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Abstract

In the last few years immunotherapy has become an important cancer treatment modality and 

while the principles of immunotherapy evolved over many decades, the FDA approvals of 

sipuleucel-T and ipilimumab began a new wave in immuno-oncology. Despite the current 

enthusiasm, it is unlikely that any of the immunotherapeutics alone can dramatically change 

prostate cancer outcomes, but combination strategies are more promising and provide a reason for 

optimism. Several completed and ongoing studies have shown that the combination of cancer 

vaccines or checkpoint inhibitors with different immunotherapeutic agents, hormonal therapy 

(enzalutamide), radiation therapy (radium 223), DNA-damaging agents (olaparib), or 

chemotherapy (docetaxel) can enhance immune responses and induce more dramatic, long-lasting 

clinical responses without significant toxicity. The goal of prostate cancer immunotherapy does 

not have to be complete eradication of advanced disease, but rather the return to an immunologic 

equilibrium with an indolent disease state. In addition to determining the optimal combination of 

treatment regimens, efforts are also ongoing to discover biomarkers of immune response. With 

such concerted efforts, the future of immunotherapy in prostate cancer looks brighter than ever.
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Introduction

Prostate cancer is an ideal model for therapeutic cancer vaccines, since the prostate is a 

nonessential organ with multiple tumor-associated antigens as potential targets. In addition, 

prostate cancer is generally an indolent disease that provides sufficient time for the 

generation of an antitumor immune response. Although prostate cancer is a known 

immunogenic disease (1), it can escape the immune system by downregulating human 

leukocyte antigen class I and thereby render antigen presentation ineffective, by inducing T-

cell apoptosis through expression of Fas ligand, by secreting immunosuppressive cytokines 

such as TGF-β, or by increasing regulatory T cells (Tregs) (2). As in many other cancers, the 

exact etiology of prostate cancer is still unknown; however, some studies have indicated that 
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inflammation may play a role in its pathogenesis (3). Available treatment options have 

significantly improved survival for metastatic castration-resistant prostate cancer (mCRPC) 

patients in the last decade, with 6 new drugs approved since 2010. Along with modern 

antiandrogen therapies, immunotherapy has the potential to dramatically impact this disease.

Here we review the status of prostate cancer immunotherapy, including cancer vaccines and 

checkpoint inhibitors, and discuss novel immunotherapy combinations that have progressed 

furthest in clinical development.

Rationale for the use of immunotherapy in prostate cancer

Sipuleucel-T (Dendreon Corp.), an autologous cellular immunotherapy, was approved by the 

U.S. Food and Drug Administration in 2010 for treatment of patients with asymptomatic or 

minimally symptomatic mCRPC. A pivotal phase III clinical trial (IMPACT) randomized 

512 mCRPC patients 2:1 to receive sipuleucel-T or placebo. This positive study had a 

median overall survival (OS) of 25.8 vs. 21.7 months (hazard ratio [HR] = 0.77; P = 0.02), 

and no significant difference in time to progression (3.7 vs. 3.6 months; HR = 0.95; P = 

0.63). The toxicity profile was good, with transient flu-like symptoms and fever as being the 

most common side effects (4).

To receive this therapeutic cancer vaccine, patients first undergo leukapheresis to obtain 

autologous peripheral blood mononuclear cells (PBMCs). The PBMCs are activated with a 

recombinant protein consisting of prostatic acid phosphatase and GM-CSF, then reinfused 

after 3 days. This process is repeated every 2 weeks for 3 doses. Although the exact 

mechanism of action of sipuleucel-T is not known, this treatment does not decrease prostate-

specific antigen (PSA) levels or tumor size but does prolong OS, likely by affecting tumor 

growth (5). Interestingly, sipuleucel-T treatment resulted in humoral antigen spread, 

including development of antibodies to ERAS, KLK2, and KRAS, that was associated with 

improved OS (6). The Society for Immunotherapy of Cancer Consensus Recommendations 

indicate that sipuleucel-T vaccine should be considered early in the treatment of mCRPC, 

since doing so appears to have a greater OS benefit (7).

The immunotherapy revolution gained even greater momentum after several immune 

checkpoint inhibitors demonstrated durable responses and improved OS in up to 25% of 

unselected patients with solid tumors (8). Tumors such as melanoma, bladder cancer, and 

non-small cell lung cancer, among others, are considered “hot” due to their inflamed 

microenvironment with significant T-cell infiltration, increased programmed death 

ligand-1(PD-L1) expression, and high neoantigen load (9). Studies have demonstrated that 

cancers with multiple point mutations, that can serve as neoantigens such as colorectal 

cancer with high level of microsatellite instability (MSI-H), tend to respond better to 

immunotherapy (10).However, this is not the case with all tumor types (e.g., kidney cancer) 

(11) and thus may not fully explain the immune sensitivity of tumors.

Prostate cancer is at the other end of the spectrum: it is a “cold” tumor with minimal T cell 

infiltrates and very limited response to single-agent checkpoint inhibition, as demonstrated 

in recent studies (Table 1). The efficacy of ipilimumab (Bristol-Myers Squibb), an anti-

CTLA-4 monoclonal antibody, in mCRPC was evaluated in 2 large, placebo-controlled, 
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randomized phase III clinical trials which administered ipilimumab before (12) or after 

docetaxel chemotherapy (13). In these studies, ipilimumab prolonged progression-free 

survival (PFS) and PSA responses in a subset of mCRPC patients. However, ipilimumab has 

no defined role in the management of mCRPC since both studies failed to meet their primary 

endpoint of improved OS.

A phase I study of nivolumab (Bristol-Myers Squibb), an anti-PD-1 monoclonal antibody, 

enrolled, among others, 17 mCRPC patients. No objective responses were observed, 

although one patient had a sustained PSA decline > 50% (14). KEYNOTE-028, a 

multicohort phase Ib study of pembrolizumab (Merck), another anti-PD-1 monoclonal 

antibody, in patients with advanced solid tumors, enrolled 23 patients with mCRPC. Of 

these, 3 (13%) had a confirmed partial response (PR) and 9 (39%) had stable disease (15). 

The lack of responses in both studies were possibly due to the fact that responses may 

correlate with PD-L1 expression, which is minimal in prostate cancer (16).

Pritchard et al. recently reported that 12% of mCRPC patients have MSI and mismatch 

repair gene mutations (MSH2 or MSH6) (17), while other case series have reported a 

somewhat lower incidence of MSI in prostate cancer (2%–12%) (18). It is possible that 

mCRPC patients with MSI may respond better to single-agent checkpoint inhibition, and 

that is currently being prospectively evaluated (NCT02966587).

Experimental prostate cancer vaccines

PROSTVAC® (rilimogene galvacirepvac)

PROSTVAC (Bavarian Nordic A/S) is an off-the-shelf prostate cancer vaccine that consists 

of a recombinant vaccinia vector prime followed by multiple boosts with a recombinant 

fowlpox vector, plus transgenes for PSA and 3 costimulatory molecules (B7.1, ICAM-1, and 

LFA-3, known as TRICOM) (19). A phase II trial that randomized 122 mCRPC patients to 

receive PROSTVAC vs. placebo (2:1) demonstrated an improvement in median OS of 8.5 

months and a 44% reduction in death rate (20). Revised data confirmed a survival advantage 

of 26.2 vs. 16.3 months (HR = 0.499; P = 0.0019) (21). The majority of patients (59/104) 

had increased PSA-specific T-cell responses, and within a subset of patients, 68% 

demonstrated evidence of antigen spreading 4 weeks after treatment (19). PROSTVAC is 

currently being evaluated in a phase III clinical trial targeting asymptomatic or minimally 

symptomatic chemotherapy-naïve mCRPC patients (PROSPECT; NCT01322490). This 

study randomized 1297 patients to 3 arms: PROSTVAC plus GM-CSF, PROSTVAC plus 

GM-CSF placebo, and double placebo. Enrollment is completed and results are anticipated 

as early as the end of 2017. PROSTVAC is also being evaluated in multiple phase II trials as 

a single agent (Table 1) or as part of combination therapy.

DCVAC/PCa

DCVAC/PCa (SOTIO a.s.) is therapeutic cancer vaccine made of mature dendritic cells 

(DCs) exposed to killed human prostate cancer cells (LNCaP). In a phase I/II clinical trial in 

mCRPC, patients (n = 25) were given DCVAC/PCa concurrently with docetaxel 

chemotherapy. The vaccine was well-tolerated, with no serious vaccine-related adverse 
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events (AEs) reported. The median OS was 19.0 months, which was better than predicted 

survival using the Halabi nomogram (11.8 months). None of the immunologic parameters, 

such as decreased Tregs and increased CD8+ T cells and PSA-specific CD8+ cells, 

significantly correlated with OS (22). Based on the results of this study, a randomized phase 

III clinical trial is currently evaluating DCVAC/PCa in combination with concurrent 

docetaxel (VIABLE; NCT02111577). The study was initiated in May 2014 and will enroll 

1200 patients. Results are pending.

ProstAtak® (aglatimagene besadenovec)

ProstAtak (Advantagene Inc.), an adenoviral vector encoding thymidine kinase (oncolytic 

virus), can cause cancer cell death when activated by oral valacyclovir. A phase I study of 

ProstAtak enrolled 10 patients with newly diagnosed prostate cancer: 7 with high-risk, 1 

with intermediate-risk, and 2 with low-risk disease. Nine patients were treated surgically 7.3 

to 15.7 weeks after vector injection. After a median follow-up of 11.3 years, 3 patients 

developed biochemical recurrence and none of them developed metastases. Treatment was 

safe and well-tolerated (23).

ProstAtak is currently being tested in a randomized (2:1), placebo-controlled phase III trial 

in patients with localized disease who are candidates for curative external beam radiation 

therapy (EBRT) (NCT01436968). Another ongoing phase II/III trial is testing ProstAtak in 

patients undergoing active surveillance (NCT02768363).

The success of the first cancer vaccine has intensified efforts to develop novel vaccines for 

prostate cancer, and several are currently in clinical development. Main categories include 

DNA vaccines, antigen-loaded DCs, and viral vectors targeting several tumor-associated 

antigens such as prostate stem cell antigen, PSA, and prostate-specific membrane antigen 

(PSMA), among others. Vaccines currently being evaluated in phase II and III studies are 

listed in Table 2. The most promising future immunotherapy strategies for prostate cancer 

are combinations of cancer vaccines with other treatment modalities.

Adoptive cell therapy

Adoptive cell therapy, that isolates and expands autologous or allogeneic tumor-reactive 

lymphocytes. It has demonstrated activity in melanoma using tumor-infiltrating lymphocytes 

(TILs) and in hematologic malignancies, melanoma, and synovial sarcoma using chimeric 

antigen receptor (CAR) T cells (24). An ongoing study is testing CAR-T cells that target 

PSMA (NCT01140373). Preliminary results show that 2 of the first 3 patients enrolled had 

stable disease for > 6 months with no reported AEs (25).

Combination therapies

The ideal immunotherapy should: 1) activate effector cytotoxic T cells against specific 

antigens within the tumor and expand additional T-cell clones that can migrate to the tumor 

and kill targeted cells, and 2) assist effector cells by neutralizing local immunosuppressive 

mechanisms responsible for immune escape (PD-1/PD-L1, indoleamine 2,3-dioxygenase, 

Tregs, etc.) (Figure 1) (26). Observed responses to single-agent checkpoint inhibitors or 
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therapeutic vaccines in prostate cancer have been minimal to modest, and those agents may 

not be optimal if used as monotherapy.

A promising new approach to prostate cancer immunotherapy involves efforts to make 

prostate cancer more T cell inflamed, since the majority of prostate cancer are not. There are 

several ways to cause inflammation within prostate tumors and recruiting more effector T 

cells into the tumor : 1) hormone therapy (can increase inflammatory infiltrates and PD-L1 

expression), 2) chemotherapy (killing of cancer cells and releasing cancer antigens), 3) 

radiation therapy (increasing inflammation and immunomodulatory cytokines), 4) PARP 

inhibitors (damaging DNA), 5) adoptive cell transfer (generating new T-cells) or 6) 

combining two checkpoint inhibitors or combinations of a cancer vaccine and an checkpoint 

inhibitor (immunogenic intensification) (27). These treatment modalities could enhance 

immune cell response and with concurrent blockade of inhibitory pathways within the tumor 

microenvironment, could achieve optimal antitumor effects (9).

The timing of treatment is another crucial factor in optimizing immunotherapies for prostate 

cancer. The ideal timing for prostate cancer immunotherapy is in the neoadjuvant or 

adjuvant setting or after biochemical recurrence (PSA-only disease) when tumor burden is 

minimal and immunosuppressive cells and cytokines are at their lowest levels (2). On the 

other end of the spectrum, mCRPC patients have large tumor volume, multiple 

immunosuppressive cytokines, and limited time to wait for an immune response to become 

clinically effective. Studies evaluating immunotherapeutic agents or combinations in the 

neoadjuvant setting would allow for detailed exploration of the impact of these agents on the 

tumor microenvironment.

Identifying the the optimal timing and sequence of combination strategies is crucial and have 

the potential to significantly change outcomes in prostate cancer. Combination of different 

treatment modalities and immunotherapy is safe and many are currently being studied, with 

preliminary evidence showing promising activity (Table 3).

Hormone therapy and immunotherapy (vaccine or checkpoint inhibitor)

Androgen-deprivation therapy affects the immune system by inducing thymic regeneration 

leading to increased production of naive T cells (28), decreasing CD4+ T-cell tolerance (29), 

and increasing CD4+ effector T cells (30). The synergistic effect of castration and 

immunotherapy has been evaluated in multiple clinical trials (31).

Antiandrogens such as enzalutamide (Astellas Pharma/Medivation) also induce 

immunogenic modulation (32). Enzalutamide is currently being tested in combination with 

PROSTVAC in mCRPC (NCT01867333) and in biochemical recurrence (NCT01875250). 

Interestingly, mCRPC patients who progressed on enzalutamide were shown to have 

increased expression of PD-1 in circulating immune cells (33). Graff et al. reported a case 

series of 10 mCRPC patients enrolled in a phase II trial of pembrolizumab after progression 

on enzalutamide. Three out of 10 patients had rapid PSA declines and 2 had PRs, including 

one patient with MSI (34). KEYNOTE-365 is currently investigating pembrolizumab 

combination therapies in mCRPC, including pembrolizumab + olaparib, pembrolizumab + 

docetaxel + prednisone, and pembrolizumab + enzalutamide (NCT02861573).
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Chemotherapy and immunotherapy (vaccine)

Many chemotherapies, such as docetaxel and gemcitabine, have a positive impact on the 

immune system. Preclinical studies have shown that docetaxel can increase antigen 

presentation and Fas expression, activate an antigen cascade (35), modulate the tumor 

microenvironment, and improve vaccine efficacy (36). Several ongoing studies are 

evaluating the combination of docetaxel and vaccine, including PROSTVAC + docetaxel in 

castration-sensitive prostate cancer (NCT02649855) and docetaxel + DCVAC/PCa 

(VIABLE; NCT02111577) in mCRPC.

Radiation (EBRT or radiopharmaceuticals) and immunotherapy (vaccine or checkpoint 
inhibitors)

Radiation can impact the immune system by damaging DNA, increasing expression of MHC 

class I, Fas, and ICAM-1, and by increasing cytokines such as TNF-α and IL-6. The goal is 

to modify the phenotype of cancer cells, making it easier for immune cells to recognize and 

kill them (37).

A phase II study of 153samarium-EDTMP (Lantheus Holding), a radiopharmaceutical, plus 

PROSTVAC randomized 21 post-docetaxel mCRPC patients to receive the combination and 

18 to receive 153samarium-EDTMP alone. The median PFS was 3.7 months for the 

combination vs. 1.7 months for 153samarium-EDTMP alone (HR = 0.51; P = 0.041), with no 

difference in median OS. No patients in the 153samarium-EDTMP-alone arm had a PSA 

decline, while 4/21 (19%) patients in the combination arm had a PSA decline ≥ 30% (38).

Radium-223 (Bayer Pharma), a novel radiopharmaceutical, has demonstrated improved OS 

in mCRPC (39). Preclinical data indicate that it also has immunomodulatory effects (40). An 

ongoing phase I study is evaluating the combination of radium-223 and atezolizumab 

(Genentech) in mCRPC (NCT02814669), while another is evaluating the combination of 

radium-223 and sipuleucel-T (NCT02463799).

PARP inhibitors and checkpoint inhibitors

A recent report suggested that 11.8% of mCRPC patients have germline mutations in genes 

mediating DNA-repair processes, a rate higher than previously anticipated (41). Preclinical 

studies using a BRCA-1-deficient ovarian cancer model demonstrated that combining a 

CTLA-4 antibody with a PARP inhibitor had a synergistic effect, resulting in immune-

mediated tumor killing and improved survival (42). In the TOPARP-A trial, 50 mCRPC 

patients previously treated with docetaxel were given olaparib, a PARP inhibitor. Sixteen 

patients (33%) showed a response, and 12 of them had response lasting > 6 months. 

Interestingly, 16 patients were also found to have mutations in DNA-repair genes, and 14 of 

these 16 patients (88%) showed a response (43).

Preliminary results of a phase II study of durvalumab (AstraZeneca), a PD-L1 antibody, plus 

olaparib (AstraZeneca) were recently reported (44). Overall, 8/10 patients showed declines 

in PSA, 5 of which were > 50%. The combination was well-tolerated and showed activity in 

an unselected population, with a median PFS of 7.8 months. Responses were observed in all 

patient subgroups, regardless of the number of prior lines of therapy, including those without 
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mutations in DNA-repair pathways. This ongoing trial has an accrual goal of 25 patients 

(NCT02484404). Preclinical studies have shown that PARP1 inhibitors can suppress 

androgen receptor activity and tumor growth even in the absence of BRCA mutations or 

DNA-damaging agents (45). While we don’t know the mechanism of the activity seen, the 

double-strand DNA breaks caused by PARP inhibitors could lead to STING pathway 

upregulation. Immunogenic modulation or neoantigen formation may also explain observed 

activity in mCRPC.

Vaccines and checkpoint inhibitors (immunogenic intensification)

Preclinical studies have suggested that different therapeutic cancer vaccine platforms can 

activate different T-cell populations, even if they target the same antigens (46), and that the 

combination of cancer vaccines and checkpoint inhibitors has synergistic effects (47, 48). 

Ideally, cancer vaccines should activate immune cells and direct them to the tumor (49), 

where they can increase lymphocyte infiltration and drive increased PD-L1 expression 

within the tumor microenvironment. One of the major concerns with this approach has been 

the possibility of increased toxicity; however, preliminary data suggest that this combination 

is no more toxic than a single-agent checkpoint inhibitor (50). Consequently, a vaccine plus 

a PD-1 inhibitor may be less toxic than a vaccine plus a CTLA-4 inhibitor.

A phase I trial evaluated the combination of GVAX (Aduro Biotech), a whole tumor-cell 

vaccine, and ipilimumab in mCRPC. Seven of 28 patients had > 50% PSA declines, while 

one patient had a complete response (51). Another study treated 30 patients, 24 of whom 

were chemotherapy-naïve, with PROSTVAC and ipilimumab. Six of the 30 patients had PSA 

declines > 50%. The median OS was 34.4 months, and 2-year OS was 73%, which was 

better than historical controls (52).

A phase I/II study of a Listeria-vector vaccine (Advaxis, Inc.) plus pembrolizumab is 

currently accruing patients with mCRPC (NCT02325557). Another phase II study will 

evaluate the combination of PROSTVAC, ipilimumab, and nivolumab in prostate cancer 

patients prior to curative surgery (NCT02933255).

The most interesting combination strategies combine cancer vaccines and checkpoint 

inhibitors or 2 different checkpoint inhibitors plus vaccines. Our group recently reported a 

phase I trial of ipilimumab in combination with PROSTVAC in 30 mCRPC patients. Among 

chemotherapy-naïve patients, 14 (58%) did have PSA declines. Median OS was 34.4 

months, with a median Halabi-predicted survival of 17.2 months (53), suggesting a treatment 

effect with a favorable safety profile. An ongoing phase I study of PROSTVAC in 

combination with nivolumab and/or ipilimumab in men with prostate cancer 

(NCT02933255) prior curative surgery will evaluate the impact of this immunologic 

combination on the tumor microenvironment, focusing on immune cell infiltration as the 

primary endpoint.

Conclusions

While prostate cancer appears to have been left out of the ongoing immunotherapeutic 

revolution currently underway in medical oncology, that perspective may be nearsighted. As 
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a phase III study with the therapeutic cancer vaccine sipuleucel-T has demonstrated, and 

early data from trials of checkpoint inhibitors suggest, prostate cancer can be amenable to 

immunotherapeutic strategies, which will likely involve multiple immune-based platforms. 

Combinations of therapies that can change the “cold” prostate cancer tumor 

microenvironment to immunologically “hot” by driving T cells to the tumor may be one way 

to optimize immunotherapy in prostate cancer. Existing conventional therapies such as 

chemotherapies, antiandrogens, and radiopharmaceuticals have demonstrated pro-immune 

effects and may become part of future immune-based platforms. Many clinical trials are 

evaluating immunotherapy combinations, some of them earlier on in the disease process. 

Results of these studies will shape the future of prostate cancer immunotherapy.
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Figure 1. Requirements for effective immunotherapy
A) Generation of immune response.

Antigen-presenting cells process targeted antigens (green) and present them to T cells with 

major histocompatibility complexes (MHC) on their surface, along with costimulatory 

molecules. This complex stimulates T cells to become cytotoxic CD8+ T cells.

B) Functional effector cells within the tumor.

Activated cytotoxic T cells recognize targeted antigens on the surface of cancer cells and 

release cytotoxins such as perforin and granzymes, triggering caspases and apoptosis. In 

addition, activated T cells also express Fas ligands that bind to Fas receptors on tumor cells, 

also inducing apoptosis.
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Table 1

Clinical studies of checkpoint inhibitors in prostate cancer

Drug/reference Phase/disease/(n) Dose Results

Ipilimumab (post-chemo) (13) Phase III, mCRPC (799) 8 Gy EBRT to one bone lesion followed by 
ipilimumab 10 mg/kg or placebo for 4 
doses, then maintenance every 3 months

Median OS
11.2 vs.10.0 months (HR = 0.85; 
P = 0.053)

Ipilimumab (chemo-naïve) (12) Phase III, mCRPC (799) Ipilimumab 10 mg/kg or placebo every 3 
weeks for 4 doses, then maintenance every 
3 months

Median OS
28.7 vs. 29.7 months (HR = 1.11; 
P = 0.3667)

Nivolumab (14) Phase I, mCRPC (17) Nivolumab 0.1–10 mg/kg i.v. every 2 
weeks

No objective responses, one 
patient sustained > 50% PSA 
decline

Pembrolizumab (15) Phase I, mCRPC (23) Pembrolizumab 10 mg/kg every 2 weeks 
up to 24 months

3 patients with confirmed PR 
(ORR 13%) and 9 with SD 
(39%)

Tremelimumab (54) Phase I, BCR (11) Tremelimumab with high-dose 
bicalutamide

3 patients with prolonged PSA 
doubling time

EBRT: external beam radiation therapy; HR: hazard ratio; mCRPC: metastatic castration-resistant prostate cancer; ORR: overall response rate; OS: 
overall survival; PR: partial response; PSA: prostate-specific antigen; SD: stable disease; BCR: biochemical recurrence (PSA-only disease)
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Table 2

Experimental therapeutic prostate cancer vaccines currently in phase II and III clinical trials

Vaccine Type Phase Disease stage NCT

DCVac Dendritic-cell vaccine III mCRPC NCT02111577

PROSTVAC Poxvirus-based vaccine III
II
II
II

mCRPC
Adjuvant therapy
BCR
Active surveillance

NCT01322490
NCT02772562
NCT02649439
NCT02326805

ProstAtack Oncolytic virus III Curative EBRT
Active surveillance

NCT01436968
NCT02768363

ME TARP Autologous dendritic-cell vaccine targeting TARP II BCR NCT02362451

DC1 Alpha-type-1-polarized dendritic cells with 
apoptotic allogeneic tumor (LNCap)

II BCR NCT00970203

GX301 4 human telomerase reverse transcriptase (hTERT) 
peptides and 2 adjuvants

II mCRPC NCT02293707

mDC/pDC Tumor peptide-loaded dendritic cells (myeloid, 
plasmacytoid, and their combination)

II mCRPC NCT02692976

ADXS31-142 Live-attenuated strain of Listeria monocytogenes 
encoding PSA fused to a fragment of the 
immunostimulant listeriolysin O protein

I/II mCRPC NCT02325557

DC vaccine Autologous dendritic cells with mRNA from 
primary prostate cancer tissue, hTERT, and survivin

I/II Adjuvant, high risk of PSA 
relapse

NCT01197625

Ad5-SGE-REIC/Dkk-3 Recombinant adenovirus designed to increase 
intracellular production of REIC protein

I/II Localized prostate cancer NCT01931046

EBRT: external beam radiation therapy; mCRPC: metastatic castration-resistant prostate cancer; BCR: biochemical recurrence (PSA-only disease)
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Table 3

Combination strategies for prostate cancer

Combination Rationale Clinical trials

Radiation + vaccine or checkpoint 
inhibitor

Cells death => antigen release.
Increased inflammation and secretion of 
immunomodulatory cytokines.

Radium-223 + sipuleucel-T
Radium-223 + pembrolizumab
Radium-223 + atezolizumab

Chemotherapy + vaccine or checkpoint 
inhibitor

Reduced tumor burden.
Increased Fas expression.
Antigen cascade.

Docetaxel + PROSTVAC
Docetaxel + DCVAC/PCa
Docetaxel + pembrolizumab

Hormone therapy (antiandrogens) + 
cancer vaccine or checkpoint inhibitor

Reduced tumor burden.
Increased production of naive T cells and CD4+ effector 
T cells.
Increased PD-L1 expression (enzalutamide).

Enzalutamide + PROSTVAC
Enzalutamide + pembrolizumab

Checkpoint inhibitor + cancer vaccine 
or another checkpoint inhibitor

Activation of different T-cell population.
Increased inflammation.

Listeria-based vaccine + pembrolizumab

PARP inhibitor + checkpoint inhibitor DNA damage => antigen release.
Increased inflammation.

Olaparib + pembrolizumab
Olaparib + durvalumab
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