Table 3.
Functions of the feet | |
---|---|
Everyday feet | No ankle joint, adaptations due to elastic deformation of the carbon spring only |
Meridium | Real-time adaptation to inclines and declines in stance phase (i.e. ankle angle adaptation to terrain in the same step) during walking; dorsiflexion stop for standing after adaptation to the terrain (i.e. dorsiflexion is locked after reaching auto-adaptable relative home position); auto-adaptive heel height adaptation (different shoes, barefoot) |
Elan | Free ankle joint hydraulically damped with limited ROM (see Table. 2) – situation detection of incline/decline/fast speed (adjusts plantar –and dorsiflexion resistances); additional adaptations due to elastic deformation of the carbon spring |
Proprio | Incremental adaptation of the ankle angle to inclines and declines in swing phase via motor (i.e. adaptation process needs more than one step), locked joint in stance (i.e. no ankle rotation); additional adaptations due to elastic deformation of the carbon spring; manual heel height adaptation (different shoes, barefoot) |
TSA | Incremental adaptation of the ankle angle to inclines and declines in stance phase; locked joint in stance; gait speed adaptation (enables 1° additional dorsiflexion for slow speed, 0.5° plantarflexion for fast walking); additional adaptations due to elastic deformation of the carbon spring; manual heel height adaptation |
Raize | Incremental adaptation to inclines in stance phase; real-time adaptation to declines in stance phase; additional adaptations due to elastic deformation of the carbon spring; manual heel height adaptation |
Featured functions of the feet which might influence the behavior of the subjects while standing and walking. Functions of the feet were derived from the manuals, user trainings and observations during patient fittings. Note that the MPF have additional functions (e.g. activity modes, standing up etc.) that are not described