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Evaluation of the electrostatic properties of biomolecules has
become a standard practice in molecular biophysics. Foremost
among the models used to elucidate the electrostatic potential is
the Poisson-Boltzmann equation; however, existing methods for
solving this equation have limited the scope of accurate electro-
static calculations to relatively small biomolecular systems. Here
we present the application of numerical methods to enable the
trivially parallel solution of the Poisson-Boltzmann equation for
supramolecular structures that are orders of magnitude larger in
size. As a demonstration of this methodology, electrostatic poten-
tials have been calculated for large microtubule and ribosome
structures. The results point to the likely role of electrostatics in a
variety of activities of these structures.

The importance of electrostatic modeling to biophysics is well
established; electrostatics have been shown to influence

various aspects of nearly all biochemical reactions. Advances in
NMR, x-ray, and cryo-electron microscopy techniques for struc-
ture elucidation have drastically increased the size and number
of biomolecules and molecular complexes for which coordinates
are available. However, although the biophysical community
continues to examine macromolecular systems of increasing
scale, the computational evaluation of electrostatic properties
for these systems is limited by methodology that can handle only
relatively small systems, typically consisting of fewer than 50,000
atoms. Despite these limitations, such computational methods
have been immensely useful in analyses of the stability, dynamics,
and association of proteins, nucleic acids, and their ligands (1–3).
Here we describe algorithms that open the way to similar
analyses of much larger subcellular structures.

One of the most widespread models for the evaluation of
electrostatic properties is the Poisson-Boltzmann equation (PBE)
(4, 5)

2¹z«~x!¹f~x! 1 k# 2~x! sinh f~x! 5 f~x!, [1]

a second-order nonlinear elliptic partial differential equation that
relates the electrostatic potential (f) to the dielectric properties of
the solute and solvent («), the ionic strength of the solution and the
accessibility of ions to the solute interior (k#2), and the distribution
of solute atomic partial charges ( f). To expedite solution of the
equation, this nonlinear PBE is often approximated by the linear-
ized PBE (LPBE) by assuming sinhf(x) ' f(x). Several numerical
techniques have been used to solve the nonlinear PBE and LPBE,
including boundary element (6–8), finite element (9–11), and finite
difference (12–14) algorithms. However, despite the variety of
solution methods, none of these techniques has been satisfactorily
applied to large molecular structures at the scales currently acces-
sible to modern biophysical methods. To accommodate arbitrarily
large biomolecules, algorithms for solving the PBE must be both
efficient and amenable to implementation on a parallel platform in
a scalable fashion, requirements that current methods have been
unable to satisfy. Although boundary element LPBE solvers pro-
vide an efficient representation of the problem domain, they are not
useful for the nonlinear problem and have not been applied to the
PBE on parallel platforms. Similarly, adaptive finite element meth-

ods have shown some success in parallel evaluation of both the
LPBE and nonlinear PBE (15), but limitations in current solver
technology and difficulty with efficient representation of the bio-
molecular data prohibits their practical application to large biomo-
lecular systems. Finally, unlike the boundary and finite element
techniques, finite difference methods have the advantage of very
efficient multilevel solvers (12, 16) and applicability to both the
linear and nonlinear forms of the PBE; however, existing parallel
finite difference algorithms often require costly interprocessor
communication that limits both the nature and scale of their
execution on parallel platforms (17–21) [see especially Van de
Velde (19) for reviews of the various methods].

Multigrid Solution Through Parallel Focusing
Recently, a new algorithm (Bank-Holst) was described for the
parallel adaptive finite element solution of elliptic partial dif-
ferential equations with negligible interprocess communication
(22). Unlike finite difference methods, which use a fixed reso-
lution of the problem domain, adaptive finite element tech-
niques generate very accurate solutions of these equations by
locally enriching the basis set in regions of high error through
refinement of the domain discretization. The first step in the
Bank-Holst parallel finite element algorithm is the solution of
the equation over the entire problem domain using a coarse
resolution basis set by each processor. This solution is then used,
in conjunction with an a posteriori error estimator, to partition
the problem domain into P subdomains, which are assigned to
the P processors of a parallel computer. The algorithm is load
balanced by equidistributing a posteriori error estimates across
the subdomains. Each processor then solves the partial differ-
ential equation over the global mesh, but confines its adaptive
refinement to the local subdomain and a small surrounding
overlap region. This procedure results in a very accurate repre-
sentation of the solution over the local subdomain. After all
processors have completed their local adaptive solution of the
equation, a global solution is constructed by the piecewise
assembly of the solutions in each subdomain. It can be rigorously
shown that the piecewise-assembled solution is as accurate as the
solution to the problem on a single global mesh (23). Because
each processor performs all of its computational work indepen-
dently, the Bank-Holst algorithm requires very little interprocess
communication and exhibits excellent parallel scaling. Unfortu-
nately, although this algorithm works well for adaptive tech-
niques, such as finite elements, it is not directly applicable to the
fixed-resolution finite difference methods that currently offer
the most efficient solution of the PBE for large molecular
systems. However, by combining the Bank-Holst method with
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other techniques, we have been able to extend this algorithm to
finite difference solvers.

Electrostatic ‘‘focusing’’ is a popular technique in finite dif-
ference methods for generating accurate solutions to the PBE in
subsets of the problem domain, such as a binding or titratable
sites within a protein (4, 14). Like the Bank-Holst method, the
first step in electrostatic focusing is the calculation of a low-
accuracy solution on a coarse finite difference mesh spanning
the entire problem domain. This coarse solution is then used to
define the boundary conditions for a much more accurate
calculation on a finer discretization of the desired subdomain. As
noted previously (22), this focusing technique is superficially
related to the Bank-Holst algorithm, where the local enrichment
of a coarse, global solution has been replaced by a the solution
of a fine, local multigrid problem using the solution from a
coarse, global problem for boundary conditions.

We have combined standard focusing techniques and the
Bank-Holst algorithm into a ‘‘parallel focusing’’ method for the
solution of the PBE. Unlike previous parallel algorithms for
solving the PBE, this method has excellent parallel complexity,
permitting the treatment of very large biomolecular systems on
massively parallel computational platforms. Furthermore, the
finite difference discretization on a regular mesh allows for fast
solution by certain highly efficient multigrid solvers (12). The
algorithm is summarized below:

Given the problem data and P processors of a parallel
machine:

(i) Each processor i 5 1...,P (a) obtains a coarse solution of the
PBE over the global domain, (b) heuristically subdivides the
global domain into P subdomains (V1...,VP), which are assigned
to processors 1...,P, (c) assigns boundary conditions to its
subdomain Vi using the coarse global solution, and (d) solves the
PBE on subdomain Vi.

(ii) A master processor collects observable data (free energy,
etc.) from the other processors and controls IyO.

This parallel focusing algorithm begins with each processor
independently solving a coarse global problem. The per-
processor subdomains are chosen in a heuristic fashion as
outlined in Fig. 1. Like standard focusing calculations, only a
subset of the global mesh surrounding the area of interest is used
for the parallel calculations. This subset is partitioned into P
approximately equal subdomains, which are distributed among
the processors. Each processor then performs a fine-scale finite
difference calculation over this subdomain and an overlap region
that usually spans about 5–10% of the neighboring subdomains.
The overlap regions are included to compensate for inaccuracies
in the boundary conditions derived from the global coarse
solution; however, these regions are not used to assemble the
fine-scale global solution and do not contribute to calculations
of observables such as forces and energies. After the fine-scale
calculations are complete, a master processor accumulates the
desired data from the other processes and controls IyO of the
solution. Like the Bank-Holst algorithm, each process computes
independently on both the global coarse problem and its sub-
domain. These independent computations result in an algorithm
that requires negligible interprocess communication and offers
excellent parallel performance.

Because of its low communication requirements, this parallel
focusing algorithm can be used on parallel platforms ranging
from low-bandwidth networks of workstations to high-
performance supercomputers. Because step d of the parallel
focusing algorithm typically dominates the overall computation,
this algorithm provides excellent time complexity with respect to
the number of processors. Most importantly for Poisson-
Boltzmann calculations on large molecules, the mesh resolution
increases linearly with the number of processors.** This linear
behavior has been observed on calculations involving hundreds
of processors; Fig. 2 shows the scaling results for calculations on
the biomolecular systems discussed below. The parallel focusing
algorithm was tested on up to 700 processors and shows linear

**For example, let v(P) 5 hx(P)hy(P)hz(P) be the volume of a grid element in a P-processor
calculation with 100f% overlap on a nx 3 ny 3 nz mesh with spacings hx(P),hy(P),hz(P) over
a problem domain of volume V. One measure of the mesh resolution is the inverse
element volume, which behaves as v(P)21 ;(1 2 2f )3P(nx 2 1)(ny 2 1)(nx2 1)yV, which is
linear in P.

Fig. 1. Parallel focusing subdomains for four processors on simple two-
dimensional mesh. Parallel computations occur on subset (hashed areas) of
global mesh. Each processor performs calculations over a domain (colored
hashed patterns) that combines a unique partition (inside heavy, black lines)
with an overlap region (between heavy black lines and dashed lines).

Fig. 2. Scaling of the parallel focusing algorithm to solve the LPBE for the
microtubule (black line), 50S ribosome subunit (green line), and 30S ribosome
subunit (red line) systems on the NPACI IBM Blue Horizon supercomputer. As
discussed in the text, the inverse element volume (a measure of the mesh
resolution) is a linear function of the number of processors, v(P)21 5
(hxhyhz)21 5 cP, where c 5 0.011, 0.043, and 0.032 Å23yprocessor for the
microtubule, 30S, and 50S systems, respectively.
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scaling over the entire range. The implications of the improved
performance available through this parallel algorithm are dis-
cussed in more detail in the next section.

Parallel focusing has been implemented as an extension (23)
of the APBS (Adaptive Poisson-Boltzmann Solver) software
package (9) by using the PMG multigrid library to assemble and
solve the PBE algebraic systems (12, 16). The parallel routines
have been implemented by using MALOC, a portable hardware
abstraction layer library (23), which allows interprocess commu-
nication through a variety of methods.

The following sections describe the application of the parallel
focusing techniques to very large biomolecular systems whose
electrostatic properties were unattainable by using traditional
methods for solving the PBE. Specifically, we examine two
important cellular components: a million-atom microtubule
fragment and the large and small subunits of the ribosome.

Electrostatic Properties of Microtubules
Within every eukaryotic cell is a complex system of proteins and
filaments called the cytoskeleton. The largest structures within
the cytoskeleton are microtubules, cylindrical polymers formed
from the protein tubulin. Microtubules perform many functions
within the cell, from providing basic structure to cell division and
transport, and many of these roles involve electrostatic interac-
tions. The recent solution of the structure of tubulin (24) has
allowed us to construct a working model of a microtubule
containing 90 tubulin dimers. This structure contains more than
1.25 million atoms [the negatively charged C termini of both the

a and b subunits were not resolved in the tubulin structure (24)
and have not been rebuilt in our microtubule structure], and the
structure has dimensions of '300 Å 3 300 Å 3 600 Å. The LPBE
was solved at 0.54-Å mesh spacing by using 686 processors of the
National Partnership for Advanced Computational Infrastruc-
ture (NPACI) Blue Horizon supercomputer. Blue Horizon is a
massively parallel IBM RS6000 supercomputer consisting of
1,152 375-MHz Power3 processors distributed among 144 eight-
way symmetric multiprocessing nodes. These nodes are con-
nected with the IBM Colony switch, which delivers 350 MBysec
peak message-passing interface performance with 17-ms latency.
Following the parallel focusing algorithm, each processor solved
the LPBE on a coarse 973 global mesh, as well as a finer 973

spanning a subset of the overall domain. The global solution was
obtained in less than 1 h. This system provides an excellent
example of the improved performance available through the
parallel focusing method. A sequential PBE solver treating the
same system at a similar resolution would discretize the problem
on a 1,111 3 555 3 555 mesh, requiring more than 350 times
more memory and time to solve.

Although more work is presently underway to elucidate the
implications of electrostatics on microtubule structure and func-
tion, Fig. 3 shows some early results. The most obvious feature
is the overall negative electrostatic potential of the microtubule
with smaller regions of positive potential. This large negative
potential likely plays a significant role in the interaction with
microtubule-associated proteins, motor proteins such as kinesin
and dynein, and other microtubules. Fig. 3 b and c also exhibits
dramatic differences between the 1 end (b tubulin monomer
exposed) and 2 end (a tubulin monomer exposed) of the
microtubule, which, as has been shown for actin filaments (3),
may contribute to differences in the polymerization properties
(25) and relative stabilities of the two ends. Fig. 4 shows a
microtubule inner surface in cross-section. The binding regions
of compounds such as vinblastine, colchicine, and taxol (26) are
shown in Fig. 4a, while electrostatic isocontours are shown, for
the same view, in Fig. 4b. Qualitative examination of the
electrostatic data shows interesting variations in the drug binding

Fig. 3. Electrostatic properties of the microtubule exterior. Potential iso-
contours are shown at 11 kTye (blue) and 21 kTye (red) and obtained by
solution of the LPBE at 150 mM ionic strength with a solute dielectric of 2 and
a solvent dielectric of 78.5. (a) Exterior view of entire microtubule with 2 end
(a tubulin monomer exposed) forward. (b) View of 2 end. (c) View of 1 end
of microtubule (b tubulin monomer exposed).

Fig. 4. Electrostatic properties of microtubule interior. Cross-section view
with 2 end to the left and tubulin dimer outlined by green box. (a) View of
microtubule molecular surface with regions implicated in vinblastine, colchi-
cine, and taxol binding shown in red. (b) Same view of microtubule with
electrostatic potential isocontours at 11 kTye (blue) and 21 kTye (red).
Potential calculated as in Fig. 3.
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regions; however, much more work needs to be done to quan-
titatively elucidate contribution of electrostatics to the interac-
tion of these pharmaceuticals with microtubules.

The microtubule also provides a good example for examining
the improved performance of this parallel algorithm with respect
to sequential solvers.

Electrostatic Properties of the Ribosome
Ribosomes are macromolecular complexes responsible for the
translation of the mRNA into protein. These complexes consist of
two subunits: the large 50S subunit and the small 30S subunit, both
of which are composed of RNA and protein constituents. During
translation, the large and small subunits associate to form an active
ribosome. Recently, high-resolution structures of the 50S subunit
from Haloarcula marismortui (27) and the 30S subunit from Ther-
mus thermophilus (28, 29) were solved by x-ray crystallography.
These structures present a unique opportunity to examine the
electrostatic potential of large ribonucleoprotein complexes.

The protonated 30S structure consists of more than 88,000
atoms and roughly spans a 200-Å-long cubic box. Using APBS on
343 processors of the NPACI Blue Horizon, LPBE was solved to
give the electrostatic potential of the small ribosomal subunit at
0.41-Å resolution. Calculations also were performed on the
protonated 50S subunit structure, which consisted of 94,854
atoms†† and has similar dimensions to the 30S subunit. The

electrostatic potential of the large subunit was obtained at
0.45-Å resolution by using APBS to solve the LPBE on 343
processors of the Blue Horizon. Both systems were solved by
using the parallel focusing algorithm: each processor first solved
a coarse problem defined by a 973 mesh covering the entire
problem domain, and the solved the LPBE on a 973 mesh
covering the particular subset of the global problem. Examina-
tion of the electrostatic potential mapped to the molecular
surfaces of the 30S (Fig. 5) and 50S (Fig. 6) reveals large areas
of negative potential with smaller regions of positive potential
corresponding to some of the proteins implicated in binding of
the 30S and 50S subunits to form the active ribosomal complex
(27, 29–31). Not surprisingly, the potential surface maps be-
tween the two subunits exhibit qualitative electrostatic comple-
mentarity. Despite the fact that the 30S and 50S structures are
from distinct species that thrive in very different environments,
such comparisons of electrostatic potential are not unwarranted.
Formation of active ribosomal complexes has been observed by
using subunits from different species (32, 33), indicating some
evolutionary conservation of the elements involved in subunit
association.

Fig. 5 b and d shows the electrostatic potential mapped to the
30S subunit molecular surface. As evidenced by the 30S struc-
ture (Fig. 5 a and c), regions of positive potential typically
correspond to protein components of the small subunit or
cocrystallized counterions. Of particular interest is the active site
of the 30S subunit, shown in Fig. 5 a and b. There are interesting
variations in the electrostatic potential near regions of antibiotic

††The 50S Protein Data Bank coordinate file (1FFK) (27) contained only Ca coordinates for
the protein constituents. Therefore, each protein residue was simply represented by its Ca

atom, which was assigned the total charge of the residue and a radius of 4.0 Å.

Fig. 5. Electrostatic properties of the 30S ribosomal subunit. Potential
obtained by solution of the LPBE at 150 mM ionic strength with a solute
dielectric of 2 and a solvent dielectric of 78.5 by using the 30S structure from
the 1FJG Protein Data Bank entry (29, 34). (a) Front view (face that contacts the
50S subunit) of the 30S backbone with protein shown in gold; nucleic acids
shown in silver. Selected components of the A-site (16S residues 525–535,
955–965, 1055–1060, 1490–1493; S12 residues 45–49) are shown in red, com-
ponents of the P-site (16S residues 789–791, 925–927, 965–967, 1229–1230,
1338–1341, 1399–1403, 1497–1499; S9 residues 124–128; S13 residues 122–
126) are shown in blue, and components of the E-site (16S residues 691–695,
792–797; S7 residues 80–90, 150–170; S11 residues 45–60) are shown in green.
(b) Front view of the electrostatic potential mapped on the 30S molecular
surface; a blue color indicates regions of positive potential (. 12.6 kTye)
whereas red depicts negative potential (, 22.6 kTye) values. (c) Back view
(opposite the 50S-binding face) of the 30S backbone. (d) Back view of the
electrostatic potential mapped on the 30S molecular surface.

Fig. 6. Electrostatic properties of the 50S ribosomal subunit. Potential obtained
by solution of the LPBE at 150 mM ionic strength with a solute dielectric of 2 and
a solvent dielectric of 78.5 by using the 50S structure from the 1FFK Protein Data
Bank entry (27). (a) Front view (face that contacts the 30S subunit) of the 50S
backbone with protein component (L10e) of the A-site shown as green tube,
protein component (L5) of the P-site shown as gold tube, nucleic P-loop portion
of P-site shown as gold spheres, protein component (L44e) of E-site shown as
white tube, various protein components (L2, L14, L19) of 50S-30S interface shown
in purple. Remaining protein components are shown in gold and nucleic acid
components in silver. (b) Front view of the electrostatic potential mapped on the
50S molecular surface; a blue color indicates regions of positive potential (.0
kTye) whereas red depicts negative potential values (, 29.6 kTye). (c) Back view
(opposite the 30S-binding face) of the 50S backbone. (d) Back view of the
electrostatic potential mapped on the 50S molecular surface.
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binding (34) and the A, P, and E tRNA binding sites (29, 34). For
example, the codon binding sites and ‘‘platform region’’ (pro-
tuberance on the right side of Fig. 5 a and b) are surrounded by
regions of positive potential, which could help stabilize com-
plexes of the ribosome with mRNA and tRNA. However, more
quantitative calculations will be needed to fully explore these
hypotheses.

The electrostatic potential of the 50S subunit is shown in Fig.
6 b and d. Like the small subunit, the electrostatic surface
potential is largely negative, with scattered regions of positive
potential typically associated with ribosomal proteins. Some of
the most interesting aspects of this data set are the regions of
positive potential on the 50S ‘‘crown’’ (see upper protuberance
in Fig. 6 a and b), which correspond to proteins of the large
subunit involved in tRNA binding. Specifically, these positive
regions are due to proteins L44e, L5, and L10e (see Fig. 6a),
which have been implicated in tRNA binding to the 50S subunit
(35), and contribute large regions of positive potential to the
molecular surface in the upper portions of the A, P, and E tRNA
binding sites. Furthermore, the P-loop (shown as blue spheres in
Fig. 6a), an important component of the 50S P-site (35, 36),
shows significant positive surface potential due to a nearby Mg21

ion. These areas of positive potential may provide stabilizing
interactions with mRNA or tRNA bound to the ribosomal
complex during translation. However, as with the 30S calcula-
tions, more detailed work is required to accurately resolve the
role of electrostatics in tRNA and mRNA binding to the 50S
subunit.

Conclusions
We have described the combination of standard finite difference
focusing techniques and the Bank-Holst algorithm into a parallel
focusing method to facilitate the solution of the PBE for
nanoscale systems. Unlike previous multiprocessor algorithms
for solving the PBE, this method has excellent parallel complex-
ity that permits the solution of these problems on massively
parallel computational platforms. Furthermore, the finite differ-
ence discretization on a regular mesh allows for fast solution by

highly efficient multigrid solvers. This algorithm has been im-
plemented in the APBS software by using the PMG multigrid solver
and tested on the NPACI IBM Blue Horizon supercomputer.

Using these methods for the parallel multigrid solution of
elliptic differential equations, the electrostatic properties of very
large biomolecular assemblages are now amenable to computa-
tion. This technique relies on the efficient solution of the PBE
combined with parallel focusing techniques to solve these large
problems in a variety of distributed computational environ-
ments. Solution of the LPBE for the 1.2 million-atom microtu-
bule system provided electrostatic potential data, which revealed
interesting features near drug binding sites and provided possible
insight into stability differences at the 1 and 2 ends of the
microtubule. Such detailed electrostatic information will be
central to future studies that examine the possible collective
effects involved in the formation of structural defects and the
stabilizing effects of taxol binding to the interior of microtubules.
Likewise, application of this methodology to ribosome systems
elucidated intriguing electrostatic properties of the ribosomal
active site, which will provide the starting point for investigation
of the stabilization of the tRNA- and mRNA-ribosome com-
plexes during translation and the rational design of novel anti-
biotics. Finally, the ability to determine the contribution of
electrostatics to the forces and energies of nanoscale systems
should extend the scale of implicit solvent dynamics methods to
much larger macromolecular complexes.
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