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ViewRay is a novel MR-guided radiotherapy system capable of imaging in near 
real-time at four frames per second during treatment using 0.35T field strength. It 
allows for improved gating techniques and adaptive radiotherapy. Three cobalt-60 
sources (~ 15,000 Curies) permit multiple-beam, intensity-modulated radiation 
therapy. The primary aim of this study is to assess the imaging stability, accuracy, 
and automatic segmentation algorithm capability to track motion in simulated and 
in vivo targets. Magnetic resonance imaging (MRI) characteristics of the system 
were assessed using the American College of Radiology (ACR)-recommended 
phantom and accreditation protocol. Images of the ACR phantom were acquired 
using a head coil following the ACR scanning instructions. ACR recommended T1- 
and T2-weighted sequences were evaluated. Nine measurements were performed 
over a period of seven months, on just over a monthly basis, to establish consis-
tency. A silicon dielectric gel target was attached to the motor via a rod. 40 mm 
total amplitude was used with cycles of 3 to 9 s in length in a sinusoidal trajectory. 
Trajectories of six moving clinical targets in four canine patients were quantified 
and tracked. ACR phantom images were analyzed, and the results were compared 
with the ACR acceptance levels. Measured slice thickness accuracies were within 
the acceptance limits. In the 0.35 T system, the image intensity uniformity was 
also within the ACR acceptance limit. Over the range of cycle lengths, represent-
ing a wide range of breathing rates in patients imaged at four frames/s, excellent 
agreement was observed between the expected and measured target trajectories. 
In vivo canine targets, including the gross target volume (GTV), as well as other 
abdominal soft tissue structures, were visualized with inherent MR contrast, allow-
ing for preliminary results of target tracking.

PACS number: 87.61.Tg	  
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I.	 INTRODUCTION

Modern radiotherapy delivers conformal dose distributions, but is limited by margins due 
to setup uncertainties and patient motion, both interfractional and intrafractional, leading to 
reduced tumor control probability (TCP) or the necessity of a larger CTV to PTV margin.(1-3) 
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Recent advances in image-guided radiotherapy (IGRT), such as cone-beam CT (CBCT) and 
implanted fiducials, are imaging modalities which alert clinicians of such motion before or during 
treatment. Another modality is magnetic resonance imaging (MRI), which has expanded IGRT 
recently with ViewRay (ViewRay Inc., Oakwood, OH), a commercially available radiotherapy 
treatment modality providing MR imaging in user-defined planes during irradiation. Other 
MR-guided radiotherapy projects are also under investigation, such as the MR-linac in Utrecht 
integrating a 6 MV linear accelerator with a 1.5 T MR scanner.(4-6) Progress in MR-delineated 
autocontouring for lung tumors has also been made with a simulation of MR images at 0.2–0.5T, 
suggesting the ability to track lung tumors in low-field MR linacs.(7) With ViewRay, however, 
patients are already under treatment at a handful of institutions, and live motion previously 
unrecorded is being revealed.(8-11) 

ViewRay consists of three Co-60 sources (~ 15,000 Ci) in heads separated by 120° with con-
current MR imaging by a 0.35 T magnetic field. The magnet is maintained by a split magnetic 
bore system, while the treatment gantry rotates between the magnetic bores. Step-and-shoot 
IMRT delivery is made possible by the multileaf collimators (MLCs) on each head, each with 
two banks of 30 leaves. The imaging made possible by ViewRay is used in an online beam 
control approach which tracks targets and gates the radiation beam on or off, depending on the 
target position relative to a predefined allowable range of target positions. A target is specified 
and its contour generated during the daily three-dimensional setup MR used for positioning and 
dose prediction. Next, the user selects or defines a region-of-interest surrounding the target in 
which the target is allowed during treatment. Once the beam is initiated, the target is automati-
cally contoured every quarter of a second or half a second (for one or three slices, respectively). 
If this contour encroaches upon the boundary of the allowed region, the radiation beam will be 
turned off. Furthermore, a certain percentage of the target can be allowed to exit the allowed 
region before beam interruption, if desired. Alternatively, a time interval can be specified for 
a return to the treatable region before beam shut-off.

The primary objectives of this study were to characterize the MR imaging parameters and 
their stability, and to validate the image capabilities for tracking. MR imaging parameters 
include signal-to-noise ratio (SNR), contrast, and spatial resolution. The physical accuracy 
of the imaging capabilities were also tested in a motion phantom. These tests were intended 
to investigate spatial integrity, as distortion, for example, is a formidable issue in radiation 
therapy due to the possible incorrect mapping of objects in the reconstructed image reducing 
the accuracy of dose calculation.(12-13) ViewRay corrects for image distortion across the field 
of view, and the accuracy was evaluated here through the motion phantom study. Finally, in 
vivo organ motion assessment in canines has been performed as a validation of the imaging 
workflow and a presentation of in vivo motion quantification. The built in autocontouring and 
beam gating is left to future studies, as we focus on the imaging alone by testing image stability 
and automatic tracking with an independent tool. 

 
II.	 MATERIALS AND METHODS

A. 	 Phantom studies
MR imaging characteristics of the ViewRay system were assessed using the American College of 
Radiology (ACR) phantom and its protocol (http://www.acr.org) which includes recommended 
acceptance criteria for clinical sequences (Table 1).(14-15) Images of the ACR phantom were 
acquired using a head coil (which conforms best to the phantom for reproducibility), following 
the ACR scanning instructions. Both ACR T1 and T2-weighted sequences made available in the 
MR-only mode were acquired. The scan time for the T1 and T2-weighted sequences were 53 min 
and 76 min, respectively. These scans included 25 and 9 averages, respectively, to account for 
the relatively low signal in a 0.35 T magnet. The high number of averages (resulting in long 
scan times) has been established for ACR phantom testing with ViewRay in a previous study.(16)  

http://www.acr.org
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While these sequences are available to the user in MR-only mode for functional testing of the 
machine, the clinically available sequences, in fact, have a combination of T1 and T2 weight-
ings. Measurements were performed monthly over a period of seven months (with an additional 
two instances in the first month). In all, nine ACR measurements are performed. The images 
were analyzed and the results were compared with the ACR acceptance levels. 

B. 	 Motion phantom studies
The first study of our ability to image and measure motion was performed in a phantom setting. 
A cylindrical MR-compatible phantom with an open end was designed. The target subject to 
motion was a silicon di-electric gel poured into a beaker. Motion was provided by the motor from 
the QUASAR Respiratory Motion Phantom (Modus Medical Devices Inc., London, Canada), 
a phantom designed for quality assurance involving moving targets (e.g., 4D CT, respiratory 
gating). A plastic rod connected the target to the drive assembly. The motor was situated in the 
vault with the magnetic field present at all times. As the motor should not interfere with MR 
imaging nor should the magnetic field complicate the motor’s operation, the motor was placed 
at the end of the treatment couch where the magnetic field is minimized. To mitigate RF noise 
from the motor, it was securely fastened in a wooden box, wrapped on the inside and outside 
with copper foil to create a Faraday cage. A wire was connected to ground electric currents. 
The target was driven in a sinusoidal motion pattern in a single dimension with total peak to 
trough displacement of 40 mm. The duration of each cycle (cycle length) was varied from 3 to 
9 s per cycle (in 1 s increments).

Images were acquired in the sagittal orientation in one plane along the axis of the cylindri-
cal target with known area of 3.9 cm2. The imaging sequence tested here is the TrueFISP pulse 
sequence, capable in general of rapid imaging of six frames per second.(17) In the ViewRay 
iteration, four frames per second are possible. TrueFISP employs a balanced gradient wave-
form which returns signal to the same phase it had before starting a gradient sequence. A 
27 cm × 27 cm field-of-view (FOV) was utilized with a 1491 Hz/pixel bandwidth and 3.5 × 
3.5 × 10.0 mm pixel size. The TR was 2 ms with a TE of 0.86 ms. Two averages were used to 
form each frame. In the current treatment planning and delivery software, cine MR imaging 
(rapid frame rate planar imaging) was only possible in the treatment mode. Therefore, a mock 
treatment plan was created for the purpose of enabling treatment delivery to allow for imaging.

An independent morphological thresholding-based automatic segmentation software devel-
oped at our institution processed the images to locate the target.(18) A binary image was created 
with empirically determined thresholds. Morphological processing via erosion and dilation 
isolated the target from random noise in the image and restored the object to its original size. 
The centroid position of each contour was used as an estimate of target position in each frame of 
the MR images. The centroid positions along the direction of motion were fitted to a sinusoidal 
shape using the MATLAB curve fit tool (MathWorks, Natick, MA) to test the ability of the imag-
ing system to accurately portray target motion. In the equation of fit, an amplitude (A), angular 
frequency (B), phase (C), and background term (D) were allowed (y = A sin(Bx + C) + D).  
The curves were assessed for goodness of fit by the sum of squared residuals, R-square, adjusted 
R-square, and root-mean-square error.  
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C. 	 Canine patients
Phantom studies were followed up with in vivo imaging in canine subjects as part of a study 
to characterize the extent of motion visible in CT and MR. Four dogs were subject to pre- 
and postcontrast CT, 4D CT, and ViewRay 3D/cine imaging. Subjects were anesthetized and 
exhibited free breathing. They were localized in Vac-Lock bags (Elekta Medical Intelligence, 
Atlanta, GA) which conform to the canine patient to aid with patient setup. All imaging was 
performed in the same evening. Six sites (two sites were examined in two of the animals) 
were indicated by the veterinary resident for study based on his priorities for the animal’s care 
and interest in local motion. Though two animals contributed multiple sites to the study, the 
distinct sites represented regions of varying MR contrast, enabling a wider range of targets for 
study at the cost of independence between the six sites. After completion of the 4D CT, the 
subjects were transported to ViewRay while a treatment plan for the purposes of imaging only 
was devised. The canines received no radiation dose as the unit had not yet received the Co-60 
sources at the time of the study. A 3D pilot volume, high resolution volume, and cine based 
on the same TrueFISP sequence described above were performed. The impact of the residual 
nonparamagnetic CT contrast was not considered since contrast was already diminished at the 
time of the 4D CT (a few minutes postinjection) compared to the MR imaging (an hour and 
a half postinjection). Furthermore, contrast would be concentrated in the urinary tract at the 
time of ViewRay scanning. The acquired sagittal slices were chosen by the veterinary resident 
based on maximizing the inclusion of organs subject to motion. The sites chosen for contouring 
(liver, kidney, gross target volume) were those of clinical interest to the veterinarians and those 
sufficiently characterized for the automatic morphological processing contouring algorithm 
to process. Resultant cine images were exported into video which was loaded into MATLAB 
for processing.(19) Automatic contours were then obtained from the morphological processing 
based tool described above. 

To supplement the organ motion assessment found by the automatic approach, manual con-
touring was also performed. The manual contours were generated by hand under the direction 
of the veterinary resident. Once obtained, the manual and automatic trajectories were acquired 
equivalently, by using the contour centroid as a marker of position.

Agreement between the two techniques would lend credibility to the results as they would 
be obtained in two different ways. Therefore, the two sets of contours (manual and automatic) 
were then compared via the Dice similarity coefficient (a measure of contour similarity based 
on overlap). The correlation between contour centroid positions via the two methods was also 
calculated, and a two-sided Student’s paired t-test testing the null hypothesis of no correlation 
was performed. Other criteria included the sensitivity (the fraction the manual contour in the 
automatic contour) and the positive predictive value (the fraction of the automatic contour in 
the manual contour). Finally, the modified Hausdorff distance, an average distance between 
points along a contour, was calculated.(20) Mean and maximum deviations in target position 
were analyzed as well, as has been examined previously in the literature.(21) Finally, the cor-
relation coefficient between the two methods was examined.
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III.	 RESULTS 

A. 	 Phantom studies
A summary of the ACR test results is given in Table 1. Mean values for each ACR MRI phantom 
measurement was within the acceptable limits for the T1 and T2 ACR scan protocols available in 
the MR-only mode. Minimum and maximum results for each test are also presented in Table 1, 
where it is shown that, for two of the T1 distance measurements and two slice position accuracy 
tests, a maximum value was outside of tolerance, but average results were well within the limits.

Table 1.  Results and statistics of the ACR phantom analysis results over nine time points using the head coil. Results 
are shown for the T1- and T2-weighted ACR scanning protocols provided by ViewRay in the MR-only mode. 

			   Average		  Min.	 Max. 
	 Test	 Tolerance	 Value	 SD	 Value	 Value

	 Localizer Geometry Accuracy (mm) 	 148±2	 147.5	 0.9	 146.5	 148.9
 					   

T2 Image Test
	High Contrast Spatial Resolution (mm)
	 Upper Left	 ≤1.0	 0.9	 0.04	 0.9	 1.0
	 Lower Right	 ≤1.0	 0.9	 0.04	 0.9	 1.0
	 Slice Thickness Accuracy	 5.0±0.7	 5.0	 0.3	 4.6	 5.5
	 Slice Position Accuracy (mm)					   
	 Slice 1	 ≤5	 0.0	 1.4	 -2.8	 2.1
	 Slice 11	 ≤5	 -1.8	 0.9	 -3.9	 -0.7
	 Percent Signal Ghosting 	 <0.025	 0.0004	 0.0005	 0.0	 0.001
	 Low Contrast Detectability	 ≥9	 22.3	 3.3	 17	 25
 					   

T1 Image Test
	 Geometry Accuracy (mm)					   
	 Slice 1					   
	 Top/Bottom Distance	 190±2	 190.0	 0.7	 189.0	 190.9
	 Left/Right Distance	 190±2	 190.6	 0.5	 190.1	 191.4
	 Slice 5					   
	 Top/Bottom Distance	 190±2	 190.7	 0.6	 189.8	 192.0
	 Left/Right Distance	 190±2	 190.4	 0.5	 189.6	 191.3
	 Top Left/Bottom Right Distance	 190±2	 190.5	 1.7	 189.6	 195.2
	 Top Right/Bottom Left Distance	 190±2	 191.4	 1.9	 189.2	 196.6
	 High Contrast Spatial Resolution					   
	 Upper Left	 ≤1.0	 0.9	 0.04	 0.9	 1.0
	 Lower Right	 ≤1.0	 0.9	 0.04	 0.9	 1.0
	 Slice Thickness Accuracy (mm)	 5.0±0.7	 5.0	 0.3	 4.5	 5.5
	 Slice Position Accuracy (mm)					   
	 Slice 1	 ≤5	 0.5	 2.1	 -2.5	 5.2
	 Slice 11	 ≤5	 -0.8	 2.7	 -3.7	 6.4
	 Image Intensity Uniformity	 >87.5%	 91.8%	 2.5%	 87.6%	 94.4%
	 Percent Signal Ghosting 	 <0.025	 0.015	 0.007	 0.001	 0.022
	 Low Contrast Detectability	 ≥9	 28.6	 3.5	 23	 33
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B. 	 Motion phantom studies
Target motion was clearly visualized in the resulting images. Over the range of 3 to 9 s per 
cycle, the frame rate provided by ViewRay was sufficient to qualitatively visualize target motion. 
Figure 1 indicates example images of the target at both ends of its motion. Figure 2 plots the 
trajectory of the target along the dimension of motion with a fit for the most rapid three seconds 
per cycle motion (Fig. 2(a)) and the slowest 9 s per cycle motion (Fig. 2(b)). Each data point 
represents the component along the direction of motion of the automatic contour centroid coor-
dinate. Across the range of frequencies, excellent agreement is observed. Table 2 demonstrates 
the sinusoidal fitting parameters for all target rates. For the 7 s per cycle curve fit, a data point 
seemed to be skipped in the motion quantification, possibly due to rounding in time if the MR 
frames are not precisely 0.25 s apart. This led to the slightly larger sum of squared residuals. 
The R-square value suggests excellent agreement nevertheless. Figure 3 plots the measured 

Fig. 2.  The measured target position along the dimension of motion in each frame. The automatic contour’s centroid was 
used as a mark of position in each frame. The solid curve represents the sinusoidal curve fit generated with MATLAB. 
Figure 2(a) shows the motion quantification for the most rapid trajectory (3 s per cycle), while Fig. 2(b) represents the 
slowest trajectory (9 s per cycle). The target was driven at an amplitude of 20 mm.

Fig. 1.  Visualization of a cylindrical target along its long axis at the thickest region during target motion imaged with 
0.25 s temporal resolution. The two images show both ends of the sinusoidal trajectory.
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angular frequency from the curve fit along with the theoretical angular frequency calculated 
from 2π/T, where T is the period of motion (in units of frame numbers).

C. 	 Canine patients
Figure 4 demonstrates the contouring (both automatic and manual) on sample images for the 
canines. The liver, kidneys, stomach, and bowel among other abdominal organs were clearly 
visible in the cine imaging, suggesting the ability to contour partially based on image contrast. 
Temporal resolution in the images was sufficient to visualize the beating heart and to observe car-
diovascular pulsatility in larger vessels, as well. Figure 5 demonstrates the trajectories the organs 
were subject to, determined manually and via the independent automatic contouring approach. 

Table 3 shows the mean and maximum deviation between the automatic and manual motion 
quantification methods across the frames used. The mean difference in all cases was under 
2 mm. Furthermore, similarity metrics including sensitivity was high at 0.88 (Table 4). The 
Dice similarity coefficient averaged to > 0.9, showing a high amount of overlap. The PPV was 
0.95. The modified Hausdorff distance mean value of 2.5 mm indicates that degree of proxim-
ity between contour boundaries. Table 5 demonstrates correlation coefficients (twelve total for 

Fig. 3.  The expected angular frequency of simulated target sinusoidal motion is plotted, along with the measured based 
on segmentation of the images. The expected angular frequency is calculated as 2π/T, where T is the known period of 
motion. The measured result comes from the curve fit.

Table 2.  For each of the cycle lengths at which the simulated cylindrical target was driven, the resulting images 
were segmented and the centroid positions plotted against frame number were fitted to a sinusoidal curve. The fitting 
parameters from the MATLAB sinusoidal curve are presented here. The target was driven with a 20 mm amplitude 
at 3–9 s per breath.

			   Measured
			   Angular	 Sum of
	Cycle Length	 Amplitude	 Frequency	 Squared		  Adjusted	 Root-mean-
	(s per breath)	 (mm)	 (radians/s)	 Residuals	 R-square	 R-square	 square Error

	 3	 20.26	 0.516	 1.99	 0.9999	 0.9999	 0.176
	 4	 20.36	 0.389	 1.21	 0.9999	 0.9999	 0.131
	 5	 20.37	 0.311	 1.22	 0.9999	 0.9999	 0.137
	 6	 20.42	 0.259	 1.85	 0.9999	 0.9999	 0.169
	 7	 20.17	 0.225	 46.1	 0.9966	 0.9964	 0.848
	 8	 20.35	 0.195	 1.70	 0.9999	 0.9999	 0.163
	 9	 20.45	 0.173	 1.37	 0.9999	 0.9999	 0.147
	 Average	 20.34
	 SD	 0.096
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the two dimensions in the six sites) and the p-value from a two-sided paired Student’s t-test 
tested against the null hypothesis of no correlation. Of the 12 correlation coefficients presented 
in Table 5, seven measurements are deemed high correlation coefficients (defined as greater 
than 0.6). Three measurements exhibited more moderate correlation (0.3 to 0.6), and only two 
exhibited a weak correlation coefficient of less than 0.3. Moreover, 10 of them are statistically 
significant with a p-value < 0.05. In the two cases in which the null hypothesis failed to be 
rejected, little motion existed (anterior–posterior dimension of motion).

Fig. 4.  Example cine images (acquired with temporal resolution of 0.25 s) for the six sites studied. Morphological-based 
automatic contours are shown in red, while manual contouring is demonstrated in yellow.

Fig. 5.  Trajectories of the same structures as for Fig. 4 in the craniocaudal direction. Data points are the centroid of the 
automatic contour (the craniocaudal coordinate). Results are shown for manual and automatic contours.
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IV.	 DISCUSSION

Imaging characteristics, exemplified by the ACR phantom analysis procedure, were consistent, 
with repeatable passing results. Performance did not systematically vary across the time period 
investigated. This stability indicated reliable imaging ability of a quality sufficient for radio-
therapy guidance upon which to build an image-guided radiotherapy program. The numerical 
results presented in Table 1 will serve as important baselines in order to design monthly quality 
assurance procedures, including action levels and test frequencies. Other institutions interested 
in the imaging quality of ViewRay can now better understand the quantitative abilities via the 

Table 3.  The mean and maximum deviation across all frames between two motion quantification methods (manual/
automatic) for the six canine imaging sites. Position in both dimensions is determined by the centroid position of the 
contours.

	 Craniocaudal Difference	 Anterior–Posterior Difference
	 (mm)	 (mm)
	Site Number	 Site Type	 Mean	 Maximum	 Mean	 Maximum

	 Site 1	 GTV	 0.4	 1.3	 0.5	 1.5
	 Site 2	 Liver	 0.9	 2.6	 1.5	 3.5
	 Site 3	 GTV	 1.3	 2.5	 1.0	 3.6
	 Site 4	 Kidney	 1.9	 4.0	 1.1	 2.1
	 Site 5	 GTV	 1.2	 3.9	 1.4	 3.6
	 Site 6	 Kidney	 1.6	 3.7	 1.4	 2.2
	 Average		  1.2	 3.0	 1.2	 2.8

Table 4.  Similarity metrics averaged across imaging frames between the manual and automatic contour generation 
approaches. The ± in the final row indicates the mean ± standard deviation (SD) across the sites.

	 	 	 	 Modified
	 Dice		  Positive	 Hausdorff
	 Similarity		  Predictive	 Distance
	 Site	 Site	 Coefficient	 Sensitivity	 Value	 (cm)
	Number	 Type	 Mean	 SD	 Mean	 SD	 Mean	 SD	 Mean	 SD

	 Site 1	 GTV	 0.94	 0.01	 0.89	 0.03	 0.99	 0.01	 0.17	 0.04
	 Site 2	 Liver	 0.89	 0.01	 0.90	 0.02	 0.88	 0.02	 0.27	 0.03
	 Site 3	 GTV	 0.91	 0.02	 0.90	 0.02	 0.93	 0.03	 0.22	 0.04
	 Site 4	 Kidney	 0.91	 0.02	 0.85	 0.03	 0.99	 0.01	 0.23	 0.04
	 Site 5	 GTV	 0.92	 0.01	 0.88	 0.02	 0.96	 0.02	 0.41	 0.05
	 Site 6	 Kidney	 0.92	 0.01	 0.87	 0.02	 0.98	 0.01	 0.21	 0.03
	Average	 0.91±0.01	 0.88±0.02	 0.95±0.04	 0.25±0.08

Table 5.  The correlation between the position estimates of the two contouring methods in the two dimensions of 
motion was investigated, and the correlation coefficients are presented for each of the six sites. 

		  p-value Testing Null
		  Hypothesis of no
	 Correlation Coefficient	 Correlation
	Site Number	 Site Type	 Craniocaudal	 Anterior–Posterior	 Craniocaudal	 Anterior–Posterior

	 Site 1	 GTV	 0.97	 0.39	 <1×10-10	 9.5×10-3

	 Site 2	 Liver	 0.63	 0.22	 1.2×10-5	 0.17
	 Site 3	 GTV	 0.96	 0.50	 <1×10-10	 <1×10-10

	 Site 4	 Kidney	 0.92	 0.90	 <1×10-10	 <1×10-10

	 Site 5	 GTV	 0.37	 0.04	 0.01	 0.8
	 Site 6	 Kidney	 0.98	 0.62	 <1×10-10	 1.3×10-6
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industry-wide ACR MRI phantom tests. The ACR scans are not directly applicable to the clini-
cally available scans given their long scan times compared to the rapid imaging required for 
patient setup. Nevertheless, these tests help identify performance changes in system components, 
including the imaging coils or shim coils for the maintenance of magnetic field homogeneity. 
Drawbacks of the 0.35 T imager included minor breakdown in the steady-state MR signal 
established with the TrueFISP sequence, which occasionally appeared as dark, curved bands 
across the image near the corners. TrueFISP being the only pulse sequence clinically available 
also limits the scope of the technology for the time being, but does meet the radiotherapy need 
for rapid visualization instead of high-contrast or high-resolution tumor imaging. Geometric 
accuracy, though difficult to ensure in MR, was confirmed within 1 mm over the central 20 cm 
diameter sphere and within 2 mm over the central 35 cm diameter sphere.

The phantom experiments demonstrated that the cine images were true to the real motion 
of the phantom over the periods of 3 to 9 s for motion amplitudes of 40 mm. Quantitatively, 
the trajectories fitted to sinusoidal motion with a background term agreed very well with the 
known motion parameters. Physical timing was preserved in the motion output with little tem-
poral inaccuracy in the measured positions. Each parameter in the curve fits indicated good 
agreement, with the amplitude of motion measured accurately (to within 0.3 mm agreement 
on average with the known 20 mm amplitude, an accuracy of better than 2%). Measured and 
expected angular frequency versus target rate curves laid directly upon one another. In only 
one case (7 s per cycle) was the R-square value anything under 0.9999. These results indicate 
a degree of confidence a user can have in the temporal and spatially accurate representations 
ViewRay exports in its images as they are applied to image-guided radiotherapy. 

In vivo images were examined for sufficient quality to automatically extract motion informa-
tion. Doing so with an independent automatic contouring approach demonstrated the possibility 
of real-time motion quantification. An agreement with manual contouring indicates that these 
rapidly obtained contours are similar to those that would be obtained manually. Therefore, we 
are more confident in the motion quantification, since it was measured independently via two 
methods. The results presented here are, nevertheless, preliminary with four canine subjects and 
represent a first iteration in the process of characterizing the tracking capabilities of the ViewRay 
MR-imaging component. The reproducibility of the results requires further investigation, which 
will come with future animal imaging studies and human patients. Of course, the canine imaging 
here will not translate directly to human imaging. The larger size of a human patient can result 
in loss of signal far from the MR coils near the center of the body. Furthermore, imaging under 
anesthesia is not representative of human patients undergoing radiotherapy. Nevertheless, the 
initial images are promising for potential IGRT with human patients.

Initial experiences with the workflow (a major purpose of canine study) validate the integra-
tion of imaging and therapy provided by ViewRay. Future studies might present a similar study 
with human subjects, who will benefit from not only the increased experience with ViewRay 
workflow, but from the knowledge of which organs can be expected to be visualized. 

 
V.	 CONCLUSIONS

The images acquired with ViewRay demonstrated a consistent performance, as well as an 
accurate visualization of target motion, both in-phantom and in vivo. Image performance did 
indeed pass the ACR criteria. This quantitative assessment of image quality translated to images 
representing the physical trajectories underwent by a test object under controlled conditions. 
The ViewRay system successfully captured motion in this case.

In the canine studies, targets including GTV, as well as other abdominal soft tissue structures, 
benefitted from MR contrast and were capable of clear segmentation. The ability alone to cre-
ate automatic contours indicated a suitable degree of image contrast for target localization, a 
positive result for the underlying imaging as we move forward toward investigating the built-in 
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automatic contouring in ViewRay. Near real-time imaging during treatment is of sufficient 
spatial accuracy and temporal resolution to track targets as they move, and suggests the ability 
for superior visualization in motion management. 
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