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Gpufit: An open-source toolkit for 
GPU-accelerated curve fitting
Adrian Przybylski   1, Björn Thiel1, Jan Keller-Findeisen   1, Bernd Stock2 & Mark Bates   1

We present a general purpose, open-source software library for estimation of non-linear parameters by 
the Levenberg-Marquardt algorithm. The software, Gpufit, runs on a Graphics Processing Unit (GPU) 
and executes computations in parallel, resulting in a significant gain in performance. We measured 
a speed increase of up to 42 times when comparing Gpufit with an identical CPU-based algorithm, 
with no loss of precision or accuracy. Gpufit is designed such that it is easily incorporated into existing 
applications or adapted for new ones. Multiple software interfaces, including to C, Python, and Matlab, 
ensure that Gpufit is accessible from most programming environments. The full source code is published 
as an open source software repository, making its function transparent to the user and facilitating 
future improvements and extensions. As a demonstration, we used Gpufit to accelerate an existing 
scientific image analysis package, yielding significantly improved processing times for super-resolution 
fluorescence microscopy datasets.

Optimization algorithms are widely used in science and engineering. In particular, when comparing data with a 
model function, numerical optimization methods may be applied to establish the suitability of the model and to 
determine the parameters which best describe the observations. One such method, which is generally applicable 
to models which depend non-linearly on a set of parameters, is the Levenberg-Marquardt algorithm (LMA)1, and 
this has become a standard approach for non-linear least squares curve fitting2,3.

Although the LMA is, in itself, an efficient algorithm, applications requiring many iterations of this procedure 
may encounter limitations due to the sheer number of calculations involved. The time required for the conver-
gence of a fit, or a set of fits, can determine an application’s feasibility, e.g. in the context of real-time data process-
ing and feedback systems. Alternatively, in the case of very large datasets, the time required to solve a particular 
optimization problem may prove impractical.

In recent years, advanced graphics processing units (GPUs) and the development of general purpose GPU pro-
gramming have enabled fast and parallelized computing by shifting calculations from the CPU to the GPU4. The 
large number of independent computing units available on modern GPUs enables the rapid execution of many 
instructions in parallel, with an overall computation power far exceeding that of a CPU. Languages such as CUDA 
C and OpenCL allow GPU-based programs to be developed in a manner similar to conventional software, but 
with an inherently parallelized structure. These developments have led to the creation of new GPU-accelerated 
tools, such as the MAGMA linear algebra library5, for example.

Here, we present Gpufit: a GPU-accelerated implementation of the Levenberg-Marquardt algorithm. Gpufit 
was developed to meet the need for a high performance, general-purpose nonlinear curve fitting library which 
is publicly available and open source. As expected, this software exhibits significantly faster execution than the 
equivalent CPU-based code, with no loss of precision or accuracy. In this report we discuss the design of Gpufit, 
characterize its performance in comparison to other CPU-based and GPU-based algorithms, and demonstrate its 
use in a scientific data analysis application.

Results
The Gpufit library was designed to meet several criteria: (i) the software should make efficient use of the GPU 

resources in order to maximize execution speed, (ii) the interface should not require detailed knowledge of the 
GPU hardware, (iii) the source code should be modular and extendable, and (iv) the software should be accessible 
from multiple programming environments.

Gpufit implements the LMA entirely on the GPU, minimizing data transfers between CPU and GPU mem-
ory. Copying memory between the CPU and the GPU is a slow operation, and it is most efficient to handle large 
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blocks of data at once. Therefore, Gpufit was designed to process multiple fits simultaneously, each with the same 
model function and data size, but allowing for unique starting parameters for each fit. Large tasks (e.g. large 
numbers of fits) are divided into chunks, in order to balance processing and data transfer times. At the start of 
a calculation, a chunk of input data is copied to the GPU global memory, and upon completion the results are 
transferred back to CPU memory.

GPU architecture is based on a set of parallel multiprocessors, which divide computations between blocks 
of processing threads, as illustrated in Supplementary Fig. S1. The efficiency of a GPU-based program depends 
on how these computing resources are used. While determining how best to parallelize the LMA, we found 
that different parts of the algorithm were most efficiently implemented with different parallelization strategies. 
For example, point-wise operations such as computation of the model function and its partial derivatives were 
more efficiently parallelized along the data coordinate index, meaning that each thread computes one model and 
derivative value at a particular coordinate. Other steps, such as the calculation of the Hessian matrix, were more 
efficiently parallelized along the index of the matrix element, i.e. with each thread assigned to calculate one ele-
ment of the matrix. To accommodate the necessity for parallelizing different parts of the LMA in different ways, 
we structured Gpufit as a set of independent CUDA kernels, each responsible for a section of the algorithm. In 
this way, the blocks and threads of the GPU multiprocessors could be optimally allocated at each step. The details 
of the various parallelization schemes are documented in the Gpufit source code (see Code Availability).

Another design consideration was how to distribute fits across the thread blocks of the GPU. Initially, we con-
sidered calculating one fit per thread block, and one data point per thread. However, this approach yielded poor 
results for small fit data sizes, due to the limited numbers of threads executed on each multiprocessor. Hence, 
the software was modified to allow the calculation of multiple fits in each thread block or, if necessary, to spread 
the calculation of a single fit over multiple thread blocks. Thus, the number of threads per block was maximized, 
yielding improved processing speeds without imposing restrictions on the size of each fit. Finally, we note that 
GPU shared memory (see Fig. S1) was used for the calculation of intermediate values requiring many reads and 
writes (e.g. the summation of chi-square), in order to take advantage of the faster performance of shared memory 
blocks.

The computing resources of a GPU may vary significantly, depending on the details of the hardware. One of 
our aims was to avoid the necessity for any hardware-specific configuration parameters in the Gpufit interface. 
Therefore, Gpufit was designed to read the properties of the GPU at run-time, and automatically set parameters 
such as the number of blocks and threads available, and the number of fits to calculate simultaneously. This 
makes the use of a GPU transparent to the programmer, and allows the interface to be no different from that for 
a conventional curve fitting function. Moreover, it ensures that applications using Gpufit will perform optimally 
regardless of the machine on which they are running.

The Gpufit source code is modular, such that fit functions and goodness-of-fit estimators are separate 
from the core sections of the code, and new functions or estimators may be added simply (see Supplementary 
Information). In its initial release, Gpufit includes two different fit estimators: the standard weighted least-squares 
estimator (LSE), and a maximum likelihood estimator (MLE) which provides better fit results when the input 
data is characterized by Poisson statistics6. The modular concept is illustrated schematically in Supplementary 
Fig. S2. This modularity allows Gpufit to be quickly adapted to new applications, or modified to accommodate 
future developments.

Finally, Gpufit is written in C, CUDA C, and C++, and compiles to a Dynamic Link Library (DLL) providing 
a C interface, making it straightforward to call Gpufit from most programming environments. Furthermore, 
Gpufit bindings for Matlab and Python (e.g. the pyGpufit module) were implemented, forming part of the Gpufit 
distribution.

Performance characterization.  We tested Gpufit by using the software to process randomized simulated 
datasets. The precision and accuracy of the fit results, as well as the number of fit iterations and the execution time, 
were measured. The input data consisted of 2D Gaussian functions defined by five parameters (see Supporting 
Information). Random noise (Gaussian or Poisson) was added to each data point. Test data was generated in 
Matlab and passed to the fit routines via their Matlab interfaces.

Algorithm validation.  An initial step in characterizing Gpufit was to verify the correct operation of the 
algorithm. For this purpose, we tested Gpufit against the well-established MINPACK library7, evaluating the 
precision and accuracy of the fit results, and the convergence of the fit. Gaussian noise was added to the input data 
such that the signal to noise ratio (SNR) could be defined. Upon testing, the two packages yielded almost identical 
fit precision over a wide range of SNR values, and converged in a similar number of steps (Supplementary Fig. S3). 
At very high SNR, differences appear due to the limited numerical precision of floating point operations in CUDA 
(single precision) vs. MINPACK (double precision). Fit accuracy was checked by comparing the distributions 
of the fit parameters (Supplementary Fig. S4), and no systematic deviation between the output of Gpufit and 
MINPACK was detected. Together, these measurements demonstrate that Gpufit yields precise and accurate fit 
results, and converges similarly when compared to existing optimization software.

Execution speed and fit precision.  The parallel architecture of the GPU enables significant speed 
improvements when a computation is amenable to being divided among multiple processors. To fairly evaluate 
the speed improvement obtained by shifting processing tasks from the CPU to the GPU, equivalent implemen-
tations of the LMA, running on both architectures, were required. We created a library called Cpufit to serve as 
the reference CPU-based fitting algorithm for testing purposes (see Methods). Cpufit implements precisely the 
same algorithm, section by section, as Gpufit. We verified that Cpufit and Gpufit returned numerically identical 
fit results given identical input data.



www.nature.com/scientificreports/

3ScieNTiFic REPOrts | 7: 15722  | DOI:10.1038/s41598-017-15313-9

A comparison of execution speeds, plotted against the number of fits per function call (N), is shown in Fig. 1. 
As expected, the fitting speed on the CPU remains constant as N changes, due to the sequential execution of each 
fit calculation. On the other hand, for Gpufit the speed increases with increasing N. The more fits that are calcu-
lated in one execution, the greater the benefit of parallelization. The crossover point at which use of the GPU 
becomes advantageous is, in this case, approximately =N 130 fits. For very large N the speed of GPU processing 
saturates, indicating that GPU resources are fully utilized. At =N 108 fits per function call, we measured a pro-
cessing speed of more than 4.5 million fits per second, approximately 42 times faster than the same algorithm 
executed on the CPU.

Measurements of the execution time for each sub-section of the Cpufit and Gpufit code reveal the bottlenecks 
of the CPU-based algorithm, and how the computational workload is re-distributed on the GPU. For a set of 

×5 106 fits we measured the time duration of each step of the fitting process, and these results are shown in Fig. 2. 
For reference, program flowcharts for Cpufit and Gpufit, color coded according to processing time, are shown in 
Supplementary Fig. S5 and S6. In our tests, the most time-consuming task for Cpufit was the calculation of the 
model function and its derivatives, requiring more than one third of the total execution time. Gpufit completed 
the same calculation more than 100 times faster, due to the parallelization of the work. Similarly, all other steps in 
the fit process ran 10–100 times faster on the GPU. Gpufit includes additional operations, such as data transfers 
between CPU and GPU memory, however these did not impact performance when sufficient numbers of fits were 
processed.

Given the parallel computing capability of the GPU, it was not surprising that Gpufit outperformed an equiv-
alent algorithm running on the CPU. In order to verify that our code is efficiently implemented, we therefore 
tested Gpufit against another GPU-based fitting library: GPU-LMFit8. These tests were limited to smaller datasets 
because GPU-LMFit is available only as a closed-source, 32-bit binary package, restricting the size of the memory 
it can address. Figure 3a shows the speed of the Gpufit and GPU-LMFit libraries measured as a function of the 
number of fits per function call (N), with the speed of the MINPACK library shown for reference. Both packages 
exhibited similar scaling in speed as the number of fits and the data size varied, however, Gpufit showed faster 
performance for all conditions tested. As the data size per fit was increased (Fig. 3b), the speeds became more 
comparable, indicating that Gpufit makes more efficient use of GPU resources for smaller fits. The increased 
speed comes with no loss of precision, as it was also shown that the fit results returned by Gpufit and GPU-LMFit 
have virtually identical numerical precision (see Supplementary Fig. S7).

When data is subject to counting statistics (i.e. when the noise has a Poisson distribution), curve fitting using 
an alternative goodness-of-fit measure based on maximum likelihood estimation (MLE) has been reported 
to yield more accurate fit results, when compared with least-squares fitting9,10. We tested the performance of 
this estimator using input data with simulated Poisson noise. The precision of the fit results, using either the 
unweighted LSE, weighted LSE, or MLE estimators, is shown in Supplementary Fig. S8. We found that the MLE 
estimator yielded better results than the LSE, particularly at small data values, although for larger values the two 
methods were approximately equivalent.

Figure 1.  Execution speed of the Levenberg-Marquardt algorithm on the CPU or the GPU, as a function of the 
number of fits processed. For small numbers of fits, GPU-based curve fitting is slower than CPU-based fitting, 
due to the extra time spent copying data between the CPU and the GPU. For larger numbers of fits, however, the 
GPU significantly out-performs the CPU, due to the GPU’s parallel architecture. In this example, the maximum 
speed achieved was 4.65 × 106 fits per second for GPU-based curve fitting (dependent on the specifics of the 
hardware, the fit function, and the fit data). The simulated data consisted of 2D Gaussian peaks with a size 
of 5 × 5 points. This data was fit to a symmetric 2D Gaussian function using the unweighted least squares 
estimator. All calculations were run using an NVIDIA GeForce GTX 1080 GPU and an Intel Core i7 5820 K 
CPU (3.3 GHz). For details of the simulated data and fit parameters, see the Supplementary Information.



www.nature.com/scientificreports/

4ScieNTiFic REPOrts | 7: 15722  | DOI:10.1038/s41598-017-15313-9

Application to super-resolution microscopy.  Gpufit is well suited for rapid processing of large datasets, 
and its interface allows it to serve as a direct replacement for existing CPU-based fit routines. To demonstrate 
these capabilities in a real application, we integrated Gpufit into the image analysis pipeline of a super-resolution 
fluorescence microscopy experiment.

Stochastic optical reconstruction microscopy (STORM) is a method for fluorescence imaging of biological 
samples, which obtains an image resolution significantly higher than the classical “diffraction limit” of far-field 
optical microscopy11. This method relies heavily on image processing: the generation of a single STORM image 
requires thousands to millions of individual fitting operations, and this task may require minutes to hours of 
computation before the final image is obtained.

We integrated Gpufit into a recently published software package, Picasso12, which may be used to process raw 
STORM data into a super-resolved image of the sample. The Picasso software is written in Python, and is opti-
mized to carry out the fit using a multi-threaded process running on all cores of the CPU. Moreover, Picasso uses 
“just in time” (JIT) compilation to optimize its execution speed. We modified this section of the Picasso source 
code, replacing the multi-core CPU-based fitting with a call to Gpufit, as illustrated schematically in Fig. 4a. 
Comparing the speed of Picasso before and after the modification demonstrates the benefit of Gpufit. When 
analyzing a raw STORM dataset (80000 images requiring 3.6 million fit operations), a fitting task which required 
99.4 s with standard Picasso was completed in only 2.2 s after Gpufit was included, a 45-fold speed increase, with 
identical fit precision. The output STORM image is shown in Fig. 4b, and a comparison of the curve fitting time 
with and without Gpufit is shown in Fig. 4c.

Discussion
General purpose GPU computing is a relatively new technology, which is making an impact in many fields of 
science and engineering. The software introduced here, Gpufit, represents the first general purpose, open source 
implementation of a non-linear curve fitting algorithm for the GPU. It is intended as a compact, high perfor-
mance optimization tool, easily modified and adapted for new tasks, which can be rapidly implemented within 
existing data analysis applications.

In terms of performance, Gpufit exhibits similar precision and accuracy to other fitting libraries, but with 
significantly faster execution. In our measurements, curve fitting with Gpufit was approximately 42 times faster 

Figure 2.  Comparison of execution times for each section of the Cpufit and Gpufit programs. The horizontal 
bars represent the amount of time spent in each section of the algorithm while processing a dataset consisting of 

= . ×N 5 0 106 2D Gaussian fits. Four additional sections are required for Gpufit: GPU memory allocation, 
copying data to the GPU, copying results from the GPU, and GPU memory de-allocation. All sections of the fit 
algorithm required less time when executed on the GPU, with the largest differences corresponding to the 
computational bottlenecks of Cpufit. For details of the simulated data and fit parameters, see the Supplementary 
Information.
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than the same algorithm running on the CPU. Gpufit also outperformed another GPU-based implementation 
of the LMA, GPU-LMFit, for all conditions tested. The absolute values of the timing results depend on the 
details of the fit and the computer hardware. Higher performance would be expected with a more powerful 
GPU (e.g. an Nvidia Tesla), or with multiple GPUs running in parallel. In addition to its speed, the principal 
advantages of Gpufit are its general purpose design, which may incorporate any model function or modified 
estimator, and the availability of the source code, which allows it to be compiled and run on multiple comput-
ing architectures.

Since Gpufit automatically distributes the curve fitting tasks over the blocks and threads of the GPU multi-
processors, the user is not required to know the specifications of the hardware, thereby allowing Gpufit to be used 
as a “drop-in” replacement for existing fit functions. To demonstrate this, we modified Picasso to make use of 
Gpufit rather than its own multi-core CPU fitting code. Despite the fact that curve fitting in Picasso was already 
parallelized (by virtue of its use of multi-threaded processing) we found that Gpufit outperformed the built-in 
Picasso curve fitting by a factor of 45 times (Fig. 4). The ease with which Gpufit was integrated into Picasso, and 
the gain in performance, show that our original design goals were met.

As of its initial release, the Gpufit package has several limitations. First, the fit model functions are built into 
the code at compilation time, and the addition or modification of a model function requires re-compilation of 
the source code. We also note that Gpufit requires the explicit calculation of the partial derivatives of the model, 
and expressions for these functions must be present in the code embodying the fit model function. However, 
as an open-source software project, we expect that Gpufit will continue to develop and improve, potentially 
removing these limitations in future versions. For example, runtime compilation of model functions written 

Figure 3.  Processing speed comparison between three fitting libraries: Gpufit, MINPACK, and GPU-LMFit. 
(a) Execution speed vs. number of fits per function call (N). (b) Execution speed vs. number of data points per 
fit, where the size of the simulated 2D Gaussian peaks was varied from 5 × 5 up to 25 × 25 points. For smaller 
tasks (smaller numbers of fits per call or smaller data sizes) the Gpufit library makes more efficient use of GPU 
processing resources, outperforming GPU-LMFit by more than one order of magnitude. For larger tasks the 
results become more similar between the two GPU-based libraries. For details of the simulated data and fit 
parameters, see the Supplementary Information.
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in CUDA would lift the requirement for re-building the source, and methods to approximate the derivatives 
numerically could also be introduced. Finally, there is the potential for porting Gpufit to other general-purpose 
GPU computing languages, such as OpenCL, thereby allowing the software to function on other GPU hardware 
platforms.

Using an inexpensive graphics card and a standard PC, we achieved speeds higher than 4.5 million fits per 
second for data that is typical of STORM experiments (Fig. 1). Considering recent developments in localization 
based super-resolution methods, in particular experiments in which > 400 million individual fluorophore switch-
ing events were recorded13, data processing speed has become highly relevant. A tool such as Gpufit could make 
the difference between a researcher waiting minutes (with Gpufit) or hours (without) before the image can be 
examined. This rapid feedback has a greater importance than simply reducing waiting time – it enables the quick 
screening of samples and test conditions, ultimately leading to higher quality image data. Furthermore, we expect 
that Gpufit will facilitate the adoption of new, computationally demanding data analysis approaches, such as cubic 
spline fitting14, in order to further improve STORM image resolution.

Conclusions
We have developed a GPU-accelerated implementation of the Levenberg Marquardt algorithm, with significantly 
faster performance as compared with traditional CPU-based software. Gpufit is designed to be general purpose, 

Figure 4.  Accelerated STORM analysis in Picasso. (a) Schematic diagram comparing the multi-core CPU-
based fitting of Picasso (left) vs. parallelized GPU-based fitting with Gpufit (right). Picasso uses multiple cores 
(“workers”) of the CPU to simultaneously compute the fits. We replaced this section of the Picasso source code 
with a call to Gpufit, which has a greater capacity for parallelization via the GPU. (b) Super-resolution (STORM) 
image of nuclear pore complexes in eukaryotic cells. The protein GP210 was labeled with a fluorescent marker 
(Alexa Fluor 647), and the sample was imaged on a STORM microscope (see Supplementary Information). The 
conventional epi-fluorescence image is shown in the top right corner, to provide a resolution comparison. Data 
processing was performed in Picasso, requiring 3.6 million individual curve fitting operations. (c) Execution 
time of the curve fitting process, comparing the original (published) Picasso software vs. the modified Picasso 
software which includes Gpufit. The processing time was reduced significantly, by a factor of 45, when Gpufit 
was used to handle curve fitting tasks within the Picasso application. For these measurements, the data was fit 
to a symmetric 2D Gaussian function (Picasso default) using the unweighted least squares estimator, and the 
fit size was 7 × 7 pixels. All calculations were run on an NVIDIA GeForce GTX 1080 GPU and an Intel Core i7 
5820 K CPU (3.3 GHz). For detailed test conditions, see the Supplementary Information.
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and as such we expect it to be useful for diverse applications in science and engineering which may depend crit-
ically on rapid data processing, e.g. high-speed feedback systems and the recently described MINFLUX method 
for particle tracking and nanoscale imaging15. The Gpufit library is accessible from most programming environ-
ments, and the automatic configuration of GPU-specific parameters makes it simple to work with in practice. The 
modularity of Gpufit facilitates the addition of custom fit models or estimators, for example the mixed Gaussian/
Poisson likelihood model required for accurately analyzing sCMOS camera data16. Finally, Gpufit makes efficient 
use of GPU computing resources by exploiting simple parallelization schemes as well as distributing fit tasks 
evenly over the multiprocessors of the GPU to achieve high performance. Using Gpufit with our own hardware, 
we obtained a 42-fold improvement in execution time for batch-processing of curve fitting tasks, with no loss of 
precision or accuracy.

Gpufit is an open source software project, and the source code is available via the Github public software 
repository. Open source software development is advantageous from several standpoints: it enhances code 
integrity through review by users, and offers the possibility for users to fix bugs and add features17. In addi-
tion, open source code makes the workings of an algorithm transparent to the user, which may be a crucial 
factor when a “black box” software tool is not sufficient, such as in scientific data analysis applications. 
Finally, we note that Marquardt’s original paper introducing his algorithm, published in 1963, concludes 
with the following sentence: “A FORTRAN program … embodying the algorithm described in this paper is 
available as IBM Share Program No. 1428”1. The SHARE software library referred to by Marquardt was, in 
fact, an early form of open source software18, and we find it appropriate that Gpufit should be published in a 
similar manner.

Methods
Levenberg-Marquardt algorithm.  The LMA provides a general numerical procedure for fitting a non-lin-
ear model function to a set of data points. It may be considered as a combination of the method of steepest 
descent and Newton’s method, having a high probability of convergence even when the initial parameter esti-
mates are poor, and fast convergence near the minimum. The standard algorithm, as described by Marquardt1, 
minimizes iteratively the general least squares equation:

 ∑χ = −
=

−
a f a z( ) ( ( ) )
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N

n n
2

0

1
2

where fn are the model function values, a  is the vector of model parameters, and zn are the set of N data points. 
To find the minimum of χ a( )2   (chi-square), the algorithm performs an iterative search of the parameter space 
for a coordinate where the gradient of the function equals zero, i.e. χ∇ =a( ) 02  . The gradient is approximated 
by a Taylor expansion:
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however terms containing the second derivatives are assumed negligible and ignored. Solving (2) for δi
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Newton step for the minimization of χ a( )2  . Up to this point, the LMA is equivalent to Newton’s Method.

A special characteristic of the LMA is the damping factor λ which controls the step size of each iteration by 
modifying the diagonal elements of the Hessian:
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where k and l are the matrix indices. The positive factor λ is initialized with a small value, and thus initially the 
algorithm behaves like Newton’s method. As the algorithm iterates, if the value of chi-square in the latest iteration 
is smaller than in the previous step, λ is decreased by a constant factor v. Otherwise, λ is increased by the same 
factor. Increasing λ causes the LMA to tend towards the behavior of the method of steepest descent. In this man-
ner, the LMA adjusts between the two methods, as the minimum is approached.

By transposing equation (2) and applying the damping factor (3), a system of linear equations is obtained 
which may be solved for δi , e.g. by the Gauss-Jordan method3:

δ χ= − ′ ⋅ ∇ .χ
−H a a( ) ( ) (4)i i i

1 2
2
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If the iteration is successful (chi-square decreased), the difference δi
 is added to the previous parameter 

values:

δ= + .+a a (5)i i i1
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The damping factor λ is updated after each iteration, and convergence is tested. Any convenient convergence 
criterion may be used, but in general the overall convergence of the LMA depends on the relative size of the 
parameter adjustment in each iteration. As originally set out by Marquardt, with a reasonable choice of r and ε 
(e.g. = −r 10 3 and ε = −10 5), the algorithm has converged when
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is satisfied for all parameters, where r is a small positive constant (to avoid division by zero), i is the iteration 
number, and j is the parameter index.

Estimators of best fit.  Least squares estimation (LSE) is a common method for finding the parameters 
which yield the minimal deviation between observed data and a model function. The standard LMA minimizes 
the general LSE formula given by equation (1). However, it is also possible to include weighting factors in the 
calculation of chi-square, for example:
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where σn represents the uncertainty (standard deviation) of the data. This allows the precision of each data point 
to be taken into account.

In cases where the uncertainties of the data points are Poisson distributed, a maximum likelihood estimator 
(MLE) yields more precise parameter estimates than the LSE9,10. In this situation it is beneficial to use an alter-
native estimator with the LMA. A procedure has been described6 in which the LSE formula (1) is replaced by the 
MLE equation for Poisson deviates, as follows:
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Using this estimator within the context of the LMA is relatively simple to implement, requiring only the cal-
culation of the gradient and Hessian matrix of χ a( )MLE

2 , and the calculation of χ a( )MLE
2  itself. As before, in the 

calculation of the Hessian matrix, terms containing second partial derivatives are ignored.

Gauss-Jordan elimination.  Gauss-Jordan elimination was used to solve the system of equations (4) in the 
LMA, and a parallelized Gauss-Jordan algorithm was developed for this purpose. The algorithm was parallelized 
according to the elements of the augmented matrix, with each thread responsible for one element of the matrix 
as the left side is transformed to reduced row echelon form. Partial pivoting (row swapping) was used to ensure 
precise and numerically stable calculations3. The sorting step in the pivot operation was accomplished on the 
GPU by means of a parallel bitonic merge sort19. The details of this algorithm are fully documented in the Gpufit 
source code.

Software for comparison tests.  To evaluate its performance, Gpufit was compared against an equivalent 
CPU-based algorithm (Cpufit) and two other curve fitting libraries: MINPACK7 and GPU-LMFit8. Cpufit is a 
standard implementation of the LMA based on published examples1,3, which we wrote in C++ for execution on 
the CPU. C++ Minpack is an open-source C/C++ implementation of MINPACK which runs on the CPU (we 
used the function lmder() from this library)7,20. Both C++ Minpack and Cpufit were run in single CPU threads. 
GPU-LMFit is a closed-source implementation of the LMA (32-bit binary files are publicly available) which runs 
on the GPU and provides the option of using LSE or MLE as the estimator8.

Computer hardware.  All tests were executed on a PC running the Windows 7 64-bit operating system 
and CUDA toolkit version 8.0. The PC hardware included an Intel Core i7 5820 K CPU, running at 3.3 GHz, and 
64 GB of RAM. The graphics card was an NVIDIA GeForce GTX 1080 GPU with 8 GB of GDDR5X memory. 
All source codes, including the Cpufit, Gpufit, and C/C++ Minpack libraries, were compiled using Microsoft 
Visual Studio 2013, with compiler optimizations enabled (release mode). Additional details of the test condi-
tions and instructions for compiling the Cpufit and Gpufit software libraries are provided in the Supplementary 
Information and the Gpufit documentation.

Source code availability.  The source code for Gpufit, including external bindings, is available for down-
load from a public software repository located at http://www.github.com/gpufit/Gpufit. The source code for the 
CPU-based reference algorithm, Cpufit, is also included in this repository. The Gpufit User’s Manual, describing 
how to use the software and containing instructions for building and modifying the source code, may be found 
online at http://gpufit.readthedocs.io.

Data availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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