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Abstract

Aim To study the influence of dual time point 18F-FDG

PET/CT in textural features and SUV-based variables and

their relation among them.

Methods Fifty-six patients with locally advanced breast

cancer (LABC) were prospectively included. All of them

underwent a standard 18F-FDG PET/CT (PET-1) and a

delayed acquisition (PET-2). After segmentation, SUV

variables (SUVmax, SUVmean, and SUVpeak), metabolic

tumor volume (MTV), and total lesion glycolysis (TLG)

were obtained. Eighteen three-dimensional (3D) textural

measures were computed including: run-length matrices

(RLM) features, co-occurrence matrices (CM) features, and

energies. Differences between all PET-derived variables

obtained in PET-1 and PET-2 were studied.

Results Significant differences were found between the

SUV-based parameters and MTV obtained in the dual time

point PET/CT, with higher values of SUV-based variables

and lower MTV in the PET-2 with respect to the PET-1. In

relation with the textural parameters obtained in dual time

point acquisition, significant differences were found for the

short run emphasis, low gray-level run emphasis, short run

high gray-level emphasis, run percentage, long run

emphasis, gray-level non-uniformity, homogeneity, and

dissimilarity. Textural variables showed relations with

MTV and TLG.

Conclusion Significant differences of textural features

were found in dual time point 18F-FDG PET/CT. Thus, a

dynamic behavior of metabolic characteristics should be

expected, with higher heterogeneity in delayed PET

acquisition compared with the standard PET. A greater

heterogeneity was found in bigger tumors.

Keywords Dual time point 18F-FDG PET/CT � Breast
cancer � Tumor heterogeneity � Textural features

Introduction

Tumors are heterogeneous mixtures of cells, which differ

in their morphology, genetics, and biological behavior.

This complexity may underlie the inability of current

therapies to significantly impact patient outcome [1].

Measuring tumor heterogeneity is not simple, since cellular

diagnostic techniques, such as biopsies, are invasive and do

not represent the full extent of genotypic and phenotypic

tumor variations. Although intratumoral heterogeneity

occurs at very small spatial scales, its macroscopic signa-

tures can be observed using diagnostic imaging techniques.

The advantages of using imaging techniques rely on the

fact that they are non-invasive and take into account the

whole tumor [2, 3].

The term ‘textural analysis’ refers to a variety of

mathematical methods for quantifying the spatial distri-

bution of voxel intensities in images [3, 4]. Those methods

allow for an objective evaluation of the visible tumor

properties, including heterogeneity. Many different textural

analysis methods have been developed over the recent
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decades and used to define imaging biomarkers of rele-

vance in oncology, named as ‘‘radiomics’’ [3].

Specifically in breast cancer, tumor metabolism assessed

by 18F-FDG PET/CT has shown multiple relations with

immunohistochemical and histopathological factors [5–7].

Based on PET which reflects the tumor’s biology, it is

expected to provide substantial information about biologi-

cal heterogeneity [4].

The two most common approaches to measure hetero-

geneity in PET are non-spatial methods (NSMs) and spatial

textural methods (STMs). NSMs are based on the analysis

of histograms constructed using the standard uptake value

(SUV), and do not take into account any spatial informa-

tion [8, 9]. On the contrary, STMs use the spatial distri-

bution of SUV in their computations. According to the type

of spatial dependence, STMs can be divided in local and

regional methods. Local STMs describe relationships

between pairs of voxels within the tumor. The most com-

monly family of methods used is based on the so-called co-

occurrence matrices (CMs) [10]. Regional STMs consider

groups of voxels with the same intensity as connected

volumes. Examples of those methods are those based on

the so-called run-length matrices (RLMs) [11].

Based on the fact that a higher glycolytic activity of

tumor tissues occurs between 3 to 5 h after administration

of 18F-FDG, dual time point acquisition has been used to

improve tumor detectability and optimized the characteri-

zation of breast lesions [12, 13]. However, although the

evolution in time of tumor activity metabolic variables, as

SUV, has been described in the literature [9], no previous

study has assessed the changes in texture parameters in a

dual time point acquisition. Moreover, tumor volume is a

conditioner for obtaining textural information [14].

Based on the limited reported evidence, the aim of this

work was to study the differences of local and regional

STMs textural features and SUV-based variables obtained

in a dual time point 18F-FDG PET/CT and their relations,

in patients with breast cancer.

Materials and methods

Patients

All reported patients were participants of an ongoing

prospective study. The study was approved by the Institu-

tional Review Board and written informed consent was

obtained from all patients.

The inclusion criteria for our study were: (1) newly

diagnosed breast cancer with clinical indication of neoad-

juvant chemotherapy (NC), (2) lesion uptake higher than

background, (3) absence of distant metastases confirmed by

other methods previous to the request of the PET/CT for

staging, and (4) breast lesion size of at least 2 cm.

FDG PET/CT acquisition

All PET/CT examinations were performed on the same

dedicated whole-body PET/CT machine (Discovery DSTE-

16s, GE Medical Systems) in three-dimensional (3D)

mode. The first examination was performed 60 min after

intravenous administration of approximately 370 MBq of

18F-FDG (PET-1). The second examination was performed

3 h after injection, with a mean time of 127 min between

the two phases (PET-2, range 112–138 min). Both acqui-

sitions were performed following a standardized protocol

[5].

The image voxel size was 5.47 mm 9 5.47 mm 9

3.27 mm with a slice thickness of 3.27 mm and no gap

between slices. Matrix size was 128 9 128.

Image analysis

PET images in DICOM (Digital Imaging and Communi-

cation in Medicine) files were imported into the scientific

software package Matlab (R2015b, The MathWorks, Inc.,

Natick, MA, USA) and pre-processed using in-house semi-

automatic image segmentation software. The tumor was

first manually located in a 3D box and then automatically

segmented in three dimensions. Then, metabolic parame-

ters were obtained as SUV max, SUVmean, SUVpeak,

metabolic tumor volume (MTV), and total lesion glycolysis

(TLG).

SUVmax is defined as the maximum uptake value in the

segmented tumor, which reflects maximum tissue concen-

tration of FDG in the volume of interest (VOI). SUVmean

reflects the average uptake value in the VOI. SUVpeak is

computed as the maximum average SUV taking a cube of

3 9 3 9 3 voxels in the VOI. MTV is the volume of the

VOI after segmentation. TLG is calculated as the product

of SUVmean by MTV.

The formula used for the SUV computations was as

follows:

SUV ¼ SV � RS � W
RTD � DFð Þ � e �Ln 2ð Þ � Et

HFð Þ ;

where SV is the stored value, RS the rescaled slope, W is

the patient weight, RTD is the radiopharmaceutical injec-

ted dose and HF its half-life, DF is the decay factor, and Et

is the elapsed time for each slice processed. This formula

was selected as it allows comparing raw PET-1 and PET-2

data, since it takes into account the elapsed time from dose

injection.
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The regions in the 3D box equal to or above 40% the

SUVmax were selected to automatically delineate the

volume of interest (VOI). In case of central hypometabo-

lism and a metabolic activity below the selected threshold

value, this volume was considered as necrosis and excluded

from the volume assessment. In case of multiple breast

lesions (multicenter or multifocal cancer), those with the

highest FDG uptake were selected for the analysis.

A set of 18 3D textural features was automatically

computed using the Matlab software [15]. These measures

provide a (local or regional) characterization of the spatial

relations between voxels within the tumour. Our choice of

textural measures is listed in Table 1. RLM characterizes

large areas within the tumor (groups of voxels) to provide

information of regional heterogeneity [11]. Each cell in

RLMs (i,j) was computed as the number of runs of length j

Table 1 Definition of the

heterogeneity measures

computed in this study

Type of measure Name Formula

Co-occurrence matrix Entropy (ENT)
�
PN

i¼1

PN

j¼1

CMði; jÞ � ln CMði; jÞ½ �

Co-occurrence matrix Homogeneity (HOM) PN

i¼1

PN

j¼1

CMði;jÞ
1þði�jÞ2

Co-occurrence matrix Contrast (CON) PN

i¼1

PN

j¼1

CMði; jÞ � ði� jÞ2

Co-occurrence matrix Dissimilarity (DIS) PN

i¼1

PN

j¼1

CMði; jÞ � i� jj j

Co-occurrence matrix Uniformity (UNI) PN

i¼1

PN

j¼1

CMði; jÞ½ �2

Run-length matrix Long run emphasis (LRE)
1
nr

PN

i¼1

PM

j¼1

RLMði; jÞ � j2

Run-length matrix Short run emphasis (SRE)
1
nr

PN

i¼1

PM

j¼1

RLMði;jÞ
j2

Run-length matrix Low gray-level run emphasis (LGRE)
1
nr

PN

i¼1

PM

j¼1

RLMði;jÞ
i2

Run-length matrix High gray-level run emphasis (HGRE)
1
nr

PN

i¼1

PM

j¼1

RLMði; jÞ � i2

Run-length matrix Short run low gray-level emphasis (SRLRE)
1
nr

PN

i¼1

PM

j¼1

RLMði;jÞ
i2 � j2

Run-length matrix Short run high gray-level emphasis (SRHGE)
1
nr

PN

i¼1

PM

j¼1

RLMði;jÞ � i2
j2

Run-length matrix Long run low gray-level emphasis (LRLGE)
1
nr

PN

i¼1

PM

j¼1

RLMði;jÞ � j2
i2

Run-length matrix Long run high gray-level emphasis (LRHGE)
1
nr

PN

i¼1

PM

j¼1

RLMði; jÞ � i2 � j2

Run-length matrix Gray-level non-uniformity (GLNU)
1
nr

PN

i¼1

PM

j¼1

RLMði; jÞ
 !2

Run-length matrix Run-length non-uniformity (RLNU)
1
nr

PM

j¼1

PN

i¼1

RLMði; jÞ
� �2

Run-length matrix Run percentage (RPC) nrPN

i¼1

PM

j¼1
RLMði;jÞ � j

Energy Specific energy (SE) r jruj2dVð Þ
1
2

r juj2dVð Þ
1
2

Energy Total p-energy (TE) r jruj2dVð Þ
1
2

max
g2u

For CM measures, CM (i,j) stands for the co-occurrence matrix, and N is the number of classes of gray

levels taken (in this study 16). For RLM measures, RLM (i, j) is the run-length matrix, nr is the number of

runs, N is the number of classes of gray levels, and M is the size in voxels of the largest region found
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formed by voxels of intensity in box i in all the 13 possible

directions in 3D.

The CMs describe the arrangements of pairs of elements

(voxels) within 2D images [16]. As they measure only

relations between two voxels at a time, they are usually

considered to provide information on the local texture of

images. Our CMs were constructed by including the rela-

tionships between voxels in all of the 13 possible directions

in 3D [17, 18] taking only adjacent voxels. Thus, the

relations with the 26 neighbours of each voxel in 3D were

considered.

The energies are STMs based on absolute gradients

obtained from SUV levels. They are computed as the sum

of all the spatial SUV gradient variations within the seg-

mented tumor. The spatial SUV gradient is a vector com-

puted on every tumor voxel by computing the differences

between the SUV values of the adjacent voxels in 3D. Two

different energies were computed. The spatial energy (SE)

is independent of SUVmax, as it is normalized by the norm

of all the SUV levels within the tumor. This is an intensive

variable measuring the level of variations in SUV per unit

of volume and unit of SUV. The total energy (TE) is

normalized by SUVmax, accounting for the spatial varia-

tions of the SUV within its range of values. It is an

extensive variable, since enlarging the domain leads to

larger values of the quantity (see Table 1).

Statistical analysis

Statistical analysis was performed using SPSS software (v.

22.0.00 IBM, New York, NY, USA). Qualitative variables

were summarized using percentages and frequencies, and

quantitative variables using mean and standard deviation.

Spearman’s correlation coefficient was considered to

study the relation between textural and metabolic variables

due to the non-parametric nature of the metabolic variables.

To study the repeated measures of textural variables,

T test was used for dependent samples and Wilcoxon test in

the non-parametric case.

For statistical analysis, a categorical separation of

lesions attending to their MTV was performed (group I:

MTV B10 cm3 and group II: MTV[ 10 cm3).

Table 2 Metabolic tumor

variables obtained in PET-1 and

PET-2 and differences

Metabolical variables mean ± SD (PET-1) mean ± SD (PET-2) T/Z (p value)

SUVmax 9.16 ± 5.76 10.81 ± 7.64 -5.40 (0.000)

SUVpeak 7.11 ± 4.56 8.36 ± 6.11 -5.13 (0.000)

SUVmean 5.59 ± 3.54 6.60 ± 4.60 -5.88 (0.000)

MTV 16.59 ± 20.13 15.50 ± 18.93 2.53 (0.014)

TLG 110.26 ± 209.62 125.62 ± 240.87 0.36 (0.721)

ENT 4.98 ± 0.21 4.96 ± 0.26 0.63 (0.533)

HOM 0.23 ± 0.04 0.22 ± 0.05 2.42 (0.019)

CON 28.05 ± 10.09 29.61 ± 11.13 -1.81 (0.075)

DIS 4.12 ± 0.83 4.25 ± 0.89 -2.11 (0.039)

UNI 0.01 ± 0.003 0.009 ± 0.005 -1.10 (0.279)

SRE 0.62 ± 0.08 0.66 ± 0.08 -3.47 (0.001)

LRE 14.33 ± 24.89 12.70 ± 27.25 2.45 (0.014)

LGRE 0.19 ± 0.04 0.18 ± 0.04 2.38 (0.021)

HGRE 53.55 ± 8.75 55.28 ± 8.96 -1.77 (0.083)

SRLGE 0.12 ± 0.04 0.12 ± 0.03 1.48 (0.721)

SRHGE 32.91 ± 9.50 36.66 ± 8.50 -3.03 (0.004)

LRLGE 2.68 ± 5.43 3.35 ± 10.95 -0.58 (0.561)

LRHGE 584.87 ± 750.78 458.70 ± 473.51 -2.55 (0.011)

GLNU 5.82 ± 4.57 5.48 ± 4.38 -1.98 (0.047)

RLNU 22.95 ± 15.48 24.04 ± 16.63 -1.09 (0.281)

RPC 0.49 ± 0.12 0.53 ± 0.13 -4.25 (0.000)

SE 0.12 ± 0.03 0.13 ± 0.02 -2.44 (0.018)

TE 8.34 ± 2.41 8.11 ± 2.40 1.56 (0.125)

A significance level of p value\0.05 was used in all statistical tests. Correlation coefficient values over

0.75 were taken as indicators of strong correlation

SD standard deviation, SUV standard uptake value, MTV metabolic tumor volume, TLG total lesion gly-

colysis, T value obtained from T test for dependent samples, Z value obtained from Wilcoxon test in the

non-parametric case. A negative T/Z value means that the value obtained in PET-1 was lower that its

correspondent value in PET-2
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A significance level of p value\0.05 was used in all

statistical test. This p value was corrected when needed.

Correlation coefficient values over 0.75 were taken as

indicators of strong correlation.

Results

Fifty-six patients satisfied the inclusion criteria. The mean

age ± SD was 52.75 ± 13.68 years. Histologically, 53

tumors were ductal invasive and three were lobular inva-

sive carcinomas.

Significant differences were found between the mean

values of SUV-based parameters and MTV obtained in the

dual time point PET/CT, with higher values of SUV-based

variables and lower MTV in the PET-2 with respect to the

PET-1. No significant differences were observed for the

TLG.

As to the textural parameters, significant differences

were found for the SRE (short run emphasis), LGRE (low

gray-level run emphasis), SRHGE (short run high gray-

level emphasis), LRHGE (long run high gray-level

emphasis), RPC (run percentage), LRE (long run empha-

sis), GLNU (gray-level non-uniformity), HOM (homo-

geneity), DIS (dissimilarity), and SE which means that

PET-2 showed, in general terms, larger heterogeneity than

PET-1. The detailed results are shown in Table 2.

Most textural variables with significant changes in PET-

2 with respect to PET-1 showed lower values in PET-1.

Only three textural variables (HOM, LRE, and LGRE)

suffered a decrease in their values in PET-2.

We also studied the association between textural fea-

tures on one side, and SUV- and volume-based variables on

the other. Textural features were found to be associated

only with volume-based variables (MTV and TLG). No

SUV-based variable was significantly associated with

Table 3 Relations of volume-based and textural parameters obtained in PET-1 and PET-2

Textural variables MTV (PET-1) r (p value) TLG (PET-1) r (p value) MTV (PET-2) r (p value) TLG (PET-2) r (p value)

ENT (PET-1) 0.36 (0.007) 0.37 (0.005) 0.40 (0.002) 0.38 (0.004)

HOM (PET-1) 0.83 (0.000) 0.62 (0.000) 0.67 (0.000) 0.46 (0.000)

CON (PET-1) -0.88 (0.000) -0.69 (0.000) -0.74 (0.000) -0.55 (0.000)

DIS (PET-1) -0.88 (0.000) -0.68 (0.000) -0.74 (0.000) -0.54 (0.000)

UNI (PET-1) -0.29 (0.031) -0.36 (0.006) -0.38 (0.003) -0.41 (0.002)

SRE (PET-1) -0.52 (0.000) -0.32 (0.017) -0.37 (0.005) -0.17 (0.222)

LRE (PET-1) 0.91(0.000) 0.68 (0.000) 0.76 (0.000) 0.51 (0.000)

LGRE (PET-1) 0.05 (0.700) -0.14 (0.313) 0.04 (0.785) 0.14 (0.313)

HGRE (PET-1) -0.53 (0.000) -0.38 (0.004) -0.42 (0.001) -0.27 (0.045)

SRLGE (PET-1) -0.05 (0.696) -0.07 (0.613) 0.002 (0.787) -0.002 (0.991)

SRHGE (PET-1) -0.58 (0.000) -0.39 (0.003) -0.50 (0.000) -0.30 (0.027)

LRLGE (PET-1) 0.52 (0.000) 0.33 (0.013) 0.33 (0.014) 0.16 (0.253)

gLRHGE (PET-1) 0.79 (0.000) 0.70 (0.000) 0.71 (0.000) 0.60 (0.000)

GLNU (PET-1) 0.96 (0.000) 0.83 (0.000) 0.88 (0.000) 0.70 (0.000)

RLNU (PET-1) 0.79 (0.000) 0.78 (0.000) 0.80 (0.000) 0.74 (0.000)

RPC (PET-1) -0.87 (0.000) -0.63 (0.000) -0.71 (0.000) -0.46 (0.000)

SE (PET-1) -0.89 (0.000) -0.70 (0.000) -0.77 (0.000) -0.56 (0.000)

TE (PET-1) 0.83 (0.000) 0.81 (0.000) 0.79 (0.000) 0.72 (0.000)

HOM (PET-2) 0.84 (0.000) 0.71 (0.000) 0.70 (0.000) 0.57 (0.000)

DIS (PET-2) -0.89 (0.000) -0.79 (0.000) -0.78 (0.000) -0.66 (0.000)

SER (PET-2) -0.62 (0.000) -0.52 (0.000) -0.48 (0.000) -0.37 (0.000)

LRE (PET-2) 0.91 (0.000) 0.79 (0.000) 0.78 (0.000) 0.65 (0.000)

LGRE (PET-2) 0.11 (0.421) 0.04 (0.769) 0.02 (0.854) -0.06 (0.648)

SRHGE (PET-2) -0.73 (0.000) -0.72 (0.000) -0.65 (0.000) -0.60 (0.000)

LRHGE (PET-2) 0.73 (0.000) 0.78 (0.000) 0.76 (0.000) 0.75 (0.000)

GLNU (PET-2) 0.91 (0.000) 0.84 (0.000) 0.89 (0.000) 0.75 (0.000)

RPC (PET-2) -0.88 (0.000) -0.76 (0.000) -0.75 (0.000) -0.62 (0.000)

SE (PET-2) -0.86 (0.000) -0.79 (0.000) -0.82 (0.000) -0.71 (0.000)

A significance level of p value\0.05 was used in all statistical tests. Correlation coefficient values over 0.75 were taken as indicators of strong

correlation
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textural parameters. Table 3 shows the relation between

volume-based variables obtained from PET-1 and PET-2

and the textural variables of PET-1 and those that showed

significant differences in the PET-2. TE, LRE, LRHGE,

GLNU, RLNU, and HOM showed direct relations with

MTV. On the contrary SE, RPC, ENT (entropy), CON

(contrast), and DIS showed inverse relations with MTV

(Figs. 1, 2). We found a more significant relation between

textural variables obtained from PET-2 and the TLG value

with direct and inverse associations (Figs. 3, 4; Table 3).

With regard to the parallel analysis, dividing the lesions

into two groups attending to the MTV (group I:

MTV B10 cm3 and group II: MTV[10 cm3), significant

relations were found between textural variables with MTV

and TLG. Table 4 summarizes the most significant asso-

ciations in PET-1 MTV. For MTV obtained in PET-2, a

less number of significant and strong relations were found:

group I [PET-2 SE, r = -0.82 (p\ 0.0001), PET-2

GLNU, r = 0.88, (p\ 0.0001)] and group II [PET-2

GLNU, r = 0.80, (p\ 0.0001)].

Figure 5 represents gray-level distribution of voxels for

texture analysis.

Discussion

Assessment of tumor textures, using quantitative features,

has attracted much attention in the medical imaging

research community. However, its use in clinical practice is

not still widespread, probably due to the lack of stan-

dardized and validated methods [3].

PET reports the metabolic tumor cells’ behavior and

thus has interesting properties for imaging inference. It has

been shown that FDG tumor uptake is not only related to an

increased metabolic rate, but also to hypoxia, aggressive-

ness, and cell proliferation [19].

Many ways to quantify tumor’s heterogeneity are

available [3]. The most used ones are the histogram-based

features and the STMs. Histogram-based features rely on

the global computation of tumor heterogeneity taking into

account only the SUV values and not the spatial relations

between voxels within the tumor. Since we were interested

in retaining the spatial information, we used only STMs in

this work to characterize the spatial heterogeneity.

Dual time point 18F-FDG PET/CT has been previously

used to assess the variations of SUV-based parameters

Fig. 1 Relations of textural parameters with the metabolic tumor volume obtained in PET-1 using the log scale that showed positive association

with heterogeneity
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[12, 13, 20, 21]. However, to our knowledge, this is the first

work assessing the differences between textural features in

a dual time point acquisition. We observed that several

textural variables quantifying tumor heterogeneity showed

significant increases in the delayed PET as compared to the

standard PET acquisition. Mena et al. [22], using dual time

point 18F-FDG PET/CT in patients with pancreatic ade-

nocarcinoma, reported changes greater than 10% of the

tumor heterogeneity index in 40.8% of tumors at delayed

imaging, when gradient segmentation method was used.

However, stable metabolic intratumoral heterogeneity

values were seen between early and delayed PET when

using threshold segmentation method.

Textural features did not show high correlation with

SUVmax, SUVpeak, and SUVmean. This means that an

isolated semiquantitative measure, as SUV, does not pro-

vide a prediction of the total tumor metabolical distribu-

tion. Thus, small areas of homogeneous uptake can have

high or low SUVmax, whereas both larger homogeneous or

heterogeneous lesions can exhibit a wide range of maxi-

mum uptakes.

On the other hand, some of the textural parameters

studied showed correlation with MTV and TLG. This is

easy to explain, since tumor volume is important when

computing textural features. For instance, larger tumors

may have larger connected regions and provide larger

values of the RLM-based variables.

In the present work, textural variables showed direct and

inverse relations with MTV, with independence of the

segmented tumor volume. The different meaning and

robustness of each textural variable with regard to hetero-

geneity information could explain our results. We also

found a more significant relation of textural variables

obtained from PET-2 with the TLG values. This may be

related to the high dependence of some textural variables

on the gray-level intensity and the close relation of TLG

with tumor metabolism.

The previous works have reported that intratumor

heterogeneity increases as tumors grow [14, 23, 25]. This

may be due to the fact that larger tumors have more potential

to be composed by several different types of tissues and

regions with variable uptake. Smaller tumors may also have

heterogeneity at the cellular and tissue levels, but it may be

blurred in PET images due to the limited spatial resolution.

Several authors have addressed the tumor volume con-

founding effect, finding that the correlation between

Fig. 2 Relations of textural parameters with the metabolic tumor volume obtained in PET-1 t using the log scale hat showed negative association

with heterogeneity
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textural features with MTV tends to decrease with

increasing volumes. Thus, volume and heterogeneity might

offer a complementary information [26].

Although there is not a consensus about the optimal

tumor volume allows assessing correctly textural variables,

most studies using textural features have considered

volumes greater than 3–5 cm3, based on PET cannot

characterize heterogeneity in smaller volumes because of

its limited spatial resolution [23–25].

In the present work, we also used the energies as textural

variables. These measures are novel robust features

accounting for tumor heterogeneity. They have many

Fig. 3 Relations of textural parameters with total lesion glycolysis obtained in PET-1 and PET-2 using the log scale that showed positive

association with heterogeneity

Fig. 4 Relations of textural parameters with total lesion glycolysis obtained in PET-2 using the log scale that showed negative association with

heterogeneity
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advantages over RLM- and CM-based variables. First, they

are independent of the choice of the dynamic range. Sec-

ond, they have a well-defined limit as the number of voxels

increases. Finally, they provide a combination of local

information, because of the use of gradients, and global,

because of the integral averaging over the whole tumor.

These measures could be a relevant addition to the standard

radiomic toolbox with fewer limitations than RLM- and

CM-based variables [27].

The previous works have addressed the association

between textural features and SUV-derived biological

variables in LABC [19, 28]. However, to our knowledge,

no study has assessed the heterogeneity in a dual time point

PET. Moreover, due to the limited reported evidence and

the discrepancies in the literature, further analysis of

heterogeneity in LABC is in order.

With respect to the limitations, textural features

robustness has been put into question, basically due to

questions of interpretation and even the methodology of its

obtaining [22, 27–29]. However, their use is still wide-

spread, and therefore, more studies are needed to validate

their underlying characteristics.

The main strength of this work is that it is the first

reported study of the evolution in time of textural variables

in breast cancer assessed in a dual time PET/CT acquisi-

tion, addressing that texture is dynamic, as SUV-based

variables are.

Conclusions

Significant differences between textural features were

found in the dual time point 18F-FDG PET/CT. A dynamic

behavior of metabolic characteristics was observed, with a

higher heterogeneity in delayed PET acquisition compared

with the obtained one in the standard PET.

Textural features were related to tumor volume, with

higher heterogeneity for bigger tumors.
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Table 4 Relations of volume-based and textural parameters dividing lesions into two groups (group I: MTV B10 cm3 and group II:

MTV[10 cm3 in PET-1)

Textural variables MTV B 10 cm3 (PET-1) r (p value) Textural variables MTV[ 10 cm3 (PET-1) r (p value)

GLNU (PET-1) 0.86 (0.000) LRE (PET-1) 0.84 (0.000)

SE (PET-2) 0.75 (0.000) GLNU (PET-1) 0.87 (0.000)

GLNU (PET-2) 0.76 (0.000) LRE (PET-2) 0.75 (0.000)

Fig. 5 Breast tumor segmentation (a) and voxel representation in 3D image reconstruction (b). Raw gray level distribution in PET-1 (c) and
PET-2 (d) used for energy analysis. e and f show gray-level distribution after discretization of the c and d
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et al. 18-F fluorodeoxyglucose retention index and biological

prognostic parameters in breast cancer. Clin Nucl Med.

2012;37:470–6.

21. O’Connor J, Rose CJ, Waterton JC, Carano RA, Parker GJ,

Jackson A. Imaging intratumor heterogeneity: role in therapy

response, resistance, and clinical outcome. Cancer Res.

2014;21:249–57.

22. Mena E, Sheikhbahaei S, Taghipour M, Jha AK, Vicente E, Xiao

J, et al. 18F-FDG PET/CT metabolic tumor volume and intratu-

moral heterogeneity in pancreatic adenocarcinomas. Impact of

dual-time point and segmentation methods. Clin Nucl Med.

2017;42:e16–21.

23. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van

Stiphout RG, Granton P, et al. Radiomics: extracting more

information from medical images using advanced feature analy-

sis. Eur J Cancer. 2012;48:441–6.

24. Brooks FJ, Grigsby PW. The effect of small tumor volumes on

studies of intratumoral heterogeneity of tracer uptake. J Nucl

Med. 2014;55:37–42.

25. Hatt M, Tixier F, Rest CLC, Pradier O, Visvikis D. Robustness of

intratumour 18F-FDG PET uptake heterogeneity quantification

for therapy response prediction in oesophageal carcinoma. Eur J

Nucl Med Mol Imaging. 2013;40:1662–71.

26. Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux

D, et al. 18F-FDG PET uptake characterization through texture

analysis: investigating the complementary nature of heterogeneity

and functional tumor volume in a multi–cancer site patient

cohort. J Nucl Med. 2015;56:38–44.
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