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Abstract

Objectives

The clinical management of meningioma is guided by tumor grade and biological behavior.

Currently, the assessment of tumor grade follows surgical resection and histopathologic

review. Reliable techniques for pre-operative determination of tumor grade may enhance

clinical decision-making.

Methods

A total of 175 meningioma patients (103 low-grade and 72 high-grade) with pre-operative

contrast-enhanced T1-MRI were included. Fifteen radiomic (quantitative) and 10 semantic

(qualitative) features were applied to quantify the imaging phenotype. Area under the curve

(AUC) and odd ratios (OR) were computed with multiple-hypothesis correction. Random-

forest classifiers were developed and validated on an independent dataset (n = 44).

Results

Twelve radiographic features (eight radiomic and four semantic) were significantly associ-

ated with meningioma grade. High-grade tumors exhibited necrosis/hemorrhage (ORsem =

6.6, AUCrad = 0.62–0.68), intratumoral heterogeneity (ORsem = 7.9, AUCrad = 0.65), non-

spherical shape (AUCrad = 0.61), and larger volumes (AUCrad = 0.69) compared to low-

grade tumors. Radiomic and sematic classifiers could significantly predict meningioma

grade (AUCsem = 0.76 and AUCrad = 0.78). Furthermore, combining them increased the
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classification power (AUCradio = 0.86). Clinical variables alone did not effectively predict

tumor grade (AUCclin = 0.65) or show complementary value with imaging data (AUCcomb =

0.84).

Conclusions

We found a strong association between imaging features of meningioma and histopatho-

logic grade, with ready application to clinical management. Combining qualitative and quan-

titative radiographic features significantly improved classification power.

Introduction

Meningiomas are the most common primary brain tumor in adults, with most considered

benign by the World Health Organization histopathologic criteria (WHO grade I)[1,2]. A dis-

tinct and increasing proportion of meningiomas are deemed high-grade (WHO grade II-III)

and recur despite aggressive treatment, leading to substantial morbidity. Standard-of-care

management typically involves surgical resection and often radiation therapy for high-grade

(grade II-III) or progressive tumors.

Currently, the assessment of tumor grade occurs once a mass is resected and histopatholog-

ical review is performed. Upon detection of a mass lesion that displays radiological features

suggestive of meningioma, reliable parameters do not exist that can predict tumor grade and

the associated clinical course. For example, clinical information such as age and gender show

poor association with grade. Non-invasive and early predictors of meningioma grade may

enhance clinical decision-making by providing prognostic information that could guide the

decision of whether to observe or to treat.

The radiographic appearance of a tumor can be described using both quantitative and qual-

itative measures (Fig 1). Radiomics is an emerging field of quantitative imaging focused on

leveraging large sets of imaging features to create an atlas[3–9] that would foster the automatic,

reproducible, and unbiased assessment of active clinical cases[10–13]. In comparison, seman-

tic features are tumor traits (e.g. bone invasion, necrosis) that are assessed visually by radiolo-

gists. While semantic features are highly intuitive, they are inherently subject to inter-observer

variability. Both radiomic[14–29] and semantic[30–33] features have been applied as prognos-

tic biological signatures, and therefore, may offer complementary streams to predict clinical

status.

In this study, we investigated the value of radiomic and semantic imaging features for pre-

dicting the histologic grade of meningiomas from preoperative gadolinium-enhanced T1-

weighted MRI.

Methods

This study was reviewed and approved by the Brigham and Women’s Hospital institutional

review boards (IRB). Patient consent was waived by IRB protocol. All methods were per-

formed in accordance with the relevant guidelines and regulations.

Patient data

A total of 181 meningiomas resected at our institution between 2003 and 2014 were reviewed

for histopathology and imaging. Pre-operative gadolinium-enhanced T1-weighted MRI
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sequences were chosen for analysis to represent the most frequently reviewed images for

meningiomas. Six cases with motion artifact were excluded from analyses.

Histopathologic review of all tumors was performed by two board-certified neuropatholo-

gists (S.S., M.A.). Meningiomas were graded according to the 2007 World Health Organization

(WHO) classification system [1]. The data were additionally reviewed according to the 2016

WHO classification system to assess any potential impact that the inclusion of brain invasion

as a formal diagnostic criterion for grade II meningiomas might have on their association with

imaging features. In this study, low and high grade refers to grade I and grade II/III, respec-

tively. Atypical features for meningiomas were individually tabulated [34].

Image-based phenotyping

In this study, semantic (qualitative) and radiomic (quantitative) feature quantification was

applied to preoperative MRI (Fig 1B, Table 1). The standard preoperative imaging protocol

for intracranial tumors include a high-resolution gadolinium-enhanced T1-weighted 3D

MPRAGE or SPGR sequence, acquired on a 1.5T or 3T scanner. For patients who had had

serial imaging prior to surgery, we analyzed the MRI that was acquired closest to the date of

surgery. We exported images into 3D Slicer[35] for editing and reconstructed meningioma

volumes from the manual contours of individual axial MRI slices performed by two fully

trained neurosurgeons familiar with the radiographic appearance of the meningiomas to limit

inclusion of radiologic artifacts. All contours were reviewed by an experienced neuroradiolo-

gist (R.H.) to ensure standardization of contouring criteria across the dataset. We applied

Fig 1. A) Potential impact of radiographic features on meningioma patient management. Pre-operative radiographic assessment of grade may

improve the ability to tailor precision medicine decision trees to individual patients. B) A combined model of semantic and radiomic radiographic

features was used to predict meningioma grade and validated on an independent cohort of meningiomas.

https://doi.org/10.1371/journal.pone.0187908.g001
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image processing prior to feature extraction to reduce noise (mean +/- 3 standard deviations)

according to well-established MRI-normalization methods. We resampled the voxel dimen-

sions using 3x3x3 mm3 as the common spacing.

Semantic features such as speculation and mass effect are MRI characteristics regularly

assessed during the standard evaluation of images from patients with meningiomas. Ten

binary (to avoid high inter-observer variability) semantic features were scored by an experi-

enced neuroradiologist (R.H.) whereas radiomic features were extracted from images using a

custom Matlab script. A total of 1,055 radiomic features were computed that quantify the

tumor phenotype (description in S1 File). We selected fifteen features for this study based on

their variance and correlation (Fig 2).

Additionally, we included two tumor size features (maximum axial diameter and volume)

in the clinical data set, along with age, gender, and radiation induced status. Tumor location

was also classified by two skull base surgery trained neurosurgeons, based on the origin of the

Table 1. Description of radiographic features and filters. Individual descriptions are given for each group and parameter or feature.

Type Group Feature / Parameter Description

Radiographic

features

Semantic Intratumoral heterogeneity Heterogeneity in hyperintensity of MRI signal throughout tumor

Multifocality Non-contiguous growth of tumor

Midline shift Shift of the brain past midline

Sinus invasion Presence of venous sinus invasion

Necrosis / Hemorrhage Presence of necrosis or hemorrhage

Mass effect Shift in normal brain parenchyma due to tumor

Cystic component Fluid filled cysts within the tumor

Bone invasion Appearance of tumor invading the skull

Hyperostosis Bony overgrowth adjacent to tumor

Spiculation Irregularities in tumor shape and border

Radiomic Median Median voxel intensity value

Mean Mean voxel intensity value

Minimum Minimal voxel intensity value

Skewness Describes the shape of a probability distribution of the voxel intensity histogram

Spherical Disproportion (SD) How different is the tumor is to a sphere with a similar volume

Cluster Prominence (CP) Sensitive to flat zones (area of similar intensity)

Difference Entropy (DE) Complexity of the pattern (high entropy for high number of unique patterns)

Inverse Difference Normalized

(IDN)

Sensitive to homogeneity in the tumor

Run Length Non-uniformity

(RLN)

Measure of heterogeneity

Short Run Low Gray-Level

Emphasis (SRLGLE)

Measure of heterogeneity sensitive to low intensity pattern

High Intensity Large Area

Emphasis (HILAE)

Sensitive to flat zones with high intensity voxels (e.g. areas of hemorrhage)

Low Intensity Large Area

Emphasis (LILAE)

Sensitive to flat zones with low intensity voxels (e.g. areas of necrosis)

Low Intensity Small Area

Emphasis (LISAE)

Sensitive to small flat zones with low intensity voxels

Filters Wavelet High (L), Low (L) Wavelet filters decompose images by high (increase details) and low (smooth image,

leaving general shape) for every spatial component (x,y,z)

LoG Sigma (σ) Laplacian of Gaussian is a filter that highlights textures using a variable size radius (σ).

Depending on the radius (from 0.5mm to 5mm with 0.5 increment), it emphasizes image

textures from fine to coarse.

https://doi.org/10.1371/journal.pone.0187908.t001

Radiographic prediction of meningioma grade

PLOS ONE | https://doi.org/10.1371/journal.pone.0187908 November 16, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0187908.t001
https://doi.org/10.1371/journal.pone.0187908


meningioma, and clustered into five groups for purposes of analysis: 1) midline skull base, 2)

lateral skull base, 3) midline convexity, 4) lateral convexity or 5) other.

Univariate analysis

All statistical analyses were performed in R software version 3.3.1[36]. Our primary endpoint

was the potential applicability of radiographic features to predict meningioma grade. The pre-

dictive power of semantic features (binary) was evaluated using the odds ratio (OR) and Fish-

er’s exact test. The predictive power of radiomic features (continuous) was analyzed using the

area under the receiver operator characteristics curve (AUC) using the “survcomp” package

[37] and Noether’s test.

Additionally, prediction of low grade (grade I) with the presence of atypical features was

studied. A subset of the cohort with only low grade meningioma was analyzed, where we

compared patients with one or more atypical features (including spontaneous necrosis, high

nuclear-to-cytoplasmic ratio, prominent nucleoli, and sheet-like growth) versus none of these

features using the same imaging features as for grade prediction. Hypercellularity was almost

ubiquitously observed across the meningioma cohort, and therefore, not included as an atypi-

cal feature for purposes of analysis.

Finally, the association between radiomic and semantic features was investigated using the

AUC. Every semantic feature was predicted by each of the radiomic features in a univariate

manner. All p-values were adjusted for multiple hypothesis testing using the false discovery

rate method[38].

Multivariate analysis

A temporal split was used to assign patients to a training or validation dataset. Feature selec-

tion was based on the training dataset, to ensure independence from the validation dataset

(Table A in S1 File). Differences in clinical variables between datasets were assessed using the

Fisher’s exact test (for categorical variables) and the Wilcoxon test (for continuous variables).

We investigated five models for grade classification based on: 1) clinical, 2) location, 3)

semantic, 4) radiomic, 5) radiographic (combined radiomic and semantic features), and 6) a

combined model integrating all features above. Classifications were made using the random

forest method from the “randomForest” package [39]. Nested cross validation was used for

model tuning and training using the “caret” package on the training set [40], leaving the vali-

dation dataset independent from the model selection process. Differences in predictive power

between models were assessed using bootstrapping (1,000 iterations).

Fig 2. Schematic of the radiomic feature selection process from the extraction to the final feature set.

https://doi.org/10.1371/journal.pone.0187908.g002
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Results

Clinical cohort

Our cohort of 175 patients was mainly composed of female patients (62%), with a median age

of 57 years (Table 2). 59% of cases were low-grade and 41% were high-grade. No differences

were observed in WHO grade (p = 0.48), radiation-induced status (p = 0.51), or gender

(p = 0.15) between the training and validation datasets.

Radiographic associations with meningioma grade or atypical features

First, examination of individual semantic (qualitative) features revealed significant associations

between meningioma grade and four features (Fig 3A.1, Table 3). These features included

intratumoral heterogeneity (OR = 7.9, p<0.001), necrosis/hemorrhage (OR = 6.6, p = 0.01),

venous sinus invasion (OR = 2.9, p = 0.02), and mass effect (OR = 2.3, p = 0.042). Interestingly,

cystic component was not significantly associated with grade despite a high OR (6.8, p = 0.13),

which is likely due a low incidence of events (6 cases, 3.4%), which introduces a high margin

error. All significant features had an OR greater than one, indicating that higher grade corre-

sponds to an increased incidence of the feature.

Second, we investigated the relationship between radiomic (quantitative) features and

meningioma pathology (Fig 3A.2, Table 4). Eight radiomic features were significant from ran-

dom in their association with tumor grade (range AUC = 0.59 to 0.65, p<0.05). The best per-

forming radiomic feature, high intensity large area emphasis (HILAE), was associated with

high grade meningioma (AUC = 0.69, p<0.001). HILAE is sensitive to large zones with high

intensities (e.g. hemorrhage). In addition, low intensity large area emphasis (LILAE) was also

associated with high grade meningioma (AUC = 0.63, p = 0.008) and is sensitive to large areas

of low intensities (e.g. necrosis). These suggest that hemorrhagic or necrotic tumors were

more likely to be high grade, consistent with the semantic feature analysis. High values of

spherical disproportion (SD), which measures the degree of deviation of a tumor’s shape from

Table 2. Demographic information across the full, training, and validation datasets.

Variable Groups Full (n = 175) Training (n = 131) Validation (n = 44) p-value

Age (years) Median (range) 57 (22–89) 57 (22–89) 57.5 (29–89) 0.28

Gender Male 68 (38%) 55 (42%) 13 (30%) 0.15

Female 107 (62%) 76 (58%) 31 (70%)

WHO grade Low (grade I) 103 (59%) 75 (57%) 28 (63%) 0.48

High (grade II-III)* 72 (41%) 56 (43%) 16 (37%)

Grade II 66 52 14

Grade III 6 4 2

Grade 1 meningioma with atypical features No 69 49 20 0.68

Yes 34 26 8

Radiation-induced Yes 13 (7%) 11 (8.3%) 2 (4.5%) 0.51

No 160 (93%) 120 (91.7%) 42 (95.5%)

Location Midline Skull-base 23 17 6 0.70

Lateral Skull-base 53 41 12

Midline Convexity 39 31 8

Lateral Convexity 53 37 16

Other 5 3 5

* including 3 chordoid (grade II) and 1 rhaboid (grade III)

https://doi.org/10.1371/journal.pone.0187908.t002
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Fig 3. A) Heatmap of the predictive power of (1) semantic and (2) radiomic features for meningioma grade (n = 175)

or presence of histopathologic atypia in low grade meningiomas (n = 103). B) The association between semantic and

radiomic features was investigated. Every semantic feature was predicted with each of the radiomic feature in a

univariate manner that indicates their relationship. * indicates significance from random after multiple correction.

https://doi.org/10.1371/journal.pone.0187908.g003
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a sphere of similar volume, and run length non-uniformity (RLN), which is sensitive to hetero-

geneity, were both significantly associated with high-grade tumors (AUC = 0.61, p = 0.012 and

AUC = 0.65, p = 0.002, respectively).

Additionally, we examined the ability of imaging to distinguish low grade meningiomas

with (n = 69) and without (n = 34) one of four atypical features (Fig 3A, Tables B-C in S2

File). While intratumoral heterogeneity and multifocality carried an OR of 1.7 and 2.1, respec-

tively, no significant association was observed between semantic features and the presence of

atypical features. In comparison, four radiomic features were significantly associated with

atypical features. These features included voxel mean intensity (AUC = 0.68), low intensity

small area emphasis (LISAE) (AUC = 0.66), difference entropy (DE) (AUC = 0.66), and cluster

prominence (CP) (AUC = 0.65). LISAE indicated that hypointense tumors were more likely to

be low grade with atypical features. None of the low grade meningiomas had a cystic compo-

nent; therefore, this semantic feature was not investigated in this analysis.

Table 3. Univariate results for the semantic features. Odds ratio, lower and higher 95% confidence interval and p-value (with multiple testing correction)

are reported for each features.

Odds Ratio 95% Conf. Int. p-value

Hyperostosis 0.35 0.08 1.16 0.14

Spiculation 0.47 0.01 6.01 0.81

Multifocality 0.89 0.22 3.23 1.00

Bone Invasion 1.00 0.31 3.09 1.00

Midline Shift 1.39 0.71 2.70 0.49

Mass Effect 2.31 1.20 4.53 0.02

Sinus Invasion 2.91 1.33 6.59 0.02

Necrosis / Hemorrhage 6.60 1.69 37.88 0.01

Cystic 7.53 0.82 362.79 0.14

Intratumoral Heterogeneity 7.95 3.62 18.83 <0.001

https://doi.org/10.1371/journal.pone.0187908.t003

Table 4. Univariate results for the radiomic features. AUC, lower and higher 95% confidence interval and

p-value (with multiple testing correction) are reported for each features.

Features AUC 95% Conf. Int. p-value

HHL Skewness 0.51 0.40 0.57 0.74

HLH Median 0.52 0.44 0.61 0.64

LoG5 Low Intensity Small Area Emp. 0.54 0.46 0.63 0.35

LLH Short Run Low Gray Level Emp. 0.55 0.37 0.54 0.35

Difference Entropy 0.56 0.35 0.52 0.21

HHH Mean 0.58 0.50 0.66 0.09

LoG4 High Intensity Large Area Emp. 0.59 0.50 0.67 0.08

HLL Cluster Prominence 0.60 0.51 0.68 0.05

Spherical disproportion 0.61 0.53 0.69 0.02

LoG5 Inv. Diff. Normalized 0.61 0.53 0.70 0.02

HLH Low Intensity Large Area Emp. 0.63 0.54 0.71 0.01

HHL Mean 0.63 0.55 0.71 <0.001

Run Length Non-uniformity 0.65 0.56 0.73 <0.001

Minimum 0.65 0.57 0.73 <0.001

HHH High Intensity Large Area Emp. 0.69 0.61 0.77 <0.001

https://doi.org/10.1371/journal.pone.0187908.t004
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Relationship between radiomic and semantic features

We investigated the link between radiomic and semantic features. We found a median AUC of

0.57 (range: 0.50–0.89) between these two categories of features (Fig 3B, Table D in S2 File). A

significant interaction between particular pairs of features was found (p<0.05). Spherical dis-

proportion (SD) was associated with mass effect (AUC = 0.61), spiculation (AUC = 0.89), and

invasion of bone and venous sinus (AUC of 0.74 and 0.69, respectively). Textural features,

such as high intensity large area emphasis (HILAE), run length non-uniformity (RLN) and

short run length gray-level (SRLGL) were associated with tumor heterogeneity (AUC = 0.65–

0.72), cystic component (AUC = 0.71–0.84), and hemorrhage / necrosis (AUC = 0.70–0.76).

Improving grade classification by combining radiographic features

Given that radiomic and semantic analyses each provide a distinct quantification of the tumor

phenotype, we explored whether combining radiomic and semantic features may be synergis-

tic in predicting meningioma grade (Fig 4, Table 5).

Fig 4. Area under the curve (AUC) from random forest models on the independent validation set

(n = 44) for meningioma grade classification. “*” indicates p-value <0.05, “***” indicates p-value <0.0001

from random prediction (Noether test).

https://doi.org/10.1371/journal.pone.0187908.g004

Table 5. Meningioma classification validation (n = 44) for each model is reported. AUC, lower and higher 95% confidence interval and p-value (from

random) are reported for each features.

AUC Sensitivity Specificity 95% Conf. Int. p-values

Clinical 0.651786 0.928571 0.375 0.468065 0.835507 0.105389

Location 0.669643 0.892857 0.3125 0.541902 0.907802 0.016002

Semantic 0.768973 0.75 0.625 0.648494 0.913278 3.21E-05

Radiomic 0.779018 0.928571 0.625 0.639093 0.918943 9.30E-05

Radiographic (Loc. + Sem. + Rad.) 0.860491 0.821429 0.625 0.762583 0.960012 7.31E-13

Combined (All) 0.83817 0.892857 0.375 0.733099 0.944753 3.45E-10

https://doi.org/10.1371/journal.pone.0187908.t005
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A model based on clinical data, composed of information available to a clinician prior

to MR imaging, did not associate with meningioma grade (AUC = 0.65, p = 0.11). In compari-

son, location (AUC = 0.67), semantic (AUC = 0.77) and radiomic (AUC = 0.79) models inde-

pendently classified meningioma grade (p<0.05). Interestingly, a radiographic model that

combined both radiomic and semantic features showed an increased performance in the clas-

sification of tumor grade (AUC = 0.86, p<0.001). Despite the fact that the performance of the

radiographic model was higher than the semantic and radiomic models, it was not significantly

better than each alone (p-value = 0.23–0.32). Lastly, adding clinical and location data to the

radiographic model did not improve the performance (AUC = 0.84) compared to radiographic

features (AUC = 0.86).

Additionally, we verified the validity of the imaging association with meningioma grade

using the 2016 WHO guidelines, which includes brain invasion as a formal inclusion criterion

for grade II. We observed similar results with the updated WHO criteria as the 2007 criteria,

with additional observation of a significant association between the clinical model and patho-

logic grade (in Fig A, Table E in S2 File), attesting to the robustness of the radiographic associ-

ation with tumor grade.

Discussion

Meningioma grade is a powerful predictor of clinical outcome and therefore influences patient

management, including the decision of whether to observe, operate, or administer adjuvant

therapies. Currently, tumor grade can only be determined following surgical resection and his-

topathological review[41]. A better approach would allow clinicians to discriminate low and

high grade meningiomas before surgery, thereby facilitating management decisions and

counseling at an earlier stage of clinical care. Such a shift in the diagnostic paradigm would

have substantial implications for patient management, particularly in the increasingly common

scenario era in which asymptomatic meningiomas are incidentally diagnosed on imaging per-

formed for unrelated reasons. In our study, we sought to develop and test methodologies for

the pre-operative diagnostic assessment of meningioma grade using two categories of radio-

graphic data (semantic and radiomic) derived from T1-weighted contrast-enhanced MRI.

We observed strong associations between specific radiographic features and meningioma

histologic grade. In particular, heterogeneous tumors with necrosis and/or hemorrhage, and

irregularly shaped (non-spherical) tumors were more likely to be higher grade on univariate

analysis. Two radiomic features, HILAE and LILAE, were sensitive to high and low intensity

large areas, respectively, which are commonly indicative of hemorrhage and necrosis on MR

images. Interestingly, both semantic and radiomic features were significantly associated with

these traits and their presence indicated an increased likelihood of a high grade tumor. Tumor

heterogeneity was also significantly associated with more aggressive meningioma grade in

both semantic and radiomic feature analyses.

Irregularities in the shape of meningiomas such as “mushrooming” has been previously

associated with high grade tumor in multiple studies[42–45]. Meningioma heterogeneity, on

the other hand, is a more complex tumor trait that may be accounted for by a variety of under-

lying causes, including intratumoral necrosis, cystic degeneration, heterogeneous tumor cell

expansion, variability in cell density, and hemorrhage[46,47]. Tumor radiographic heterogene-

ity has been extensively studied in glioblastoma, lung cancer, renal cell cancer, and other sys-

temic malignancies and is felt to contribute significantly to treatment resistance and disease

relapse[48]. Awareness of tumor heterogeneity may play an important role in assessing treat-

ment response in meningiomas as well, given recent and impending clinical trials assessing

novel targeted and immune therapies for aggressive meningiomas[49–51].
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We further confirmed the ability of radiographic features to classify meningioma grade

on an independent validation dataset. Moreover, even though semantic and radiomic fea-

tures capture some common traits in the tumor (e.g. heterogeneity), the information con-

tained in these “common” features were complementary. Merging both feature sets

significantly improved classification performance, indicating an additive effect between

qualitative and quantitative imaging analyses. Additionally, tumor location alone was able

to classify tumor grade but was not able to improve the combined model once added to the

radiographic and clinical information (likely mostly driven by the radiographic features).

Clinical data, added for comparison, did not classify patients well nor did it add power to the

radiographic model in the validation, although this could be limited by selection bias in the

variables analyzed.

Associations between tumor characteristics and pre-operative images have been previously

investigated[52]. However, no sets of phenotypic features have been consistently demonstrated

to significantly associate with meningioma grade across studies. Differences between meningi-

oma and low grade glioma was investigated using imaging features from T1-weighed and

DWI[53], however, the study presented several limitations including a small sample size

(n = 15). Some studies investigating imaging features suggest that benign tumors display

higher ADC while malignant tumors have lower ADC values[54–56], while others fail to cor-

roborate a similar relationship [57–59]. These conflicting results may be due to technical fac-

tors, such as the region of interest (ROI) defined and feature standardization[59,60].

Likewise, our study faces several limitations. Variations in image acquisition and quality

can influence quantitative analyses. We attempted to standardize the uniformity of scans by

resampling all images with a common voxel spacing to ensure dimension homogeneity and

by filtering voxel intensities to reduce outlier values. Additionally, the semantic features are

reported by human thus are subject to inter-observer variability. To reduce this variation, we

used largely binary features to simply the output, as compared to a more complex scale (such

as a score from 1 to 5) which have been suggested to associate with more inter-observer vari-

ability [61]. We used a temporal split to obtain an independent validation dataset, with compa-

rable demographics between the cohorts, in attempt to internally validate our results. External

validation from multiple institutions would strengthen these observations in the future. Our

clinical model was predicated on common non-radiographic variables that may influence

tumor behavior, but may reflect selection bias and data availability in this single-institution

cohort.

In conclusion, we found a radiographic signature for meningioma grade using standard

pre-operative contrast-enhanced MR images. We demonstrated that there is a strong link

between the radiographic phenotype of a tumor and its pathology, which may provide a useful

tool for precision medicine. Early and accurate prediction of meningioma grade may influence

the decision to observe a tumor or to pursue surgery and earlier consideration of adjuvant

therapies. Our study highlights the potential clinical impact of integrative imaging analysis in

guiding meningioma management.
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