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. Although the transcription factor Krippel-like factor 5 (KLF5) plays important roles in both inflammation

. and cancer, the mechanism by which this factor promotes cervical carcinogenesis remains unclear. In

. this study, we demonstrated a potential role for tumour necrosis factor receptor superfamily member
11a (TNFRSF11a), the corresponding gene of which is a direct binding target of KLF5, in tumour cell

. proliferation and invasiveness. Coexpression of KLF5 and TNFRSF11a correlated significantly with

. tumorigenesis in cervical tissues (P < 0.05) and manipulation of KLF5 expression positively affected

- TNFRSF11la mRNA and protein expression. Functionally, KLF5 promoted cancer cell proliferation,

. migration and invasiveness in a manner dependent partly on TNFRSF11a expression. Moreover, in vivo

. functional TNFRSF11a-knockdown mouse studies revealed suppression of tumorigenicity and liver
metastatic potential. Notably, tumour necrosis factor (TNF)-o induced KLF5 expression by activating the

. p38signalling pathway and high KLF5 and TNFRSF11a expression increased the risk of death in patients

. with cervical squamous cell carcinoma. Our results demonstrate that KLF5 and TNFRSF11a promote

. cervical cancer cell proliferation, migration and invasiveness.

Cervical cancer (CC) is a major cause of cancer-related deaths in women worldwide, accounting 250,000 deaths
each year!. However, effective therapies for this deadly disease are limited because the elaborate molecular mech-
anism underlying CC progression remains largely unknown?*. Several reports have suggested links between the
© aggressive nature of human cervical carcinoma and a number of molecular abnormalities, including the inactiva-
: tion of various tumour suppressor genes and activation of various oncogenes**. This lack of sufficient genetic and
: epigenetic data regarding the pathogenesis of CC and the paucity of effective targets has hindered the development
of novel targeted therapies®®.
: Kriippel-like factor 5 (KLF5) is a DNA-binding transcriptional regulator® that contributes to the regulation of
- various cellular processes, including cell proliferation, differentiation, angiogenesis and migration'’'?, by regulating
. several important target genes, such as platelet-derived growth factor (PDGF)-a'4, cyclinD1'>!¢, survivin'7, p21'®
and p27'. KLF5 has been reported to play opposing roles in tumorigenesis; some studies?® have described a tumour
suppressive role, whereas others cite a tumorigenic role?*. This binary nature is unusual in the setting of carcino-
. genesis, and the mechanisms that control the functional switching of KLF5 seem to be context-dependent'>*. In
. keratinocytes, KLF5 promotes cell migration by inducing the transcription of integrin-linked kinase?!. However,
: the mechanism by which KLF5 exerts its effects has not been elucidated in the context of CC cell migration and
invasion.
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Figure 1. Kriippel-like factor 5 (KLF5) and tumour necrosis factor receptor superfamily member 11a
(TNFRSF11a) are coexpressed in cervical cancer tissues and cell lines. (a) Haematoxylin-eosin and
immunofluorescence staining of KLF5 (red) and TNFRSF11a (green) in cervical tissues (40 normal cervical
tissues, 68 cervical intraepithelial neoplasia (CIN) tissues (CIN I: 23 cases; CIN II-III: 45 cases) and 110 CSCC
tissues) (x200). Scale bars =200 pm. (b) Statistical analysis of fluorescence intensity. *P < 0.05, **P < 0.01

vs. Normal group. (c) KLF5 mRNA expression correlated significantly with TNFRSF11a mRNA expression

in 45 patients with CIN II-III. (d) KLF5 mRNA expression correlated significantly with TNFRSF11a mRNA
expression in 110 patients with cervical squamous cell carcinoma (CSCC). Expression of KLF5 and TNFRSF11a
at the protein level (e) and mRNA level (f) in C33A, HeLa and SiHa cells. *P < 0.05 vs. C33A cells.

Tumour necrosis factor receptor superfamily member 11a (TNFRSF11a) is a type I homotrimeric transmem-
brane protein that shares the highest level of homology with CD40%. TNFRSF11a is expressed widely? in the heart,
lung, brain, skeletal muscle, kidney, liver and skin?>?’, as well as some cancers?, including breast and prostate can-
cers®** which possess a high bone metastasis potential. In a previous study of mice, TNFRSF11a-mediated intracel-
lular signalling was found to be essential for mammary gland development by regulating the expansion of the stem
and progenitor cell compartments. Conversely, TNFRSF11a overexpression in mice promoted abnormal prolifera-
tion and impaired differentiation, thus increasing the incidence of tumorigenesis*'. A potential role for TNFRSF11a
in tumour cell proliferation is being investigated; if proven, this molecule could be a future target of anti-tumour
therapies®. However, the regulatory functions and mechanisms of TNFRSF11a in CC are largely unknown.
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Figure 2. Kriippel-like factor 5 (KLF5) mediates tumour necrosis factor (TNF)-a-induced cervical cancer cell
proliferation, migration and invasion. HeLa cells were infected with adenoviruses expressing green fluorescent
protein (Ad-GFP) or KLF5 (Ad-KLF5) for 24 h and subsequently treated or not with TNF-c (10 ng/mL).

KLF5 and TNFRSF11a protein and mRNA expression were analysed by western blotting (a) and qRT-PCR

(b), respectively. *P < 0.05, **P < 0.01 vs. the Ad-GFP group. (c) Stable KLF5 overexpression in HeLa cells
significantly promoted cell growth compared with stable GFP expression during a 96 h period, as measured by
the CCK-8 assay. Data represent the means =+ standard errors of the means (SEM; n=3). *P < 0.05, **P < 0.01
vs. the Ad-GFP group. Representative photomicrographs of a Transwell assay using HeLa cells treated as
described above. (d) and (e) present quantified analyses of cell migration and invasion, respectively. Data
represent the means + SEM (n = 3). *P < 0.05, **P < 0.01 vs. the Ad-GFP group. HeLa cells were transfected
with non-specific short interfering RNA (siRNA; si-NS) or KLF5-specific siRNA (si-KLF5) for 24h and
subsequently treated or not with TNF-c.. KLF5 and TNFRSF11a protein and mRNA expression were analysed by
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western blotting (f) and qRT-PCR (g), respectively. *P < 0.05 vs. the si-NS group, P < 0.05 vs. the TNF-a group.
(h) Stable knockdown of KLF5 in HeLa cells significantly inhibited cell growth relative to the si-NS group during
a 96-h period, as measured by the CCK-8 assay. Data represent the means &= SEM (n=3). *P < 0.05 vs. the si-NS
group, #P < 0.05 vs. the TNF-a group. In (i) and (j), representative photomicrographs of a Transwell assay show
the respective quantification of HeLa cell migration and invasion after the above-described treatments. Data
represent the means + SEM (n = 3). *P < 0.05 vs. the si-N§S group, #P < 0.05 vs. the TNF-a group.

We hypothesised that KLF5 might promote tumorigenesis in CC tissues in part by directly regulating
TNFRSF11a transcription. In this study, we demonstrated that both TNFRSF11a and KLF5 were strongly expressed
in HeLa and SiHa cells and human cervical squamous cell carcinoma (CSCC) tissues. KLF5 directly bound to the
TNFRSF11a promoter to induce transcription and in turn promoted CC cell proliferation and migration in vitro.
Notably, the p38 signalling pathway mediated the effects of KLF5 and TNFRSF11a on CC cell proliferation and
migration. These findings provide evidence to support an expression-based and functional link between KLF5 and
TNFRSF11a and shed light on the regulation of TNFRSF11a and its functions in CC.

Results

KLF5 and TNFRSF11a are coexpressed in cervical tissues and cell lines.  To determine whether
both molecules were responsible for cervical tumorigenesis, we examined their expression in cervical tissues using
immunofluorescence (IF) and haematoxylin-eosin staining. As shown in Fig. 1a, dual staining revealed that the flu-
orescence intensities of KLF5 (red) and TNFRSF11a (green) were distributed differently among various cervical tis-
sues, including normal tissues (The fluorescent intensity: KLF5: 8.08 & 3.17 and TNFRSF11a: 9.46 £2.76, n =40),
cervical intraepithelial neoplasia (CIN) I tissues (KLF5: 12.65 4-2.46 and TNFRSF11a: 16.96 +3.14, n=23), CIN
II-III tissues (KLF5: 24.09 4 2.53 and TNFRSF11a: 27.0543.95, n=45) and CSCC tissues (KLF5: 35.33 +3.97 and
TNFRSF11a: 32.7243.85, n=110) (all P < 0.05, Fig. 1b). Finally, we analysed the levels of KLF5 and TNFRSF11a
mRNA in 45 CIN II-IIT samples (Fig. 1¢) and 110 CSCC samples (Fig. 1d) and observed that a significant corre-
lation of TNFRSF11A with KLF5 expression in the latter. These results suggest that KLF5 and TNFRSF11a are
coexpressed in CIN II-IIT and CSCC tissues and correlate with the cervical carcinogenesis. To further understand
of KLF5 and TNFRSF11a is associated with cervical cancer progression. A western blotting analysis revealed sig-
nificantly increased KLF5 and TNFRSF11a protein expression in SiHa and HeLa cells, compared with C33A cells
(Fig. 1e). A quantitative real-time polymerase chain reaction (QRT-PCR) assay revealed higher mRNA levels in
SiHa and HeLa cells, compared to C33A cells (Fig. 1f).

KLF5 mediates the tumour necrosis factor (TNF)-a-induced proliferation, migration and
invasion of CC cells. KLF5 has been reported to exert pro-oncogenic activity by regulating gene tran-
scription and stimulating cancer cell progression’’. TNF-« is an indispensable cytokine that regulates the
local microenvironment and thereby promotes CC progression. To further investigate whether KLF5 is an
effector of TNFRSF11a and whether KLF5 plays a role in TNF-a-induced CC cell functions, we overexpressed
KLF5 in HeLa cells through infection with a specific adenovirus (Ad-KLF5). As shown in Fig. 2a and b,
KLF5 overexpression led to consistent upregulation of TNFRSF11a protein and mRNA in HeLa cells. We
further tested HeLa cell proliferation using a CCK-8 assay and migration and invasion using a Transwell
assay. As shown in Fig. 2¢, TNF-a significantly induced the proliferation of HeLa cells. Additionally, treat-
ment with TNF-« and/or Ad-KLF5 led to increased migration and invasion in a Transwell assay and thereby
indicated an increased metastatic potential, compared to HeLa cells expressing only green fluorescent protein
(Ad-GFP) (Fig. 2d,e). We also used short interfering RNA (siRNA) to inhibit the expression of KLF5 in HeLa
cells and further investigate its biological function. As expected, KLF5 knockdown dramatically reduced
both TNFRSF11a protein and mRNA expression in HeLa cells (Fig. 2f,g) and the CCK-8 assay indicated that
the knockdown of KLF5 inhibited the proliferation of HeLa cells, regardless whether TNF-o was present or
absent (Fig. 2h). Moreover, KLF5 siRNA-treated HeLa cells exhibited significantly suppressed TNF-a-induced
migration (Fig. 2i) and invasion (Fig. 2j), compared with control-treated cells. Collectively, these results sug-
gest that KLF5 affects TNFRSF11a expression and thereby promotes TNF-a-induced proliferation, migration
and invasion in CC cells.

TNFRSF1la mediates the proliferation, migration and invasion of CC cells. TNFRSF11a was
previously shown to promote migration and invasiveness in breast and prostate cancers®**. To determine
whether this molecule plays a similar function in CC, we sought to measure HeLa and SiHa cell proliferation,
migration and invasion after manipulating TNFRSF11a expression. We used human TNFRSF11a-specific
siRNA (si-TNFRSF11a) or non-specific siRNA (si-NS) to knock down endogenous TNFRSF11a in HeLa and
SiHa cells, and demonstrated that in response to TNF-c, TNFRSF11a expression was markedly attenuated in
si-TNFRSF11a-transfected HeLa (Fig. 3a) and SiHa (Fig. S3a) cells relative to cells transfected with si-N§, and cell
growth was significantly decreased in the former (Fig. 3b and Fig. S3¢). As shown in Fig. 3¢ and d, the frequency
of 5-ethynyl-2’-deoxyuridine (EdU)-positive HeLa cells decreased significantly under conditions of TNFRSF11a
knockdown. As shown in Fig. 3e-f and Fig. S3d,e, treatment with si-TNFRSF11a led to significantly decreased
HeLa and SiHa cell migration and invasion, compared to treatment with si-NS. Collectively, these results suggest
that TNFRSF11a promotes the proliferation, migration and invasion of CC cells.

Next, we evaluated the effects of endogenous TNFRAF11a expression on the proliferative and metastatic poten-
tial of HeLa cells in vivo. Accordingly, we subcutaneously injected HeLa-si-NS and HeLa-si-TNFRSF11a cells into
severe combined immunodeficiency (SCID) mice. In this model, TNFRSF11a knockdown significantly suppressed
HeLa tumour growth, leading to lower mean tumour weights and few liver metastases after 28 days (Fig. 3g-k).
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Figure 3. Tumour necrosis factor (TNF)-a induced TNFRSF11a-mediated cervical cancer cell proliferation,
migration and invasion. (a) HeLa cells were transfected with non-specific short interfering RNA (siRNA; si-
NS) or TNFRSF11a-specific siRNA (si-TNFRSF11a) for 24 h and subsequently treated or not with TNF-c.
TNFRSF11a protein expression was analysed by western blotting. 3-actin was used as the loading control.

(b) Stable knockdown of TNFRSF11a significantly inhibited HeLa cell growth compared to treatment with
si-NS during a 96-h period, as measured by a CCK-8 assay. Data represent the means + standard errors of the
means (SEM; n=3). *P < 0.05 vs. the si-NS group, *P < 0.05 vs. the TNF-a group. (c) Proliferating HeLa cells
were labelled with EAU, which was revealed using the Click-it reaction (red). Cell nuclei were stained with
Hoechst 33342 (blue). Representative images are shown. Scale bars = 50 pm. (d) Quantitative results from
panel c. Data represent the means + SEM (n=3). *P < 0.05 vs. the si-NS group, *P < 0.05 vs. the TNF-a group.
TNFRSF11a knockdown altered HeLa cell migration (e) and invasion (f) in Transwell assays. Data represent the
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means + SEM (n=3). *P < 0.05 vs. the si-NS group, *P < 0.05 vs. the TNF-a group. (g) HeLa-si-NS and HeLa-
si-TNFRSF11a xenograft tumour masses were harvested on day 28. (h) TNFRSF11a knockdown significantly
decreased the xenograft tumour weights, compared with si-NS tumours. *P < 0.05 vs. the si-NS group. (i)
Photographs of livers removed from mice in each group. (j) Significantly fewer liver metastases were detected in
the si-TNFRSF11a group, compared with the si-NS group. *P < 0.05 vs. the si-NS group. (k) Calculated average
sizes of liver metastases removed from the mice in each group. *P < 0.05 vs. the si-NS group.

TNF-oinduced KLF5 positively regulates TNFRSF11a expression by binding to the TNFRSF11a
promoter. Because both KLF5 overexpression and knockdown altered TNFRSF11a expression individually,
we further identified the molecular mechanisms of regulation of TNFRSF11a expression by transcription factor
KLF5. Using a TESS-String-based Search (//www.cbil.upenn.edu/tess/), we found that the 2000/4-1 bp region of the
TNFRSF11a promoter contained four KLF5-binding sites (Fig. 4a). To investigate whether KLF5 activated the tran-
scription of TNFRSF11a, we co-transfected HeLa cells with a KLF5 expression plasmid and TNFRSF11a promoter—
luciferase reporter (pGL3-TNFRSF11a-Luc) plasmid in the presence or absence of TNF- treatment. A luciferase
assay demonstrated significant activation of the TNFRSFI11a promoter by KLF5 (Fig. 4b). Another luciferase assay
was conducted to determine the KLF5-binding sites in TNFRSF11a promoter regions (Fig. 4c). The results showed
that TNF-a could partly promote the binding of KLF5 to the proximal region of the TNFRSF11a promoter (—387
bp to 1bp), which contains KLF5-binding site 1; in contrast, no significant binding of KLF5 was detected when the
distal TNFRSF11a promoter region containing KLF5-binding sites 2-4 was amplified. Consistent with the results of
the luciferase assay, chromatin immunoprecipitation (CHIP) assays demonstrated significantly increased binding
of KLF5 to site 1 (Fig. 4d,e). These results indicate that TNF-a induces the binding of KLF5 to the proximal region
of the TNFRSFI11a promoter in HeLa cells, thus increasing TNFRSFI1a transcription.

KLF5 promotes HelLa cell proliferation and migration in a manner partly dependent on
TNFRSF11a expression. To determine whether KLF5 activity depends on TNFRSF11a expression, we simul-
taneously overexpressed KLF5 and knocked down TNFRSF11a in HeLa cells (Fig. 5a). As shown in Fig. 5b, KLF5
overexpression promoted the proliferation of si-NS-transfected HeLa cells, whereas this effect was attenuated in
TNFRSF11a-knockdown cells. In addition, KLF5 overexpression could not totally rescue migration and invasion
in TNFRSF11a-knockdown HeLa cells (Transwell assays; Fig. 5¢,d). Overall, these data suggest that KLF5 promotes
proliferation, migration and invasion in HeLa cells, partially by inducing TNFRSF11a expression.

TNF-a induces KLF5 expression via the p38 pathway in CC cells.  Because Erk, AKT and p38 activa-
tion are required for cell proliferation and migration®**~*, we sought to determine whether these kinases affected
KLF5 expression in TNF-a-stimulated HeLa cells. After treatment for different intervals of time, Erk and p38
phosphorylation increased to maximum levels at 30 and 60 min, respectively, followed by gradual decreases
within 120 min after treatment; in contrast, Akt phosphorylation did not appear to be affected (Fig. 6a,b). As
shown in Fig. 6¢, KLF5 localises to the cytoplasm in HeLa cells, whereas TNFRSF11a localises at the cell mem-
brane. However, treatment with TNF-o increased the nuclear fraction of KLF5. Next, we treated HeLa cells with
U0126 (Erk inhibitor), Ly294002 (Akt inhibitor) and SB03580 (p38 inhibitor). Notably, treatment with SB03580
led to a significant decrease in the nuclear fraction of KLF5, whereas Ly294002 and U0126 did not have evident
effects (Fig. 6d, P < 0.05). A western blotting analysis indicated a significant decrease in KLF5 protein expression
in SB03580-treated HeLa cells, compared to TNF-a-treated cells (Fig. 6e). A qRT-PCR analysis also indicated
significant decreases in KLF5 mRNA levels (Fig. 6f, P < 0.05). These findings suggest that TNF-a induces KLF5
expression in CC cells via the p38 pathway.

KLF5 and TNFRSF11a expression in cervical squamous cell carcinoma tissues correlates with
patient survival. Table 1 lists the characteristics of 110 participants, with a median age of 45 years (range:
25-79 years). Significant differences in tumour size, histological type, invasion depth, nodal metastasis status,
pathological grade, Union for International Cancer Control (UICC) stage and disease-free survival outcomes were
detected between the two KLF5 groups and TNFRSF11a groups (P < 0.05). No significant inter-group differences
in other clinical variables were observed (P > 0.05). Figure 7a presents overall survival (OS) curves for the low and
high KLF5 expression groups. Patients in the latter group had a significantly lower OS, compared with those in
the former group (log-rank, P=0.033 for OS). Figure 7b presents the OS curves for the low and high TNFRSF11a
expression groups. Again, patients in the latter group had a significantly lower OS, compared with those in the
former group (log-rank, P=0.011 for OS).

Discussion

KLF5 functions as an oncogenic transcription factor in several cancer types, including breast??, bladder® and intes-
tinal cancers®. According to research conducted by Marrero, the expression of KLF5 mRNA gradually increases in
CC cells”. In this study, we identified TNFRSF11a as a direct target of KLF5 and, most importantly, demonstrated
that KLF5 promoted the proliferation, migration and invasion in HeLa cells by inducing TNFRSF11a expression.
We initially observed KLF5 and TNFRSF11a mRNA and protein coexpression in cervical tumours, and identified
KLF5 as an effector of TNFRSF11a. Furthermore, we showed that KLF5 mediated TNF-a-induced proliferation,
migration and invasion in CC cells, and bound to the TNFRSF11a gene promoter to increase transcription activity
and promotes TNFRSF11a expression in HeLa cells. Finally, we demonstrated that TNFRSF11a mediates CC cell
proliferation, migration and invasion and that KLF5 promotes these processes in HeLa cells in a manner partly
dependant on TNFRSF11a expression.
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activity was measured as described above. *P < 0.05 vs. promoter-reporters containing the —929 to —513
region. (d,e) HeLa cells were incubated with or without TNF-a and whole-cell lysates were subjected to CHIP
assays using the positive KLF5-binding site sequences (sites 1-4) as probes. DNA-bound proteins were collected
with streptavidin-agarose beads and analysed by western blotting with an anti-KLF5 antibody. *P < 0.05.

0.0 T T T T
Site4 Site3 Site2 Site1

Relative TNFRSF11a mRNA level

KLF5 expression can be induced by various oncogenic and pro-inflammatory factors, including TNF-a*%,
lipopolysaccharide® and interleukin-13%. TNF-« can also induce TNFRSF11a expression and, according to the
present study, KLF5 expression. These findings imply that the KLF5/TNFRSF11a axis is responsive to various extra-
cellular oncogenic and pro-inflammatory stimuli. Moreover, in osteoclasts, the TNFRSF11a (RANK)/RANK ligand
(L) interaction activates a signalling cascade involving downstream targets such as the Erk, p38, Akt and nuclear
factor (NF)-kB signalling pathways*>*!. KLF5 has also been shown to regulate target genes by interacting with
NF-xB*. Further investigation is needed to determine whether KLF5 and NF-kB form a transcription complex at
the TNFRSF11a promoter and co-ordinately regulate TNFRSF11a transcription in CC cells.

Previously, KLF5 was reported to promote breast cancer proliferation, migration and invasion in part by upreg-
ulating the transcription of TNFAIP2*. In this study, we demonstrated that KLF5 promoted HeLa cell proliferation,
migration and invasion in a manner at least partly mediated by TNFRSF11a. However, we could not exclude the
possibility that other KLF5 target genes might also contribute to HeLa cell migration and invasion. Further stud-
ies to determine whether KLF5 and TNFRSF11a promote CC metastasis in vivo are expected to yield significant
results.
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Figure 5. KLF5 promotes HeLa cell proliferation and migration in a manner partly dependent on tumour
necrosis factor receptor superfamily member 11a (TNFRSF11a) expression. (a) TNFRSF11a knockdown and
KLF5 overexpression in HeLa cells were confirmed by western blotting. 3-actin was used as the loading control.
(b) TNFRSF11a knockdown and KLF5 overexpression altered HeLa cell growth relative to the control during

a 96 h period, as measured by a CCK-8 assay. Data represent the means + standard errors of the means (SEM;
n=3). *P < 0.05 vs. the si-NS group, #P < 0.05 vs. the Ad-KLF5 group. TNFRSF11a knockdown and KLF5
overexpression also affected HeLa cell migration (c) and invasion (d), as shown by Transwell assays. Data
represent the means &= SEM (n=3). *P < 0.05 vs. the si-NS group, #P < 0.05 vs. the Ad-KLF5 group.

TNFRSF11a expression has been reported in osteogenic sarcoma** and in two types of tumours with high bone
metastatic potential (breast and prostate cancer)***!, but has not been well investigated in CC. This study is the first
to demonstrate that TNFRSF11a depletion suppresses CC cell proliferation in vitro (Fig. 4), thus suggesting that
TNFRSF11a could serve as a therapeutic target in CC. Interestingly, TNFRSF11a also promoted HeLa cell migra-
tion and invasion.

We next explored the potential functional mechanism underlying the observed effects. In previous studies,
KLF5 promoted breast cell survival partly through fibroblast growth factor-binding protein 1-pERK-mediated
dual specificity MKP-1 protein phosphorylation and stabilization®? and could activate MEK/Erk signalling
and cell proliferation*’. Moreover, TNFRSF11a was reported to activate signalling pathways downstream of
its ligand RANKL, such as NF-kB, JNK, Erk, p38 and Akt/PKB, via TRAF protein phosphorylation*"*’. In
our experiments, TNF-a induced KLF5 expression in CC cells via the p38, but not the Erk or Akt, pathway.

Besides our more conclusive findings regarding the role of the KLF5/TNFRSF11a in CC cells, our results offer
more suggestive and will require additional, more targeted follow-up. Meanwhile, the clinical studies suggest an
association of KLF5 mRNA expression with metastasis and recurrence in patients with CC (Table 1), consistent
with the idea that KLF5 promotes cell proliferation and migration. Although these results may be significant, they
are rather generalised and further study is needed to confirm the expression of KLF5 and TNFRSF11a mRNA and
protein in clinical CC tumours.

In recent years, an explosion of studies has led researchers to decode the substrates of KLF5 that affect the
growth, migration and invasion of CC cells. Delineation of the affected CC tissues and conditions under which
KLF5 is active remains a critical goal of research aimed at understanding the effects of downstream targets on
growth and migration. A much more comprehensive analysis of KLF5 and its targets, including analyses of genetic
losses of function and RNA interference, is needed to determine the relative importance of KLF5 in CC cell lines
and cervical neoplasia.

In conclusion, we have demonstrated the coexpression of KLF5 and TNFRSF11a in CC. We found that at a
genetic level, KLF5 tightly controls TNFRSFI11a transcription by binding to the TNFRSF11a promoter and in
response to TNF-« activation, KLF5 promotes HeLa cell proliferation, migration and invasion partly through
TNFRSF11a. These findings suggest that KLF5 and TNFRSF11a may be valuable therapeutic targets in CC.
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Figure 6. TNF-o induces KLF5 expression via the p38 pathway in cervical cancer cells. (a) Erk, Akt and

P38 MAPK phosphorylation in HeLa cells was analysed by western blotting. 3-actin was used as the loading
control. (b) The activation levels of these three kinases were determined by the respective phosphorylation
ratios. *P < 0.05, **P < 0.01. (c) The cellular locations of KLF5 (red) and tumour necrosis factor receptor
superfamily member 11a (TNFRSF11a, green) in HeLa cells were determined by immunofluorescence staining
(x200). DAPI was used for nuclear staining. Scale bars =10 um. (d) Statistical analysis of fluorescence intensity.
*P < 0.05 vs. the TNF-a group. KLF5 expression in HeLa cells was determined at the protein (e) and mRNA
levels (f). *P < 0.05 vs. the TNF-« group.
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Methods

Clinical samples. Human tissue samples were obtained from 218 patients (40 normal cervical tissues, 68 cer-
vical intraepithelial neoplasia (CIN) tissues (CIN L: 23 cases; CIN II-III: 45 cases) and 110 CSCC tissues) from
January 2008 to December 2010. A total of 140 CSCC patients were enrolled; however, 30 patients were excluded
due to lack of pathological specimen or other reason, loss to follow up at the early stage of the study, resulting in
110 participants in the final study population. The median age of all the participants was 45 years, and the age range
was 25 to 79 years. All of these patients have been informed consent before collection of their samples, according
to institutional guidelines. This protocol was approved by the Ethics Committee of Hebei United University (No.
15007), in Tangshan of Hebei province, China. After diagnosis, they underwent surgical resection of primary cer-
vical cancer at the Department of Obstetrics and Gynecology in Tangshan workers hospital. The histological type
and grade of tumor were classified on the basis of WHO criteria. The stage of each cancer was established according
to the International Federation of Gynaecology and Obstetrics (FIGO) criteria. These tissue samples for CIN diag-
nosis were performed by using micro-excision. All primary tumor tissues and control samples were diagnosed by
HE-stained. A part of the samples were paraffin embedded for Immunehistochemical staining, and another part is
within the sterilization of the aluminum foil and preserved in liquid nitrogen for gRT-PCR.

Study endpoints. Primary endpoints were overall survival (OS). OS was defined as the time from registra-
tion until death from any cause. Surviving patients were censored on March 30, 2016. The Ethics Committee of
Hebei United University approved this study (Approval No. 15007), which conformed to the requirements of the
Declaration of Tangshan, and all patients gave informed consent prior to all procedures. All methods were carried
out in accordance with relevant guidelines and regulations. All experimental protocols were approved by the licens-
ing committee of North China University of Science and Technology.

SCIENTIFICREPORTS | 7: 15683 | DOI:10.1038/s41598-017-15979-1 9



www.nature.com/scientificreports/

Age(year)

<45 41(37.27%) 24(32.88%) 17(45.95%) 0.180 29(42.03%) 12(29.27%) 0.181
>45 69(62.73%) 49(67.12%) 20(54.05%) 40(57.97%) 29(70.73%)

Histological type

High, Middle differentiatiated | 72(65.46%) 42(57.53%) 30(81.08%) 0.014* 37(53.62%) 35(85.37%) 0.001*
Poorly differentiated 38(34.55%) 31(42.47%) 7(18.92%) 32(46.38%) 6(14.63%)

Tumor size (m?)

<3 66(60.00%) 46(63.01%) 20(54.05%) 0365 | 40(57.97%) 26(63.41%) 0.573
>3 44(40.00%) 27(36.99%) 17(45.95%) 29 (42.03%) 15(36.59%)

Infiltration depth

<1/2 75(68.18%) 55(75.34%) 20(54.05%) 0.024%* 52(75.36%) 23(56.10%) 0.036*
>1/2 35(31.82%) 18(24.66%) 17(45.96%) 17(24.64%) 18(43.90%)

Nodal metastasis

NO 64(58.18%) 36(49.32%) 28(75.68%) 0.008%* 33(47.83%) 31(75.61%) 0.004*
N1 46(41.82%) 37(50.69%) 9(24.32%) 36(52.17%) 10(24.39%)

FIGO stage

i 61(55.45%) 46(63.01%) 15(40.54%) 0.025% | 44(63.77%) 17(41.46%) 0.023*
11 49(44.55%) 27(36.99%) 22 (59.46%) 25(36.23%) 24 (58.54%)

Table 1. Baseline characteristics of the low and high KLF5 and TNFRSF11a expression groups (n=110).
Asterisk denotes significant P values (P < 0.05).
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Figure 7. KLF5 and TNFRSF11a expression in cervical squamous cell carcinoma (CSCC) tissues correlates
with patient survival. (a) Patients were divided into two groups, low or high KLF5 expression, based on the
minimum observed P value. The OS of patients with low and high KLF5 expression was evaluated using a
Kaplan—Meier survival analysis (log-rank P = 0.033). (b) Patients were also divided into two groups, low or
high TNFRSF11a expression, based on the minimum observed P value. The OS of patients with low and high
TNFRSF11a expression was evaluated using a Kaplan-Meier survival analysis (log-rank P=0.011).

Cell culture. Human cervical (HeLa, SiHa and C33A) cancer cells were purchased from the Cell Culture
Center (Manassas, VA). They were cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM)
(GibcoLaboratories, Grand Island, NY, USA) containing 10% heat-inactivatedfetal bovine serum, 100 units/mL
penicillin, and 100 pg/mL strepto-mycin (Invitrogen, Carlsbad, CA) at 37°C in a 5% CO2/ 95% air humidified
atmosphere. The medium was changed every two days during incubation.

Double immunofluorescence staining. Immunofluorescence staining was performed with 5pm
paraffincross-sections from the human cervical tissues. After deparaffinized in xylene and rehydrated in graded
alcohol, the slides were pre-incubated with 10% normal goat serum and then incubated with primary antibod-
ies rabbit anti-KLF5 (1:50, GTX103289, GeneTex), mouse anti-TNFRSF11a (1:50, MBS245189, Mybiosource).
Secondary antibodies were fluoresce in labeled antibody to mouse IgG (021815, KPL, USA), rhodamine labeled
antibody to rabbit IgG (031506, KPL, USA). In each experiment, DAPI (0.1 ug/ml, 157574, MB biomedical) was
used for nuclear counter staining. Images were captured by confocal microscopy (DM6000 CES, Leica) and pro-
cessed by LAS AF software.
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Plasmids DNA and transfection. Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) was used for
all transfections with siRNA and plasmids, according to the manufacturer’s instructions. After selection, west-
ern blotting was performed to confirm if the knockdown was effective. Preparation of Plasmid Constructs and
Recombinant adenoviral-KLF5 constructs were constructed as described previously12. The transfected cells were
cultured in complete medium for 16 h and then, in normal growth medium for additional 48 h before performing
functional assays or harvesting cell lysates for protein expression analyses.

Transient transfection of HeLa and SiHa cells. HeLa and SiHa cells were infected with Ad-KLF5 or
Ad-GFP as described previously [13]. Non-specific siRNA (NS siRNA) was purchased from Santa Cruz Biotechnology.
The siRNA sequences used in these studies were as follows: KLF5 siRNA: 5'-CGAUUACCCUGGUUGCACA-3’
and 5'-AAGCU- CACCUGAGGACUCA-3’; TNFRSF11a siRNA: 5-GACUUGGGCUCACAGAU- AA-3’ and
5'-GAUUGAGGUGGCCACUUAU-3’; Luciferase siRNA/shRNA, 5-CUUACGCUGAGUACUUCGA-3'.
Transfection was performed using Lipofectamine TM reagent (Invitrogen) according to the manufacturer’s
instructions. 24 h after transfection, HeLa and SiHa cells were treated with TNF-a (10 ng/mL). Then cells were
harvested and lysed for Western blotting.

qRT-PCR. Total mRNA from cervical tissues or HeLa cells were extracted with the RNeasyplus mini kit
(QIAGEN, Valencia, CA, USA) according to the manufacturer’s instructions, and were reverse transcribed into
cDNA (TaKaRa Bio Inc., Tokyo,Japan). The cDNA was then amplified by real-time quantitative TagMan PCR
with KLF5 E, 5-ACACCAGACCGCAGCTCCA-3’ and KLF5 R, 5-TCCATTGCTGCTGTCTGATTTGTAG-3';
TNFRSF11aE 5-TTTCCGGGA- GGAGCTCATGG-3' and TNFRSF11a R,5'-CAGGTGGCCTTTGCTGAAGT-3';
B-actin E5-GGTGAAGGTCGGAGTCAACG-3' and B-actin R, 5-TGGGTGGA- ATCATATTGGAACA-3/, spe-
cific primers and probes with the Lightcycler 480 II (Roche, Mannheim, Germany). The data were normalized to
B-actin and expressed as the fold change over control. The relative expression level was calculated using the follow-
ing equation: relative gene expression = 2 ~(AACTsample—ACTeontrol)

Western blotting. Total proteins from HeLa cells were extracted with cell lysis reagent (Promega,
Madison, WI, USA), and supplemented with Complete Mini protease in hibitorcocktail (Roche Diagnostics,
GmbH, Germany). The protein samples were loaded on and separated by SDS-PAGE, after being quantitatively
determined by using Bradford Reagent (Bio-Rad, Hercules, CA, USA), and then were transferred to PVDF
membranes, which were then blocked in 5% skimmed milk for 1 h at room temperature and probed with an
antibody to KLF5, TNFRSF11a, PCNA, Akt, P-Akt, p38, P-p38, Erk, P-Erk or 3-actin (Santa Cruz Biotechnology,
SantaCruz, CA, USA). Antibody binding was detected by using chemiluminescence (Thermo Scientific,
Rockford,USA) according to the manufacturer’s instructions with a peroxidase-conjugated anti-mouse antibody.
The housekeeping gene 3-actin was used as an internal control. The data were expressed as percentage to 3-actin.

Dual luciferase assays. The proximal TNFRSF11a promoters were amplified using normal human DNA as
a template and cloned into the pGL3-Basic (Promega) vector. HeLa cells were seeded in 24-well plates at 1 x 105
cells/well. On the next day, the cells were transfected with the TNFRSF11a reporter plasmid (0.6 ug/well) and a
pRL-B-actin internal control (5 ng/well) in triplicate. At 24 h after transfection, the cells were separately infected
with a green fluorescent protein (GFP) control adenovirus and a KLF5 adenovirus for 4h (~50% cells were
infected under a fluorescence microscope). At 48 h after transfection, luciferase activity was measured using the
dual-luciferase reporter assay system (Promega).

Chromatin immunoprecipitation assays. The chromatin immunoprecipitation assay was performed
using the HeLa cells following the protocol provided by Abcam (Cambridge, MA, USA). The diluted DNA- protein
complex was incubated with an equal amount of anti-TNFRSF11a antibody or mouse IgG (Santa Cruz) overnight at
4°Cin the presence of herring sperm DNA and protein A/G beads. Chromosomal DNA was purified and analyzed
by RT-qPCR. The PCR primers for the TNFRSF11a gene promoter to amplify the region of interest were as follows:
P1-E 5-GGCCAGTCTCCCGTCAGTCC-3;P1-R, 5-CTTTGCTATCTGGCGCTGGG-3'; P2-E 5'-CCCTCTACCC
ACTGA- AGCGATA-3'; P2-R, 5-GGAACGCCCCCAATACCTGC-3'; P3-F, 5'-GCAGC- GCAGTAGGGAA
ACAG-3'; P3-R, 5-GAGCTTATCCCGGTCAGGCC-3'; P4-F, 5-TTCCCAGATCCAGGCAAATGC-3'; P4-R,
5'- AGTCGTGCTGTCGCTAGG- CC-3'.

Cell proliferation assay. Cell proliferation was estimated using a CCK-8 assay. HeLa cells were used for the
logarithmic growth phase. Cell suspensions (8000 cells/well) were added to 96-well plates in a volume of 200 ml/
well. Each group was prepared with five parallel wells and incubated at 37 °C, 5% CO2, for 48h. At the end of the
culture period, 10 ml CCK-8 (DOJINDO, Kumamoto, Japan) was added to each well. After 4h incubation, the
absorbance was measured with an enzyme calibrator at 450 nm after visual color occurrence at 24, 48, 72 or 96h
and the optical density (OD) values were measured. Experiments were repeated three times.

EdU proliferation assay. 5-ethynyl-2’-deoxyuridine (EdU) is a nucleoside analog of thymidine whose incor-
poration can be used to label cells undergoing DNA replication. Proliferating HeLa cells were evaluated by using
the Click-iT EdU Alexa Fluor 594 Imaging Kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturers’
instructions. Briefly, HeLa cells were incubated with 10puM EdU for 3h at 37 °C, fixed with 3.7% formaldehyde for
15min, and treated with 0.5% Triton X-100 for 20 min at room temperature. After washing twice with PBS contain-
ing 3% BSA, the cells were reacted with Click-iT reaction cocktail for 30 min. Subsequently, cell nuclei were stained
with Hoechst 33342 (Invitrogen, Carlsbad, CA, USA) at a concentration of 5 pg/mL for 30 min. The images were
acquired by fluorescence microscopy and overlapped using Image-Pro Plus (Version 6.0.0.260, Media Cybernetics,
Inc., Tokyo, Japan).
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In vitro migration and invasion assay. An in vitro migration and invasion assay was performed using
a 48-well Boyden chamber as previously described. For knockdown KLF5 or TNFRSF11a assay, approximately
5 x 105 HeLa cells were added to the upper chamber in serum free media. The lower compartment was filed with
serum-free media containing 10% FBS. For adenoviral infection KLF5 or transfection TNFRSF11a assay, approxi-
mately 1 x 105 HeLa cells were added to the upper chamber in serum free media. The lower compartment was filed
with serum-free media containing 10% FBS. The assays were performed with or without Matrigel (BD Biosciences,
San Jose, CA, USA), respectively. All cells were seeded in the upper part of the Boyden chamber and incubated for
12h for migration and 24 h for invasion. These cells were fixed with 100% methanol and stained with 0.05% Giemsa
for 30 mins. The migratory phenotypes were determined by counting the cells that migrated to the lower side of
the filter by using microscopy at x400.Thirteen fields were counted for each filter and each sample was assayed in
triplicate.

Animal Experiments. The HeLa cells population with stable TNFRSF11a knockdown was prepared by len-
tiviral transduction and puromycin selection. The effectiveness of the TNFRSF11a knockdown was confirmed
by WB. A total of 20 6-week-old female SCID mice purchased from Vital River (Beijing, China) were randomly
distributed into two groups (si-NS and si-TNFRSF11a, 10 mice per group, the technician just haphazardly assigned
mice into different cages one by one as these mice are basically very similar in size and age). To produce subcuta-
neous tumors or experimental liver metastases, each mouse was injected subcutaneously with a mixture of tumor
cells (1 x 107 cells per site in 100 ul PBS). Mice were sacrificed 28 days after tumor implantation. Subcutaneous
tumors were weighted and hepatic metastases were determined. All animal studies were approved by the Animal
Experimental Ethical Inspection Form of Hebei United University (No. 2015-004) and all efforts were made to
minimize suffering.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 5 software (GraphPad
Software, La Jolla, CA). Sample size was chosen using the SPSS 17.0 statistical software to ensure adequate power
to detect a prespecified effect size. All experiments were performed at least three times, and data are reported as
the means =+ SEM. The variance is similar between the groups that are being statistically compared. Differences
between two given groups were analyzed by t-tests.

Data availability statement.  All data are fully available without restriction.
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