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Abstract

Multimodal image registration facilitates the combination of complementary information from 

images acquired with different modalities. Most existing methods require computation of the joint 

histogram of the images, while some perform joint segmentation and registration in alternate 

iterations. In this work, we introduce a new non-information-theoretical method for pairwise 

multimodal image registration, in which the error of segmentation — using both images — is 

considered as the registration cost function. We empirically evaluate our method via rigid 

registration of multi-contrast brain magnetic resonance images, and demonstrate an often higher 

registration accuracy in the results produced by the proposed technique, compared to those by 

several existing methods.

Index Terms

Multimodal image registration; segmentation-based image registration

I. Introduction

Employing multiple imaging modalities often provides valuable complementary information 

for clinical and investigational purposes. Computing a spatial correspondence between 

multimodal images, a.k.a. multimodal image registration, is the key step in combining the 

information from such images. Since different modalities create images that do not share the 

same tissue contrast, the alignment of these images can hardly be assessed by a local 

comparison of their intensities. In pairwise multimodal image registration, the joint 
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histogram of the two images has been widely used to derive global matching measures, such 

as mutual information [1, 2], normalized mutual information [3], entropy correlation 

coefficient [2], and tissue segmentation probability [4, 5]. Histogram computation typically 

requires an optimized choice of the bin (or kernel) width [6]. Joint segmentation and 

registration of multimodal images has also been suggested to improve both the segmentation 

and registration [4, 5, 7, 8], where iterative updates to segmentation and registration are 

typically performed in alternating steps.

In this work, we introduce a new objective function for pairwise multimodal image 

registration based on simultaneous segmentation. Our underlying assumption is that any 

improvement in the alignment of two images leads to an improvement in image 

segmentation from them, hence a lower segmentation error. We propose an efficient 

algorithm that uses the intensity values of the images to divide the voxels into two classes, 

while regarding the segmentation error as the registration cost function. We perform the 

iterative registration and segmentation simultaneously, as opposed to existing methods for 

joint segmentation and registration [5, 7, 8] that alternate between the segmentation and 

registration steps. Furthermore, we do not use the joint histogram or entropy of images or 

tissue classes (contrary to [4, 5]). In a comparison with several existing objective functions, 

we show that our proposed objective function often outperforms competing metrics in 

registering brain magnetic resonance images with different contrasts. We stress that our goal 

is improved registration, and thus the oversimplifying assumption of only two classes is 

irrelevant if the registration produced by this procedure outperforms competing methods.

In Section II, we describe the proposed segmentation score computation for a single image 

(Section II.A) and a pair of images (Section II.B), and how to drive the registration with the 

score (Section II.C). We evaluate our approach experimentally in Section III, and conclude 

the paper in Section IV.

II. Methods

A. Segmentation Score for a Single Image

Let I⃑ ∈ ℝN be an image consisting of N voxels, where Ik represents the intensity value of the 

kth voxel,. k = 1, …, N. For mathematical simplicity and without loss of generality, we 

assume I⃑ to be zero-sum, i.e. . We denote a binary segmentation of I⃑ by S⃑ ∈ 
{0,1}N where Sk determines whether voxel k belongs to class 0 or class 1. Inspired by 

Otsu’s method for binary clustering [9], we define the following sum of squared error for the 

segmentation S⃑, as the deviation of the voxel intensities in a class from the mean intensity of 

the class:

(1)
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where μ0 ≔ Σ{k|Sk = 0}Ik/(N − nS) and μ1 ≔ Σ{k|Sk = 1}Ik/nS are the mean intensity values of 

each class, with  being the number of voxels in class 1. Substituting for μ0 and 

μ1 in Eq. (1) and further simplification leads to:

(2)

Recall that I⃑ is zero-sum, meaning that Σ{k|Sk = 0}Ik + Σ{k|Sk = 1}Ik = 0, thus (Σ{k|Sk = 0}Ik)2 = 

(Σ{k|Sk = 1}Ik)2, which reduces ε to:

(3)

An optimal segmentation S⃑ would minimize ε, or equivalently maximize the following, 

resulting in the segmentation score ψI⃑:

(4)

As we will see, for our image registration goal, we will only need the segmentation score, 

ψI⃑, but not the optimal segmentation itself. To solve the above maximization problem, we 

first fix the class size and maximize (Σ{k|Sk = 1}Ik)2 for a constant nS. To that end, we need to 

find nS voxels with maximal magnitude of sum of intensity values. This is achieved by 

sorting the voxels based on their intensity values (that can be negative or positive due to the 

zero sum), and choosing either the nS largest voxels or the nS smallest voxels, whichever 

results in a larger magnitude of sum. We will see shortly that always choosing the former 

(the largest voxels) works fine for our purpose. Consequently, we sort the intensity values of 

I⃑ to obtain the (vectorized) image , where Ĩk ≥ Ĩk+1, and rewrite Eq. (4) as a simple 

maximization over the scalar nS:

(5)

The maximization in Eq. (5) is possible via an exhaustive search for all values of nS = 1,…, 

N − 1, while computing  recursively. Given that sorting and the subsequent search 

are done in (N log N) and (N), respectively, the complexity of the computation of ψI⃑ is 

(N log N).
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Note that we consider only the top nS values (Ĩ1, …, ĨnS) for a particular nS in the search. 

However, the bottom nS values (ĨN−nS+1, … ĨN) are also implicitly searched, because, thanks 

to the image’s zero sum, they are the top values for :

(6)

B. Segmentation Score for a Pair of Multimodal Images

Next, we attempt to segment two images I⃑, J⃑ ∈ ℝN with a single segmentation S⃑ ∈ {0, 1}N. 

Without loss of generality, we assume that the images (in addition to being zero-sum) are 

normalized, ||I⃑||2 = ||J⃑||2 = 1. This not only will simplify the calculations, but will ensure that 

different scaling in the intensity values of the two images will not bias the segmentation 

towards one of the images. Following Section II.A, we arrive at a segmentation score similar 

to Eq. (4),

(7)

and proceed by initially fixing nS. This time, however, we cannot find the exact optimal 

segmentation simply by sorting, because a sorted voxel order for one of the images is not 

necessarily a sorted order for the other image. Therefore, to compute an approximate sorted 

order, we reduce this problem from two-image segmentation to single-image segmentation 

by synthesizing an image, K⃑ ∈ ℝN, the segmentation of which helps us to best approximate 

Eq. (7). Expanding Eq. (7) yields:

(8)

To best approximate the above equation, K⃑ needs to satisfy K⃑K⃑T ≅ I⃑I⃑T + J⃑J⃑T; so we find such 

K⃑ by minimizing . Using trace properties such as 

 and tr(AB) = tr(BA), this leads to the following minimization:
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(9)

where “·” is the dot product. By equating the derivative of the above expression with respect 

to K⃑ to zero, the optimal K⃑ is seen to lie on the plane defined by I⃑ and J⃑, i.e. K⃑* = αI⃑ + βJ⃑, 
with α, β ∈ ℝ. By further equating the derivatives with respect to α and β to zero, the 

minimizer in Eq. (9) is calculated as:

(10)

Therefore, we sort the values of K⃑* (that is also zero-sum) and apply the computed sorting 

order to (vectorized) I⃑ and J⃑ to obtain  and . We then estimate the segmentation score of 

the two images, ψI⃑,J⃑, similarly to Section II.A, as:

(11)

As in Section II.A, we preform the maximization by an exhaustive search while computing 

the sums recursively, resulting in the same complexity of (N log N).

Note that the proposed segmentation score is distinct from the correlation ratio [10] (and 

other similar measures). ψI⃑,J⃑ is symmetric with respect to the two images, and its 

computation is based on simultaneous segmentation of the two images and includes finding 

a class size that optimizes the segmentation. In contrast, the correlation ratio is asymmetric, 

and its computation does not make use of segmentation and requires dividing the image 

intensities into pre-defined bins.

C. Registration Based on the Segmentation Score

Let I⃑, J⃑ ∈ ℝN be the two multimodal input images to be registered. We seek the 

transformation T that, when applied to J⃑, makes I⃑ and TJ⃑ aligned with each other. For that, 

we choose the segmentation score ψI⃑,TJ⃑ (defined in Section II.B) as an objective function, 

which we will maximize with respect to T:

(12)

We implemented our new objective function in Matlab and incorporated it in the spm_coreg 

function of the SPM12 software package [11], which performs rigid registration of three-

dimensional images.1 This function already includes several information theoretical 
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objective functions for multimodal image registration, which it optimizes using Powell’s 

method [12]. Note that the proposed registration objective function inherently includes the 

simultaneously computed segmentation error, as opposed to most existing joint segmentation 

and registration methods [5, 7, 8] that perform segmentation and registration in alternate 

steps.

To avoid resampling artifacts, we first generate a set of spatially uniform quasi-random 

Halton points [13], and sample the fixed image I⃑ on them using trilinear interpolation. We 

then zero-sum and normalize the vector of sampled intensity values of I⃑, by subtracting its 

mean from it and dividing it by its L2 norm. Subsequently, at each iteration, we transform 

the sample points using the current value of the transformation T, sample the moving image 

J ⃑ on them, and zero-sum and normalize the sampled values of TJ⃑. We then use the sampled 

values of I⃑ and TJ⃑ to compute the score ψI⃑,TJ⃑.

III. Experimental Results

We compared the proposed segmentation-based (SB) objective function with mutual 

information (MI) [1, 2], normalized mutual information (NMI) [3], entropy correlation 

coefficient (ECC) [2], and the normalized cross correlation (NCC) [14], all already 

implemented in the spm_coreg function of SPM12 [11]. We chose the default parameters of 

spm_coreg, such as the optimization sample steps of 4 and 2. We used the same number of 

quasi-random sampling points for our method as for the rest of the methods in each of the 

two levels of (quarter and half) resolution.

A. Retrieval of Synthetic Transformations

In our first set of experiments, we used the BrainWeb simulated brain database [15, 16]. We 

generated a pair of T1-and T2-weighted (pre-aligned) images of a normal brain with 1-mm3 

isotropic voxels and image size of 217×181×181. We first shifted one image along its first 

dimension with Δx ∈ [−100,100] voxels and assessed the evolution of the 5 objective 

functions (Fig. 1). The proposed SB objective function was significantly less convex than the 

entropy-based ones (MI, NMI, and ECC, which behaved similarly to each other), therefore 

providing a stronger gradient when the initial point is far from the maximum. The NCC 

objective function is the only one that was not maximized at Δx = 0, probably due to its 

(here invalid) assumption of a linear relationship between the intensities of the 

corresponding voxels in the two images.

Next, we synthesized 10,000 rigid transformations, each with six parameters drawn 

randomly from zero-mean Gaussian distributions with the standard deviation of 20 voxels 

for each of the three translation parameters and 20° for each of the three rotation parameters. 

With each synthetic transformation, Tsyntn, we transformed the second image2 and then 

registered the pair of images using the 5 methods. To evaluate the results of each experiment, 

we computed the registration error, e ≔ ∫Ω||T−1Tsynthx⃑ − x⃑||2dx⃑/|Ω|, where T is the obtained 

1Our code is publicly available at: www.nitrc.org/projects/sb-reg
2To avoid cropping any part of the brain, we applied the transformation only to the header of the NIFTI file, while keeping the image 
data intact.
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transformation matrix, and Ω is the image domain with |Ω| being its size. The cumulative 

distribution function of e is plotted for each method in Fig. 2 (left), along with a zoomed 

version (right). Table I shows, for each method, the percentage of the experiments that 

resulted in an error smaller than a threshold. The proposed SB method converged to 

subvoxel-accuracy solutions (e < 1) more often than the competing methods did. However, 

in the experiments where the entropy-based methods (MI, NMI, and ECC, again performing 

similarly to each other) produced subvoxel-accuracy results, their error was lower (e < 0.1) 

than that of the SB method. This may suggest that, for better capture range, one could use 

the results of SB registration as initial value for entropy-based registration. The NCC 

method never achieved subvoxel accuracy.

B. Cross-Subject Registration of Labeled Images

We performed a second set of experiments on a human brain MRI dataset of 8 subjects [17], 

including (for each subject) a T1-weighted image, a proton-density image, and a manual-

label volume for 37 neuroanatomical structures (each subject’s three images were pre-

aligned). All images had been preprocessed in FreeSurfer [18] and resampled to the size 

256×256×256 with 1-mm3 isotropic voxels. For all of the 8×7=56 ordered pairs, we 

registered the T1-weighted image of the first subject to the proton-density image of the 

second subject using the 5 methods.3 To score the results of each experiment, we computed 

the portion of the voxels with matching labels between the two images after registration. The 

cross-experiment mean and standard error of the mean (SEM) of the label-matching scores 

are shown in Table II. In addition, the percentage of the experiments where our SB method 

outperformed each other method is shown in Table II, along with the corresponding p-values 

obtained by two-tailed paired Student’s t- and sign rank tests. As can be seen, the proposed 

SB method resulted in a significantly higher label-matching score than the rest of the 

methods did (p < 10−6).

C. Retrospective Image Registration Evaluation (RIRE)

Lastly, we used the publicly available RIRE dataset [21, 22] to evaluate the methods through 

CT-MR and PET-MR registration, where many-to-one intensity mappings are present. For 

each of the 18 subjects and each of the 5 methods, we ran at most 12 experiments, 

registering a CT image and a PET image to 6 MR images (T1, T2, PD, and their rectified 

versions), resulting in a mean error based on manual markers. Table III shows the cross-

subject average of the mean errors for each method. The proposed SB method performed 

better than NCC and MI, but worse than ECC and NMI. The inferior performance of SB in 

the latter case may be because the images here (as opposed to those used in the previous 

experiments) have different fields of view. The SB approach, however, is not inherently 

invariant to the overlap of the fields of view.

3Note that for inter-subject registration, a non-rigid (affine or deformable) transformation model is more suitable than the rigid one 
used here. Nonetheless, care should be taken to prevent the optimization algorithm from exploiting the symmetry-breaking influence 
of the volume change on the objective function [19], which may happen even if a mid-space is used to avoid asymmetry [20]. Devising 
a multi-modal registration method that allows for volume change while avoiding this issue is part of our future work.
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IV. Conclusion

We have introduced a new cost function for multimodal image registration, which is 

essentially the error obtained by simultaneously segmenting the two images. We have 

demonstrated that, compared to several existing methods, the proposed method more often 

converges to the correct (subvoxel-accuracy) solutions, and also often results in better 

manual-label matching. Future directions include extending our registration method to be: 

overlap-invariant, group-wise, deformable, and using more segmentation classes.
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Fig. 1. 
Evolution of different objective functions with respect to translation. The values of each 

objective function have been normalized to be in [0,1].
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Fig. 2. 
Left: Cumulative distribution function of the registration error, e, for different methods. 

Right: A zoomed version, with e ∈ [0,10].
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