SPs (green points in (a)-1, (b)-1, and (c)-1, respectively) inside the fibula. 
The red curves in (a)-2, (b)-2, and (c)-2, in (a)-3, (b)-3, and (c)-3, and in (a)-4, (b)-4, and (c)-4 represent the segmentation 
results using RW, GC, and SPARSE, respectively. The green curves are the ground truth segmentation.

Fig. 4.  Lung tumor segmentation with different SPs (case 2). Segmentation of a lung tumor with sufficient ((a)-1), limited 
((b)-1) and insufficient ((c)-1) foreground (green) and background (red) SPs. The red curves in (a) to (c)-2, (a) to (c)-3, 
and (a) to (c)-4 represent the segmentation results using RW, GC, and SPARSE, respectively. The green curves are the 
ground truth segmentation. The yellow arrows indicate the undersegmentation ((a)-2,-3, (b)-3), oversegmentation ((b)-2), 
and failed segmentation ((c)-2,-3).
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SPs location and quantitatively measured by DC, PE, and HD. Figure 6 shows the comparison 
of segmentation performance relative to the SPs position changes between RW and SPARSE. 
In RW, a small variation of segmentation performance is observed in the synthetic phantom 
and in cases 1 and 2, but large perturbation is seen in case 4. In contrast, segmentation is stable 
for all the evaluated cases via SPARSE. Moreover, SPARSE behaves much better than RW in 
terms of segmentation accuracy.

Fig. 5.  Sensitivity analysis of SPs’ quantity using the synthetic phantom and cases 1, 2 and 4. DC (a), PE (b), and  
HD (c) are comparisons of the segmentation response to SPs reduction between RW and SPARSE, respectively. The 
x-axis indicates the percentage of SPs reduction (5% interval) with respect to the initial seeding. Note that the 100% value 
corresponds to the scenario when only one SP is left.

Fig. 6.  Sensitivity analysis of SPs’ location using the synthetic phantom and cases 1, 2 and 4. DC (a), PE (b), and HD 
(c) are comparisons of the segmentation response to random SPs location between RW and SPARSE, respectively. Given 
certain initial labeled SPs, the shift amplitude of each SPs is given by multiplying the minimum distance from its current 
location to the boundary points on the ground truth segmentation with a random number ranges in (0,1), which is the 
x-axis. The shift direction is randomly assigned.
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C. 	 Influence of parameter β 
Since the number of SPs is largely increased via SPs autogeneration, the influence of β is 
weakened in SPARSE. Figure 7 shows experiments of the segmentation response to different 
β. It is shown that the segmentation results vary greatly when different β is used in RW, and 
the optimal β is case-dependent, since no fixed perturbation pattern is observed in all the three 
cases. In contrast, the segmentations are stable relative to different β used in SPARSE for the 
synthetic phantom and all the three clinical cases, implying that the segmentation is essentially 
independent of the selection of β. Similar results are also obtained in other evaluated cases, 
though only three outputs are depicted in Fig. 7 for the clarity of comparison. Therefore, we 
empirically set β = 90 for SPARSE, and the optimal ones are used for RW for all the other 
comparison studies in this study.

Fig. 7.  Sensitivity analysis of β using the synthetic phantom and case 1, 2 and 4. DC (a), PE (b), and HD (c) are com-
parisons of the segmentation response to different β (with same SPs) between RW and SPARSE, respectively. β increases 
from 10 to 1500 with interval size of 100.
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D. 	 Influence of parameter PT   
Figure 8 presents the segmentation results response to different PT in the synthetic phantom 
and ten segmentation cases (cases 1-10). We have the following two observations. First, the 
performance of SPARSE is stable when small PT is used, and degenerates as PT increases to a 
certain degree in all evaluated cases. The turning points are around 0.8 and 0.95 for 2D and 3D, 
respectively. Theoretically, larger PT implies stricter growing condition; in other words, fewer 
points will be included into the ESPs chain. If no new points are grown into ESPs, the SPARSE 
will degenerate to RW. Secondly, when small PT is used (PT ≤ 0.5), the ESPs might be overgrown, 
or one point might be assigned to more than one label. Case 5 in Fig. 8 is such a typical case 
that failed segmentation is obtained when PT = 0.5 is used. Based on these observations from 
both the phantom and clinical cases, we hence heuristically assume that an appropriate range 
for PT is [0.6, 0.9] and we empirically set PT = 0.8 for all the evaluated cases in this study.

Fig. 8.  The DC (a), PE (b), and HD (c) by SPARSE with different PT for the synthetic phantom and cases 1-10. The solid 
(phantom and cases 1-4) and dashed (case 5-10) lines correspond to the 2D and 3D cases, respectively. 
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E. 	 More clinical cases
Figure 9 illustrates the comparison of results of segmenting relatively homogeneous targets. 
Figure 9(a) shows the segmentation comparisons of the corpus callosum in a T2 MR image 
(case 3). Since only limited SPs are labeled in this case, oversegmentation is observed in RW 
and GC (arrow in Fig. 9(a)-2,-3), while the SPARSE yields a much better segmentation result 
(Fig. 9(a)-4). Figure 9(b) shows a case of segmenting a glioma in a T1c MR image (case 7). 
We can see that oversegmentations are sparsely distributed in some voxels outside of the target 
region in RW (arrows in Fig. 9(b)-2), and slight oversegmentation is also observed in GC (arrows 
in Fig. 9(b)-3). Comparatively, the SPARSE can generate more accurate results (Fig. 9(b)-4).

Figure 10 illustrates the comparison results of segmenting inhomogeneous targets in CT 
images. Figure 10(a) is the segmentation of the vertebra (case 4). Undersegmentation is 
observed in RW and GC (arrow in Fig. 10(a)-2,-3), while SPARSE can yield satisfactory result 
(Fig. 10(a)-4). Figures 10(b) and (c) are the segmentations of two different types of applicator 
in CT images: T&C applicator and T&O applicator, respectively (cases 5, 6). The RW and GC 
produce severe undersegmentation (Figs. 10(b)-2 and (c)-2, (b)-3 and (c)-3), while the SPARSE 
can generate accurate result (Figs. 10(b)-4 and (c)-4).

Figure 11 shows another inhomogeneous case of segmenting a glioma in T2, T1c MR 
images (cases 8, 9) (Fig. 11(a) and (b)), and glioma and edema in FLAIR MR image (case 
10) (Fig. 11(c)), respectively. Undersegmentation are also observed in RW (Figs. 11(a)-2 and  
(c)-2) and GC (Figs. 11(a)-3 and (c)-3); in contrast, SPARSE can generate more accurate results 
(Figs. 11(a)-4 to (c)-4).

Fig. 9.  Segmentation of homogenous targets:  (a) the corpus callosum in a T2 MR image (case 3) and (b) the glioma in a 
T1c MR image (case 7). The ROIs, which are indicated by the yellow boxes, are shown in the zoomed-in views for clarity. 
(a)-1 SPs labeled inside (green) and outside (red) of the corpus callosum; (a)-2 segmentation by RW; (a)-3 segmentation 
by GC; (a)-4 segmentation by SPARSE. The red and green curves in (a)-2,-3,-4 represent the calculated and ground truth 
segmentations, respectively. The yellow arrow in (a)-2,-3 indicates the oversegmentation; (b) segmentation of a glioma 
in a T1c MR image (case 7): (b)-1 SPs labeled inside (green) and outside (red) of the brain glioma on only one transversal 
slice; (b)-2 segmentation by RW; (b)-3 segmentation by GC; (b)-4 segmentation by SPARSE. Upper and lower rows in 
(b) are the transversal and coronal slices, respectively. The red and green masks in (b)-2,-3,-4 represent the calculated and 
ground truth segmentation; the yellow arrows in (b)-2,-3 indicate the oversegmentation.
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Fig. 10.  Segmentation of inhomogeneous targets (CT). The ROIs, which are indicated by the yellow boxes, are shown in 
the zoomed-in views for clarity. (a) The vertebra in CT image (case 4): (a)-1 SPs labeled inside (green) and outside (red) 
of the vertebra; (a)-2 segmentation (red curves) by RW; (a)-3 segmentation (red curves) by GC; (a)-4 segmentation (red 
curves) by SPARSE. The green curves in (a)-2,-3,-4 represent the ground truth segmentation, and the yellow arrow in  
(a)-2,-3 indicates undersegmentation in RW; (b) and (c), the T&C applicator and the T&O applicator in CT image respec-
tively (case 5, 6): (b-c)-1 SPs labeled inside (green) and outside (red) of the applicator on only one transversal slice; (b-c)-2 
segmentation (red masks) by RW; (b-c)-3 segmentation (red masks) by GC. (b-c)-4 segmentation (red masks) by SPARSE. 
Rows in (b) and (c) are transversal and sagittal slices, respectively. The green masks in (b)-2,-3,-4 and (c)-2,-3,-4 represent 
the ground truth segmentation. The yellow arrows in (b-c)-2,-3 indicate the undersegmentation in RW and GC, respectively.
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Fig. 11.  Segmentation of inhomogeneous targets (MR): (a) the glioma in T2 MR image (case 8), (b) T1c MR image (case 9), 
and (c) the glioma and edema in FLAIR MR image (case 10). The ROIs, which are indicated by the yellow boxes, are 
shown in the zoomed-in views for clarity. First column: SPs labeled inside (green) and outside (red) of the targets on one 
transversal slice of T2 ((a)-1), T1c ((b)-1), and FLAIR ((c)-1) MR image. Second column: segmentation by RW. Third col-
umn: segmentation by GC. Fourth column: segmentation by SPARSE. In the second, third, and fourth columns, the red and 
green masks represent the calculated and the ground truth segmentations, respectively, and the images are rendered in 3D.
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F. 	 Quantitative evaluations
The quantitative comparison results for all the 3D cases (cases 5-24) are listed in Table 2. We 
can see that SPARSE is superior to RW and GC in terms of segmentation accuracy for all the 
evaluated cases in all the three metrics. For RW, the mean DC, PE, HD, and their correspond-
ing standard deviation are 0.47 ± 0.19, 0.69 ± 0.18, and 50.74 ± 31.17, respectively. For GC, 
the mean DC, PE, HD are 0.59 ± 0.17, 0.58 ± 0.17, and 15.62 ± 5.97, respectively, which are 
slightly better than RW. For SPARSE, in contrast, the DC increase to 0.89 ± 0.03, the PE and 
HD decrease to 0.23 ± 0.07, and 8.24 ± 3.95, respectively.  

G. 	 Computational efficiency
All the experiments in this study were conducted on a GPU platform with an NVIDIA Telsa 
C1060 card with a total number of 240 processors of 1.3 GHz. It is also equipped with three 
GB DDR3 memory, shared by all processors. The mean computation time is 0.44 ± 0.10 s for 
four 2D cases (cases 1-4) and 38.63 ± 9.41 s for twenty 3D cases (cases 5-24), respectively. 
Table 3 lists all computational time for all the 3D cases. It can be seen that the computational 
time depends on the complexity of the cases tested. 

 

Table 2.  Comparisons of DC, PE, and HD between RW, GC, and SPARSE of 3D cases.

	 3D Cases	 DC	 PE	 HD (voxels)
	 Case #	 Image Type	 RW	 GC	 SPARSE	 RW	 GC	 SPARSE	 RW	 GC	 SPARSE

	7, 17, 18	 T1c MR(-)	 0.61	 0.67	 0.89	 0.54	 0.48	 0.22	 42.78	 11.38	 6.31
			   (±0.31)	 (±0.18)	 (±0.05)	 (±0.35)	 (±0.23)	 (±0.11)	 (±46.37)	 (±6.80)	 (±2.87)
		  HDR CT 	 0.44	 0.49	 0.89	 0.72	 0.67	 0.21	 70.72	 10.10	 6.90 
	5, 11, 12	 with T&C	 (±0.13)	 (±0.15)	 (±0.05)	 (±0.11)	 (±0.12)	 (±0.01)	 (±50.26)	 (±3.91)	 (±2.09) 		  applicator(+)	
		  HDR CT	 0.37	 0.47	 0.90	 0.79	 0.68	 0.23	 63.45	 17.68	 4.85 
	 6, 13-16	 with T&O	 (±0.17)	 (±0.20)	 (±0.01)	 (±0.13)	 (±0.21)	 (±0.05)	 (±14.19)	 (±5.91)	 (±2.21) 		  applicator(+)		

	8, 19, 22	 T2 MR(+)	 0.40	 0.70	 0.92	 0.75	 0.53	 0.17	 40.83	 16.05	 8.70
			   (±0.13)	 (±0.10)	 (±0.04)	 (±0.10)	 (±0.11)	 (±0.07)	 (±30.14)	 (±2.85)	 (±2.06)

	9, 20, 23	 T1c MR(+)	 0.54	 0.57	 0.88	 0.63	 0.60	 0.26	 35.56	 16.70	 12.66

			   (±0.13)	 (±0.14)	 (±0.01)	 (±0.11)	 (±0.14)	 (±0.03)	 (±27.83)	 (±6.84)	 (±4.85)

	10, 21, 24	 FLAIR	 0.50	 0.50	 0.86	 0.65	 0.65	 0.28	 37.86	 20.42	 12.37 
		  MR(+)	 (±0.26)	 (±0.26)	 (±0.02)	 (±0.20)	 (±0.20)	 (±0.05)	 (±5.72)	 (±3.82)	 (±2.30)
	 Mean		  0.47	 0.59	 0.89	 0.69	 0.58	 0.23	 50.74	 15.62	 8.24
			   (±0.19)	 (±0.17)	 (±0.03)	 (±0.18)	 (±0.17)	 (±0.07)	 (±31.17)	 (±5.97)	 (±3.95)

- = homogeneous; + =  inhomogeneous

Table 3.  Computational times for all the 3D cases.

	 Image	 256×256	 256×256	 256×256	 256×256	 256×256	 256×256	 256×256	 160×216
	 Size	 ×55	 ×58	 ×60	 ×75	 ×82	 ×85	 ×100	 ×176
	(case #)	 (6)	 (15)	 (12,14)	 (13)	 (16)	 (5,11)	 (7,17,18)	 (8-10,19-24)

	Time (s) 	 22.33	 23.17	 24.55±0.02	 31.20	 32.85	 39.18±7.32	 40.46±0.17	 46.02±4.13



401    Chen et al.: SPARSE in MR and CT images	 401

Journal of Applied Clinical Medical Physics, Vol. 16, No. 2, 2015

IV.	 DISCUSSION & CONCLUSIONS

In this paper, we presented a RW-based segmentation algorithm, SPARSE, which incorporates 
a novel SPs autogeneration scheme for segmentation of inhomogeneous targets. Evaluations 
of segmentation tasks in the clinical images reveal that the SPARSE decreases the sensitivity 
to the initial seed points in terms of location and quantity, as well as the dependency of the free 
parameter β in edge weighting function. With GPU implementation, the robustness and accuracy 
of the proposed method has been demonstrated with various tested cases in the segmentation 
of inhomogeneous objects, especially for 3D cases. 

One merit of the proposed SPs autogeneration in SPARSE is that the influence of the ini-
tial SPs placement to the ultimate segmentation can be reduced. The sensitivities of both SPs 
quantity and location are evaluated by visual inspection, as well as quantitative analysis. It has 
been shown that variation of segmentation performance in SPARSE is negligible when the 
number of SPs is reduced or the locations of SPs are changed randomly, and SPARSE gener-
ally produces superior segmentation results than RW when SPs are perturbed. Another gain of 
the SPs expansion strategy is the reduced workload and labor in manual SPs selection, making 
the SPARSE algorithm a practical tool for segmentation tasks in clinics. Manual SPs labeling 
is tedious and usually time-consuming for most of the interactive segmentation algorithms. In 
SPARSE, however, the user only needs to specify several SPs on one or a few slices on a 3D 
volume instead of carefully seeding all through the slices to obtain a satisfactory segmentation. 
This will significantly facilitate the clinical workflow.

In practice, more SPs usually imply more target/background intensity information, which can 
theoretically maximize the performance of RW. SPARSE can facilitate collecting such intensity 
information to a feasible extent with only limited user interaction, and it is this fact that more 
robust segmentation can be expected given the “incremented” information by incrementing the 
SPs. Although less initial SPs dependence is achieved in SPARSE, to guarantee appropriate 
SPs autogeneration, the initial SPs still need to be labeled on locations that are representative 
of different intensity levels in the target/background instead of seeding arbitrarily. Furthermore, 
SPs autogeneration is in favor of the β selection. Choosing an appropriate β for RW is a non-
trivial task since β is essentially case dependent, and the segmentation performance can vary 
dramatically when different β is used. However, the SPARSE can weaken this dependence with 
incremental SPs, which has been demonstrated in this study. 

In Eqs. (6) and (7), we set the tuning parameter σ = 0.5×DI, where DI is the mean difference 
of the intensity between the labeled SPs inside and outside the target, to keep the choice of σ 
relevant to the intensity contrast of the target and the background. This approach is shown to 
be effective in distinguishing the low contrast targets.

In SPARSE, the threshold PT controlling the SPs growth is empirically chosen based on experi-
ments of ten segmentation tasks. Larger PT  usually implies stricter growing condition. However, 
one should note that PT is not the only factor contributing to the SPs growth. Connectivity of 
voxels in the probability map is another factor, which is purely relative to the textural charac-
teristics of the image. Therefore, potential overgrowth of SPs is theoretically possible even if 
small PT is used, in which case, manual intervention (e.g., deleting certain undesired incremented 
SPs) is then necessary. According to our observation, satisfactory segmentation performances 
can be obtained when PT ranges in [0.6, 0.9]. We have used a relatively rigorous PT = 0.8 to 
filter out those points with high similarity to the user-labeled SPs and include them into the 
SPs chain. For simplicity, we heuristically use the same PT  for each label s, though this value 
might not be optimal for all labels. More sophisticated methods (e.g., adaptive approaches) 
need to be investigated for a better selection of PT, and we would like to include this work into 
our future study.
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