Table 1.
Network Effect | Social Selection Level
|
Description of Effect | ||||
---|---|---|---|---|---|---|
Zero | 1x | 2x | 3x | |||
Outdegree | −2.41 | −2.53 | −2.73 | −3.02 | Controls number of friendships formed | |
Drinking Similarity | 0 | 0.39 | 0.78 | 1.17 | Tendency to form friendships based on similarity in drinking statuses | |
Transitivity | 0.49 | 0.49 | 0.49 | 0.49 | Tendency to form relationships with friends-of-friends | |
Reciprocity | 1.85 | 1.85 | 1.85 | 1.85 | Tendency to form friendships with others who extend ties to actor | |
Three-Cycle | −0.35 | −0.35 | −0.35 | −0.35 | Tendency for network closure | |
Friendship Rate | 13.17 | 13.17 | 13.17 | 13.17 | Typical number of opportunities to change friendships | |
| ||||||
Social Influence Level
|
||||||
Drinking Effect | Zero | 1x | 2x | 3x | 4x | Description |
| ||||||
Linear Drinking | −0.32 | −0.32 | −0.32 | −0.32 | −0.32 | Linear distribution of drinking |
Quadratic Drinking | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | Quadratic distribution of drinking |
Social Influence (average alter) | 0 | 0.19 | 0.38 | 0.57 | 0.76 | Tendency to change drinking status toward the average drinking status of friends |
Drinking Rate | 2.24 | 2.24 | 2.24 | 2.24 | 2.24 | Typical number of opportunities to change drinking status |
Note. Values at the “1×” levels are reference values from a meta-analysis provided by Huang et al. (2014). Levels of 2×, 3×, and 4× indicate the degree of increased size of social selection or social influence relative to these reference values. In the present study, all levels of social selection were crossed with all levels of social influence. Outdegrees were adjusted slightly from their original values of −2.66 at each level of social selection to provide approximately 5.17 outgoing ties per actor. Networks first evolved using friendship and drinking rate parameters that were 5 times larger than those shown in the table here to allow adequate evolution after they were initialized using completely random drinking and friendship values (per Snijders, 2010).