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Abstract: Background: Recent evidence suggests that physical activity (PA) and sedentary behavior (SB) 
exert independent effects on health. Therefore, measurement methods that can accurately assess both 
constructs are needed. Objective: To compare the accuracy of accelerometers placed on the hip, 
thigh, and wrists, coupled with machine learning models, for measurement of PA intensity 
category (SB, light-intensity PA [LPA], and moderate- to vigorous-intensity PA [MVPA]) and breaks 
in SB. Methods: Forty young adults (21 female; age 22.0 ± 4.2 years) participated in a 90-minute 
semi-structured protocol, performing 13 activities (three sedentary, 10 non-sedentary) for 3–10 
minutes each. Participants chose activity order, duration, and intensity. Direct observation (DO) was used 
as a criterion measure of PA intensity category, and transitions from SB to a non-sedentary activity were 
breaks in SB. Participants wore four accelerometers (right hip, right thigh, and both wrists), and a 
machine learning model was created for each accelerometer to predict PA intensity category. 
Sensitivity and specificity for PA intensity category classification were calculated and compared 
across accelerometers using repeated measures analysis of variance, and the number of breaks in SB 
was compared using repeated measures analysis of variance. Results: Sensitivity and specificity 
values for the thigh-worn accelerometer were higher than for wrist- or hip-worn accelerometers, > 99% 
for all PA intensity categories. Sensitivity and specificity for the hip-worn accelerometer were 87–95% 
and 93–97%. The left wrist-worn accelerometer had sensitivities and specificities of > 97% for SB 
and LPA and 91–95% for MVPA, whereas the right wrist-worn accelerometer had sensitivities and 
specificities of 93–99% for SB and LPA but 67–84% for MVPA. The thigh-worn accelerometer had 
high accuracy for breaks in SB; all other accelerometers overestimated breaks in SB. Conclusion: Coupled 
with machine learning modeling, the thigh-worn accelerometer should be considered when 
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objectively assessing PA and SB. 

Keywords: machine learning; artificial neural network; pattern recognition; activity monitor; activity 
tracker; energy expenditure 

Abbreviations: 

SB: sedentary behavior 
LPA: light-intensity physical activity 
MVPA: moderate- to vigorous-intensity physical activity 
PA: physical activity 
DO: direct observation 
METs: metabolic equivalents 
ANN: artificial neural network 
 

1. Introduction  

Moderate- to vigorous-intensity physical activity (MVPA; energy expenditure ≥ 3.0 METs), has 
long been recognized for its beneficial effects on many acute and chronic health indices and is often 
called “health-enhancing physical activity” [1]. More recently, epidemiologic and laboratory-based 
studies have uncovered associations between high amounts of sedentary behavior (SB), defined as 
seated or lying activities requiring low levels of energy expenditure (i.e., ≤ 1.5 METs) [2], and 
diminished metabolic and cardiovascular health as well as an increased risk of obesity, some cancers, 
and all-cause mortality [3–5]. There is also some evidence that associations of SB and adverse health 
conditions may be independent of time spent in MVPA [6]. Additionally, the way SB is accrued may 
influence health, with longer periods of SB being worse than SB broken up periodically by short 
bouts of non-sedentary activities [6,7]. While many health-based interventions focus on increasing 
MVPA, there is also evidence that reducing SB by increasing light-intensity physical activity (LPA; 
energy expenditure 1.6–2.9 METs) is beneficial to health, even if MVPA is unchanged [8,9]. 
However, despite emerging findings of potential SB health risks, current research is insufficient to 
allow for creation of evidence-based recommendations for SB or how SB and MVPA interact to 
affect health; contributing to the lack of evidence-based recommendations is the difficulty in 
accurately measuring time spent in each physical activity (PA) intensity category (SB, LPA, MVPA). 

Accelerometry-based activity monitors (accelerometers) are currently used to measure PA 
intensity category. Traditionally, raw accelerometer data were converted to ‘activity counts,’ which 
correspond to frequency and magnitude of acceleration. Cut-point thresholds could then be developed 
to assess SB, LPA, or MVPA from accelerometer data. A range of cut-points are available to assess PA 
intensity category; perhaps the most commonly used cut-points for adult populations are < 100 
counts/minute for SB, 100–1,951 counts/min for LPA, and ≥ 1,952 counts/min for MVPA for the 
ActiGraph accelerometer [10–13]. However, these cut-points were developed in specific populations 
and during strict, laboratory-based protocols. Other studies validating the ActiGraph have found vastly 
different cut-points for SB (range 50–250 counts/min) and MVPA (191–2,691counts/min) in adults, 
depending on the population and type of validation setting [14–18]. Regardless of which cut-points are 
chosen to designate SB, LPA, and MVPA, the cut-point method has several limitations. First, the 
cut-point approach cannot differentiate standing from sitting/lying, but standing is considered LPA 
because it elicits different physiologic responses and has different long-term health consequences 
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than sitting/lying [19,20]. Furthermore, the MVPA threshold for accelerometer counts/min is 
considerably different for ambulatory activities compared to non-ambulatory activities, rendering any 
single cut-point inaccurate for assessing MVPA [21]. An accurate measurement tool for SB needs to 
differentiate between SB and standing or other LPA; the measurement tool must also be able to classify 
intensity of both ambulatory and non-ambulatory activities for MVPA. 

Due to limitations of the cut-point approach to measuring PA intensity categories, researchers 
have utilized machine learning models to improve accuracy of PA measurement. Studies show 
improved measurement of energy expenditure, accurate classification of activity type, and correct 
classification of PA intensity category from a hip-mounted accelerometer [22–24]. Despite the common 
use of hip-mounted accelerometers, there are advantages, such as improved comfort and compliance, 
of wearing accelerometers on other body locations. Research shows that machine learning modeling 
has dramatically improved measurement accuracy of accelerometers worn on various body locations, 
such as the wrist and thigh [23,25]. Additionally, accelerometers worn on the wrist and thigh have 
shown strong ability to detect specific activities and have yielded acceptably accurate assessments of 
energy expenditure and SB [23,26,27]. However, these accelerometer placements have not yet been 
tested for assessment of PA intensity category when coupled with machine learning models. Therefore, 
the purpose of our study was to develop, validate, and compare the accuracy of hip-, thigh-, and 
wrist-worn accelerometers, coupled with machine learning models, for measuring 1) total time spent in 
SB, LPA, and MVPA intensity categories, and 2) breaks in SB in a semi-structured setting. 

2. Materials and Method 

2.1. Study participants 

Study participants (n = 44, 50% female) were recruited from the surrounding area of East 
Lansing, MI. Eligible participants were able to perform MVPA safely, did not have orthopedic 
limitations, were 18–44 years old and could read and speak the English language. Written, 
voluntary informed consent was obtained from all participants, and this study was approved by the 
Michigan State University Institutional Review Board. 

2.2. Equipment 

Each participant wore four accelerometers in this study. Two ActiGraph GT3X+ 
accelerometers (ActiGraph LLC, Pensacola, FL) were worn, one on the midline of the right 
thigh (adhered with hypoallergenic tape), and one above the right hip at the anterior 
axillary line (secured on elastic hip belt). Participants also wore two GENEActiv 
accelerometers (Activinsights Ltd, Kimbolton, Cambridgeshire, UK), one on the dorsal side of each 
wrist using a manufacturer-supplied watch strap. A sampling frequency of 20 Hz was chosen for the 
GENEA accelerometers for comparison to another accelerometer tested (not used in this analysis). 
ActiGraph accelerometers have a minimum sampling frequency of 30 Hz; therefore, 40 Hz was chosen 
for sampling frequency, which was reintegrated to 20 Hz after downloading data. A portable metabolic 
analyzer (Oxycon Mobile; CareFusion, San Diego, CA) was worn by participants during the study, but 
these data were not utilized for the current analysis. 

2.3. Procedure 

Upon arrival at the Human Energy Research Laboratory, each participant’s weight and height were 
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then measured (to the nearest 0.1 kg and 0.1 cm, respectively) according to standardized methods [28]. 
Handedness was determined by asking participants which hand they prefer to use for the majority of 
everyday activities, and participant age was determined from self-reported date of birth. 

After being fitted with the four accelerometers, participants performed 13 activities of different 
types and intensities that encompassed types of activities that individuals may perform in a free-living 
environment (Table 1). Participants performed the activities for a total of 90 minutes. They performed 
each of the activities for between 3–10 minutes each, in the order and exact duration of their choosing. 
Ambulatory activities (walking and jogging) are common in accelerometer validation literature; we 
included these but added sedentary, exercise, and lifestyle activities to determine the potential for the 
four accelerometer placements to measure different PA intensity categories accurately in a 
semi-structured, simulated free-living setting. The 13 activities were described to each participant prior 
to the start of the protocol, and some of the less familiar activities (e.g., squats) were demonstrated to 
ensure understanding. Additionally, the research assistant performing direct observation (DO) updated 
participants periodically on which activities they still needed to complete. 

Table 1. Activities performed during the semi-structured protocol. 

Activity PA intensity category 
Lying down SB 
Reading SB 
Computer use SB 
Standing LPA 
Laundry LPA 
Sweeping LPA 
Biceps curls (1.3 kg resistance in each hand) LPA 
Walking slow (self-paced) LPA 
Walking fast (self-paced) MVPA 
Jogging (self-paced) MVPA 
Cycling (self-paced) MVPA 
Stair climbing and descending (self-paced) MVPA 
Squats (body weight as resistance) MVPA 

2.4. Creation of models to predict PA intensity category 

From the raw accelerometer data, percentiles (10th, 25th, 50th, 75th, and 90th) were extracted for 
each accelerometer axis for each 30-second window of data, and the extracted features were used as 
inputs for machine learning model development. No filtering of the raw accelerometer data was 
conducted prior to feature extraction. The 30-second window length was chosen partially to 
time-match with portable metabolic analyzer data; additionally, 30-second windows were chosen 
rather than 60-second windows due to non-steady-state nature of the protocol. Artificial neural 
networks (ANNs), a popularly tested modeling technique for predicting activity type and energy 
expenditure from accelerometer data, were developed for this study [24,29,30]. The ANNs were 
created to categorically classify all activity into one of three intensity categories: SB, LPA, or MVPA. 
The decision not to further differentiate MVPA into moderate- or vigorous-intensity PA was made to 
maximize accuracy of the ANN models, which have lower classification accuracy as more 
classification categories are added [31–33]; additionally, for researchers and practitioners interested 
in assessing health-enhancing PA rather than specific intensities, further differentiation of 
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higher-intensity activities may not always be necessary. A graphical depiction of the ANNs created in 
the current study is shown in Figure 1. The ANN function outputs a probability between 0–1 of each 
PA intensity category. Values closer to one represented a higher likelihood of that intensity category, 
and the intensity category with the value closest to one was chosen as the predicted output by the 
ANN. Breaks in SB from the accelerometers were determined as a 30-second window of LPA or 
MVPA which followed time classified as SB. The ANNs created in this study contained 1 hidden 
layer and 5 hidden units. Skip-layer connections were not allowed in the ANN. 

The ANNs were created and tested using a leave-one-out cross-validation. In this approach, 
data from all but one participant were used to estimate the weights for each input feature for 
predicting PA intensity category. Then, the ANN was tested on the data from the participant left 
out of the training phase by supplying the input features and comparing the predicted PA 
intensity category from the ANNs to the recorded PA intensity category from DO. The 
leave-one-out cross-validation is an iterative approach and was repeated with each participant’s 
data used as the testing data once. This process was conducted separately for each 
accelerometer, resulting in four distinct ANNs. The ANNs developed can be found at the 
following link: https://drive.google.com/open?id=0B-BgdTzyd2OxazA1UE1zcTFEY1k. 

 

Figure 1. ANN for predicting PA intensity category. 

*The number of input features was 15 (5 features*3 measurement axes). 
Abbreviations: 
10th % ile: 10th percentile of acceleration signal. 25th % ile: 25th percentile of acceleration signal. 
50th % ile: 50th percentile of acceleration signal. 75th % ile: 75th percentile of acceleration signal. 
90th % ile: 90th percentile of acceleration signal. 
S: summation functions of the input layer in the hidden units. 
U: activation function for the hidden layer. 
W1: the weight vectors for each of the inputs. 
W2: the weight vectors for each of the summations. 
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2.5. Direct observation 

DO served as the criterion measure for time spent in SB, LPA, MVPA, and the number of 
breaks in SB for the current study. Activities performed were recorded continuously and in real time 
on a handheld personal digital assistant using the BEST (Observerware, Hobe Sound, FL) 
observation software. Using this software, activities performed during the visit were coded as 1 of 
the 13 activity types listed in Table 1. Research assistants were trained to record an activity change as 
closely as possible to the moment it occurred. After collection, DO data were synchronized with the 
accelerometer data so that each 30-second window of accelerometer data was matched to the actual 
activity performed during that window. In most cases, only one activity occurred during a given 
30-second window. However, when transitioning between activities, two activities could occur in the 
same window. If this occurred, the window was automatically recoded as a transition. Additionally, 
the transition category was used to define all time between activities, such as resting or making an 
equipment adjustment between activities. Thus, transitions did not represent a specific activity type 
but instead involved walking, standing, etc. that occurred at the end of one activity and before the 
next started. All data coded as a transition were included when determining breaks in SB but 
removed from the DO and accelerometer datasets prior to creation and testing of the ANNs for the 
determination of time spent in each PA intensity category. From the DO data, activities were 
classified into one of three intensity categories (SB, LPA, or MVPA) based on MET values published 
in the Compendium of Physical Activities [34]. For DO, transitions from SB to a non-sedentary 
activity were summed to obtain total breaks in SB during the protocol. Five research assistants 
collected DO data during the study. Pilot testing demonstrated inter-researcher reliability of r > 0.92 
across all research assistants for assessment of total time in each activity type. 

2.6. Statistical analyses  

Sensitivity and specificity were calculated for SB, LPA, and MVPA for each accelerometer and 
each participant. Sensitivity was calculated by assessing the proportion of instances of a certain 
intensity category correctly classified as that category by the accelerometer (e.g., the proportion of 
instances where the participant was performing SB that the thigh-worn accelerometer correctly 
classified the activity as SB). Specificity was calculated as the proportion of instances where an intensity 
category was not performed and was correctly classified as not performing that intensity category (e.g., 
the proportion of time an individual was not performing SB [i.e., was performing LPA or MVPA] that 
the thigh-worn accelerometer correctly classified the activity as not SB). Repeated measures 
analysis of variance tests were used to compare sensitivity and specificity among accelerometers. 
Confusion matrices were created to assess misclassification of PA intensity category, and weighted 
Kappa statistics (with quadratic weights and equal weighting for relative distance) were calculated 
and compared among accelerometer placements. Additionally, repeated measures analysis of 
variance was conducted to compare total time spent in SB, LPA, and MVPA predicted from each 
accelerometer to time measured by DO. For breaks in SB, criterion-measured breaks were also 
obtained for each participant using DO. Differences among DO and the four accelerometers were 
evaluated with repeated measures analysis of variance. If significant differences were revealed in any 
of the repeated measures analysis of variance tests, post hoc dependent t-tests were conducted with a 
least significant difference correction. An alpha level of p < 0.05 was used to determine statistical 
significance. We desired 90% power to be able to detect significant differences for an effect size of 
0.5 among accelerometers for sensitivity and specificity and for predicted and measured time spent 
in each PA intensity category and breaks in SB. At an alpha level of p = 0.05, 36 subjects were 
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required. Therefore, our sample size of 44 provided sufficient power to address our research 
questions. 

3. Results 

Of the 44 participants who participated in study, accelerometer malfunction occurred during one 
participant’s visit, resulting in exclusion from the data analysis. Additionally, the portable metabolic 
analyzer (used to address an aim not part of the current study) malfunctioned in three participants, 
resulting in premature termination of the protocol and exclusion of their data from the analysis. 
Demographic characteristics of the 40 participants included in data analysis are displayed in Table 2. 
Approximately 25% of the sample was classified as overweight (≥ 25.0 kg/m2 body mass index), and 
90% of the sample reported being right-hand dominant. 

Table 2. Demographic characteristics of participants in study. 

 All (n = 40) Males (n = 19) Females (n = 21) 
Age (years) 22.0 (4.2) 23.7 (5.0) 20.5 (2.7) 
Weight (kg) 71.9 (16.3) 84.5 (13.1) 60.4 (8.8) 
Height (cm) 171.0 (10.3) 179.1 (7.7) 163.7 (5.9) 
BMI (kg/m2) 24.3 (3.5) 26.3 (3.4) 22.5 (2.6) 

Left-hand dominant n = 4 (10.0%) n = 4 (21.1%) n = 0 (0.0%) 
Data for age, weight, height, and body mass index (BMI) are displayed as mean (standard deviation).  
Data for hand dominance are displayed as total number (% of sample). 

Sensitivity and specificity for classification of each PA intensity category are displayed in Table 3. 
For SB, the thigh-worn accelerometer had significantly higher sensitivity and specificity than the rest 
of the accelerometers, and the left wrist-worn accelerometer showed higher sensitivity and 
specificity than the hip- and right wrist-worn accelerometers. For LPA, the thigh-worn accelerometer 
had significantly higher sensitivity and specificity than the hip- and right-wrist-worn accelerometers, 
and the left wrist-worn accelerometer had significantly higher sensitivity and specificity than the 
hip-worn accelerometer. For MVPA, the thigh-worn accelerometer had significantly higher 
sensitivity and specificity than all other accelerometers, and the left wrist-worn accelerometer had 
higher sensitivity and specificity than the hip- and right wrist-worn accelerometers; conversely, the 
right wrist-worn accelerometer had a lower sensitivity and specificity than all other accelerometers. 

Table 3. Sensitivity and specificity for predictions of SB, LPA and MVPA. 

Accelerometer SB LPA MVPA 
 Sensitivity 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Hip 88.3 (13.6)23 96.3 (4.2)23 94.9 (7.1)234 96.9 (3.9)234 86.5 (10.5)234 92.9 (5.4)234 

Thigh 99.5 (1.9)134 99.9 (0.4)134 99.6 (1.8)14 99.7 (1.3)14 99.2 (3.3)134 99.5 (1.8)134 
Left wrist 97.5 (4.8)124 99.2 (1.4)124 99.0 (2.7)1 99.3 (1.8)14 90.8 (10.3)124 95.4 (4.6)124 

Right wrist 93.1 (7.4)23 97.6 (2.6)23 97.8 (3.6)12 98.7 (1.8)12 65.7 (19.1)123 84.1 (6.5)123 
Data are displayed as mean (standard deviation). 
1Indicates significant difference from hip-worn accelerometer. 2Indicates significant difference from thigh-worn 
accelerometer. 3Indicates significant difference from left wrist-worn accelerometer. 4Indicates significant difference 
right wrist-worn accelerometer. 
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To further examine PA intensity category prediction, confusion matrices were created for PA 
intensity classification by each accelerometer, as shown in Figure 2. For the hip-worn accelerometer, 
most misclassifications were by a single intensity category, with only 6 instances (0.4%) of SB 
misclassified as MVPA and 44 instances (1.9%) of MVPA misclassified as SB. A similar scenario was 
present for the thigh-worn accelerometer (1 instance [< 0.1%] of SB misclassified as MVPA and 0 
instances of MVPA misclassified as SB) and the left wrist-worn accelerometer (26 instances [1.6%] of 
SB misclassified as MVPA and 8 instances [0.3%] of MVPA misclassified as SB). For the 
right wrist-worn accelerometer, there were more instances of misclassification of SB as 
MVPA (48 instances [3.0%]) and MVPA as SB (185 instances [7.9%]). Additionally, weighted 
Kappa (K) statistics are shown in Table 4. Significant differences in Kappa statistics were seen among all 
four accelerometers, with almost perfect PA intensity category classification from the thigh-worn 
accelerometer (K = 0.99), very good classification accuracy from the left wrist-worn (K = 0.95) and 
hip-worn (K = 0.90) accelerometers, and good classification accuracy of the right wrist-worn 
accelerometer (K = 0.78) [35]. 

 

Figure 2. Confusion matrices for prediction of SB, LPA, and MVPA. 
For a-d, rows are actual PA intensities and columns are predicted PA intensities. 

Grey boxes represent number of instances where the PA intensity category was correctly predicted. 

Table 4. Weighted Kappa statistics for PA intensity category  
classification by accelerometer placement. 

Accelerometer placement Weighted Kappa 
Hip 0.90 (0.89 – 0.91) 

Thigh 0.99 (0.99 – 1.00) 
Left wrist 0.95 (0.94 – 0.96) 

Right wrist 0.78 (0.76 – 0.80) 
Data are shown as weighted Kappa (95% confidence interval). 

Predictions of total time spent in SB, LPA, and MVPA among accelerometers and the criterion 
measure (DO) are shown in Figure 3. SB estimated by thigh-worn accelerometer was the same as 
DO-measured SB for 37 of the 40 study participants, resulting in a mean SB predicted for the entire 
sample that was not significantly different from DO-measured SB. Additionally, predicted time spent 
in LPA and MVPA by the thigh-worn accelerometer was not significantly different from DO. 
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Prediction of SB by the left wrist-worn accelerometer was not significantly different than DO, 
although it overestimated time spent in LPA (2.2 min [~ 7%], p < 0.01) and underestimated time 
spent in MVPA (1.9 min [7%], p < 0.01). Both the hip- and right wrist-worn accelerometers 
estimates were significantly different from DO for all intensity categories, with the hip-worn 
accelerometer underestimating SB (1.1 min [6%], p = 0.024) and MVPA (3.0 min [10%], p < 0.01) 
but overestimating LPA (4.1 min [15%], p < 0.01) and the right wrist-worn accelerometer 
overestimating SB (1.2 min [6%], p < 0.01) and LPA (7.4 min [25%], p < 0.01) but underestimating 
MVPA (8.6 min [30%], p < 0.01), compared to DO. 

 

Figure 3. Predicted vs. measured time in each PA intensity category. 
Error bars represent standard deviation. 

* Indicates significant differences from the criterion measure (direct observation). 

Breaks in SB as predicted by the accelerometers and measured by DO are shown in Figure 4. 
Breaks in SB predicted by the thigh-worn accelerometer were the same as DO-measured breaks in 
SB for each of the 40 participants in the study, resulting in the same mean and standard deviation of 
the data as DO (i.e., was not significantly different from DO). Conversely, breaks in SB were 
overestimated by the hip-worn accelerometer (mean difference 1.4 breaks [70%], p < 0.01), left 
wrist-worn accelerometer (mean difference 0.4 breaks [20%], p < 0.01), and right wrist-worn 
accelerometer (mean difference 2.7 breaks [135%], p < 0.01). 
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Figure 4. Predicted vs. measured breaks in SB. 
Error bars represent standard deviation. 

* Indicates significant differences from the criterion measure (direct observation). 

4. Discussion 

This study’s purpose was to test accelerometers worn on the hip, thigh, and wrists (coupled with 
ANN models) for prediction of time spent in PA intensity categories (SB, LPA, and MVPA) in 
30-second windows as well as breaks in SB. While previous research has shown strong utility of 
ANNs and other machine learning models for assessment of energy expenditure and/or recognizing 
specific activity types, to our knowledge our study is the first to use machine learning models for 
several accelerometers specifically to assess time spent in PA intensity categories. The assessment of 
energy expenditure in terms of Calories or METs has proven difficult, with most current research in 
this area showing prediction errors (i.e., root mean square error) of > 1.0 MET, which represents a 
large error when the average daily MET level for adults is < 1.5 METs [23,36,37]. While the 
assessment of PA into three distinct intensity categories (SB, LPA, and MVPA) is more crude than 
predicting Calories or METs, assessment of time into PA intensity categories is simpler to model and 
still allows for valuable information regarding individuals’ PA levels, adherence to PA guidelines, 
and associated health implications. 

Our study found high accuracy of the thigh-worn accelerometer for predicting time spent in 
each PA intensity category, as seen by sensitivities and specificities > 99% for correctly classifying 
each PA intensity category and no differences from the DO in predictions of total time spent in any 
category; additionally, the thigh-worn accelerometer correctly predicted the number of breaks in SB 
for all 40 participants in the study, providing evidence that the thigh-worn accelerometer has high 
utility for detecting temporal changes in PA and SB. Previous research also shows high accuracy of 
thigh-worn accelerometers for assessing time spent in SB and breaks in SB [14,15,27], and our study 
extends these findings by showing that thigh-worn accelerometers are also capable of accurately 
assessing time spent in LPA and MVPA, thereby demonstrating the thigh-worn accelerometer’s utility 
to assess time spent in SB and health-enhancing PA (i.e., MVPA). The superior accuracy of the 
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thigh-worn accelerometer supports previous research showing high accuracy of a thigh-worn 
accelerometer for measurement of energy expenditure and activity type classification [23,29,31]. Due 
to their consistently high accuracy for measuring several different PA constructs and sleep [38], 
continuous wear (primarily using adhesive tape) for high compliance, and the miniaturization of 
accelerometer devices, thigh-worn accelerometers have strong potential for assessment of a number 
of health-related constructs. 

Our study also indicated high PA intensity category classification accuracy and prediction of SB 
for the left wrist-worn accelerometer, achieving sensitivities above 90% and specificities above 95% 
for all PA intensity categories and no difference from DO for total SB. The left wrist-worn 
accelerometer did especially well at lower intensity categories, achieving sensitivities and 
specificities above 97% for SB and LPA. The right wrist-worn accelerometer also had high 
sensitivities and specificities for SB and LPA (> 93%), but both sensitivity and specificity were 
significantly lower for MVPA, which was commonly misclassified as LPA. Additionally, the right 
wrist-worn accelerometer underestimated MVPA but overestimated time spent in SB and LPA and 
had a more pronounced overestimation of breaks in SB than the left wrist-worn accelerometer. Our 
findings are supported by those of Esliger et al., who performed the initial validation of the GENEA 
accelerometer in 2011 and also found higher classification accuracy of PA intensity category using 
cut-points for a left-wrist accelerometer compared to a right-wrist accelerometer [39]. Given that 90% 
of our sample reported the left hand being their non-dominant hand, our findings provide evidence 
that an accelerometer worn on the non-dominant wrist may have better utility for assessing PA 
intensity category and SB than a dominant wrist-worn accelerometer. One reason for lower accuracy 
when an accelerometer is worn on the right wrist may be lack of familiarity, since most wristwatches 
are designed to be worn on the left hand, which could influence movement patterns when performing 
an activity. Another reason may be the greater variability of movement of the dominant hand during 
everyday activities. Regardless, these studies provide evidence that studies assessing PA intensity 
may prefer to use the non-dominant wrist for accelerometer wear. Pavey et al. and Rowlands et al. 
provide further rationale for using an accelerometer worn on the non-dominant wrist for assessing 
time spent in SB [26,40,41]. These findings also support the choice for wearing accelerometers on 
the non-dominant wrist in the 2011–2014 NHANES data collection cycle [42]. 

The hip-worn accelerometer, while providing high specificity across all PA intensity categories, 
had lower sensitivity for correctly classifying PA intensity category and frequently misclassified SB 
and MVPA as LPA, resulting in underestimations of time spent in SB and MVPA but an 
overestimation of time spent in LPA and in breaks in SB. Previous studies by Lyden et al. and 
Kozey-Keadle et al. demonstrate difficulties in assessing time spent in SB and breaks in SB with 
hip-worn accelerometers using traditional cut-point methods, and our study adds to these findings by 
illustrating misclassification of SB as a non-sedentary activity (and vice versa) with machine 
learning models [14,15]. Given the similar hip angle and minimal movement present in most types of 
SB and for non-sedentary activities such as standing, hip-worn monitors appear limited in their 
capacity for assessing SB. It should be noted that sensitivities and specificities were above 86% and 
predicted time in each intensity category was within 15% of criterion measure with the hip-worn 
accelerometer, indicating reasonable accuracy for the hip-worn accelerometer. However, with the 
high performance of the thigh- and left wrist-worn accelerometers for assessing SB as well as 
higher-intensity PA, these alternative accelerometer locations, when coupled with machine learning 
modeling, may be preferable to hip-worn accelerometers for assessment of PA intensity. 

There are a number of factors to consider when employing the developed ANNs from our study. 
First, these ANNs were developed in a semi-structured setting and require cross-validation in a 
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free-living environment. Additionally, most studies use hip-worn accelerometers and cut-points for 
data analysis, and use of alternate placements and machine learning may affect comparability of PA 
estimates across studies. Additionally we chose to use 30-second windows due to the 
non-steady-state nature of the protocol. A 30-second window is shorter than the 60-second window 
typically used for applying cut-points to accelerometer data in studies assessing PA in adults, and 
studies evaluating window (or epoch) length show that use of different epoch lengths affects 
estimations of time spent in different PA intensities [43,44]. Therefore, the use of alternate 
accelerometer placements vs. hip-worn accelerometers, machine learning vs. cut-points, and 
30-second vs. 60-second windows should be considered when comparing estimates of PA from the 
developed ANNs to estimates derived from cut-point approaches with hip-worn accelerometers. 

This study had several strengths. First, the semi-structured setting allowed for 
considerable freedom in the manner in which participants performed their activities, thereby 
improving the generalizability of the ANN models created. The most common accelerometer 
placement sites (hip, thigh, and wrist) were included in this study, allowing for direct comparison of 
their utility for assessment of PA intensity category. Moreover, comparison of left and right wrists 
provided insight into which wrist may be preferable for accelerometer wear. Finally, classification 
into PA intensity categories, as was performed in this study, allows for reasonably accurate 
assessment of PA patterns while avoiding the difficulties associated with predicting energy 
expenditure or activity type using accelerometers.  

This study also had several limitations worth considering. The study sample consisted mainly of 
younger adults, and the ANN models developed in this study need further validation before use in an 
older or more diverse population. Additionally, while we consider the semi-structured setting a study 
strength, the study included a limited set of activities, and the ANN models developed in this study 
may not correctly classify intensity of other activities, such as sports, which were not evaluated in 
this study. 

DO was used as a criterion measure of PA intensity category, which does not directly measure the 
energy cost of an activity but, rather, classifies it based on the Compendium of Physical Activities [34]. 
Our choice for using DO instead of directly-measured energy expenditure (e.g., via a metabolic analyzer) 
to characterize PA intensity category was predicated on the non-steady-state nature of the 
study protocol. Periods of SB following higher-intensity PA may have a falsely elevated 
energy cost (and vice versa for higher-intensity PA following SB) as the body’s metabolic 
processes lag behind the current energy cost of the activity, and this would be problematic for 
assessing PA intensity category using a metabolic analyzer. To illustrate this point, a previous 
study by our research group using the same participants and activity protocol found that 29.5% of 
the time participants spent lying, reading, and using the computer (sedentary activities) 
elicited an energy expenditure > 1.5 METs and 3.3% of the time elicited an energy 
expenditure ≥ 3.0 METs (measured with a metabolic analyzer), which would incorrectly 
characterize the activity intensity as LPA and moderate-intensity PA, respectively. Similarly, 2.6% 
and 3.2% of the time participants spent jogging and using the stairs (MVPA) elicited an energy 
expenditure < 3.0 METs, which would incorrectly characterize the activity intensity as LPA [23]. 
Therefore, we feel that the use of DO was preferable over measured energy expenditure for 
characterizing PA intensity in the current study. 

Another study limitation is that our ANN models were not designed to differentiate between 
moderate-intensity PA (3.0–5.9 METs) and vigorous-intensity PA (≥ 6.0 METs), instead grouping 
these into a single MVPA category. While our main goal was to develop models capable of 
differentiating SB, LPA, and health-enhancing PA (MVPA), further differentiation into moderate and 
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vigorous intensity categories would allow for more specific assessment of meeting PA 
recommendations. Finally, two different brands of accelerometers were used in the current analysis, 
making it possible that differences seen between the wrists (GENEA accelerometers) and hip and 
thigh (ActiGraph accelerometers) were due to accelerometer brand. A study by John et al. found that 
time domain features (similar to those used in the current study) were not interchangeable between 
monitor brands, providing evidence that ANNs from the wrist-worn GENEA accelerometer would have 
lower accuracy if used with wrist-worn ActiGraph accelerometers. However, John et al. also found 
similar PA measurement accuracy when using ANNs developed specifically for each two accelerometer 
brand [45]. Therefore, it is unlikely that accelerometer brand affected measurement accuracy. 

5. Conclusion 

An accelerometer worn on the right thigh, coupled with an ANN model, achieved high accuracy 
for classification of three distinct PA intensity categories (SB, LPA, and MVPA) as well as breaks in 
SB in a semi-structured setting. An accelerometer worn on the left wrist also had high accuracy for 
assessment of SB but had some misclassification of LPA and MVPA, whereas accelerometers worn 
on the right wrist and hip had the lowest accuracy for assessment of all PA intensity categories and 
for measuring breaks in SB. These findings support the use of a thigh-worn accelerometer for 
assessment of time spent in different PA intensity categories. Alternately, for researchers using 
wrist-worn accelerometers to assess PA, wear on the non-dominant wrist is likely to allow for higher 
measurement accuracy than wear on the dominant wrist. Further research should cross-validate these 
ANN models in a free-living setting to confirm findings from this study. 
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