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Alternative splicing plays important roles in generating different
transcripts from one gene, and consequently various protein iso-
forms. However, there has been no systematic approach that
facilitates characterizing functional roles of protein isoforms in the
context of the entire human metabolism. Here, we present a sys-
tematic framework for the generation of gene-transcript-protein-
reaction associations (GeTPRA) in the human metabolism. The
framework in this study generated 11,415 GeTPRA corresponding
to 1,106 metabolic genes for both principal and nonprincipal tran-
scripts (PTs and NPTs) of metabolic genes. The framework further
evaluates GeTPRA, using a human genome-scale metabolic model
(GEM) that is biochemically consistent and transcript-level data com-
patible, and subsequently updates the human GEM. A generic human
GEM, Recon 2M.1, was developed for this purpose, and subsequently
updated to Recon 2M.2 through the framework. Both PTs and NPTs of
metabolic genes were considered in the framework based on prior
analyses of 446 personal RNA-Seq data and 1,784 personal GEMs
reconstructed using Recon 2M.1. The framework and the GeTPRA will
contribute to better understanding humanmetabolism at the systems
level and enable further medical applications.
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Alternative splicing of a gene generates multiple transcripts,
which are translated to protein isoforms (1, 2). In human

cells, 92–97% of the multiexon genes undergo alternative splic-
ing events (3) and achieve functional diversity by providing al-
ternative functional proteins and domains (4). Gene transcripts
encoding protein isoforms can be categorized into principal and
nonprincipal transcripts (PTs and NPTs). PTs are representative
transcripts of a gene with a major biochemical function, whereas
all the other alternative transcripts are currently NPTs requiring
further study (5). The biological roles of protein isoforms need to
be precisely understood, as they are highly associated with human
cell metabolism and disease progression (4, 6, 7). Recent advances
in next-generation sequencing including RNA-Seq and proteome/
protein localization technologies have facilitated functional char-
acterization of an increasing number of protein isoforms; these
include computational prediction of biological functions of pro-
tein isoforms (4), analysis of recurrent switches of protein isoforms
in tumor versus nontumor samples (8), annotation of PTs for each
gene (9), and proteomic investigation of subcellular localization
(SL) of protein isoforms (10). With increasing volumes of such
transcript-level data, an upgraded systems biology framework is
needed to facilitate characterizing functional roles of protein
isoforms by linking transcript-level information (e.g., RNA-Seq
data) to a higher biological phenotype, metabolism.
Human genome-scale metabolic models (GEMs) provide a

systematic framework to investigate genotype–phenotype asso-
ciations and can be considered to characterize protein isoforms
(11–16). GEMs in general describe genome-wide metabolic

pathways encoded by the target organism’s genome, using stoi-
chiometric coefficients of associated metabolites (17, 18). To
date, a series of comprehensive human GEMs has been released,
including Recon 1 (19), Recon 2 (20), a revised Recon 2
(hereafter, Recon 2Q) (13), and Recon 2.2 (21), as well as hu-
man metabolic reaction (HMR) series (22, 23). These human
GEMs have been employed to predict anticancer targets (24–26)
and oncometabolites (27), characterize metabolism of abnormal
human myocyte with type 2 diabetes (28), investigate roles of gut
microbiota in host glutathione metabolism (29), predict bio-
markers in response to drugs (30), predict essentiality of human
genes having diverse numbers of transcript variants (31), identify
poor prognosis in patients with breast cancer (32), and predict
tumor sizes and overall survival rates of patients with breast
cancer (33). Despite such a wide application scope, currently
available human GEMs cannot be used to address transcript–
phenotype associations beyond genotype–phenotype links be-
cause the human GEMs have incomplete gene-protein-reaction
(GPR) associations that cannot be integrated with transcript-
level data. Although previously released human GEMs Recon
1 and 2 claimed that transcript-level information was incorporated in
their GPR associations (19, 20), the transcript identifiers (IDs) used
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in these models (e.g., Entrez gene ID x.1, x.2, . . ., etc.) do not
match with those described in major genome annotation data-
bases (34) (Results). Thus, gene-transcript-protein-reaction associa-
tions (GeTPRA) should be systematically defined to characterize
functional roles of protein isoforms generated from different tran-
scripts of metabolic genes.
Here, we introduce a systematic framework that evaluates meta-

bolic functions of protein isoforms to generate GeTPRA, which is
subsequently used to update a human GEM. In this study, the
framework generated 11,415 GeTPRA corresponding to 1,106 met-
abolic genes. To establish the framework, a generic human GEM
Recon 2M.1 was first developed that is biochemically consistent and
transcript-level data compatible. Also, the importance of PTs and
NPTs in human metabolism was analyzed using 446 personal RNA-
Seq data (Dataset S1) and reconstruction of 1,784 personal GEMs
based on the Recon 2M.1; consequently, both PTs and NPTs were
considered in the framework. The framework for the GeTPRA was
subsequently used to upgrade Recon 2M.1 toward Recon 2M.2. We
discuss how the framework and its resulting GeTPRA can contribute
to better understanding the biological roles of transcripts in human
metabolism and enable further medical applications.

Results
Generation of a Generic Human GEM Recon 2M.1 That Is Biochemically
Consistent and Transcript-Level Data Compatible. Recon 2M.1, a
biochemically consistent and transcript-level data-compatible
generic human GEM, was first generated by systematically re-
fining Recon 2Q (13). This model refinement is not just to
enable model integration with transcript-level data but also to use
Recon 2M.1 to evaluate whether reactions mediated by protein
isoforms carry fluxes (Fig. 1 A and B). For the latter purpose, the
blocked reactions in Recon 2Q were resolved by removing or gap-
filling them. Although revised, Recon 2Q still appeared to have a
large number of blocked reactions: 1,544 blocked reactions were
found in Recon 2Q, corresponding to 21.1% of all of the metabolic
reactions, according to flux variability analysis (see SI Appendix, SI
Materials and Methods for details; Dataset S2). A large number of
blocked reactions came from the previously released GEMs used to
reconstruct Recon 2 (i.e., Ac-FAO, Edinburgh Human Metabolic
Network, HepatoNet1, and hs_eIEC611; see SI Appendix, SI Ma-
terials and Methods). Systematic refinement of the Recon 2Q toward
Recon 2M.1 and further incorporation of the updates made in
Recon 2.2 (21) are detailed in SI Appendix, SI Materials and
Methods and Dataset S2.
The resulting Recon 2M.1 appeared to be biochemically more

consistent than the previous versions (Fig. 1 C and D and Table
1). In Recon 2M.1, the numbers of blocked reactions and dead-
end metabolites were reduced, and the percentages of gene-
mediated reactions and metabolites with annotations (i.e.,
chemical formula, compound IDs of public chemical databases,
and structural descriptions) were all increased compared with
previous Recon models (Table 1). This improved model sta-
tistic was accompanied with a reduction in the model size of
Recon 2M.1. More important, Recon 2M.1 was found to give
much improved simulation performance compared with the
previous Recon versions (Fig. 1 C and D). Recon 2.2 and Re-
con 2M.1 showed biologically reasonable ATP production rates
under aerobic or anaerobic conditions in a defined minimal
medium containing one of 35 different carbon sources, while
Recon 2 and Recon 2Q failed to predict biologically reasonable
ATP production rates (Datasets S3 and S4). Furthermore,
Recon 2M.1 showed more reliable predictions in gene essenti-
ality than the previous humanGEMs, according to experimental gene
essentiality data recently released (35) (Fig. 1C and SI Appendix, SI
Materials and Methods for the definition of essential and nonessential
genes). Gene essentiality simulations of four models showed that all
the four Recon models showed comparable accuracy of 93.1–94.3%
and sensitivity values of 97.4–99.2%. However, Recon 2M.1 showed

the greatest specificity value of 35.3%; the other three models had
specificity values of 4.5–8.3% (Fig. 1C and SI Appendix, SI Materials
and Methods for definitions of accuracy, sensitivity and specificity).
Also, Recon 2M.1 was the only model that generated biologically
reasonable profiles of glucose uptake rate and lactate and ATP
production rates via oxidative phosphorylation in response to
changes in oxygen uptake rate (Fig. 1D). These profiles altogether
can be interpreted as anaerobic glycolysis in normal cells, for ex-
ample, during extensive exercises, or as aerobic glycolysis (or
Warburg effect) in cancer cells (36).
On validation of the biochemical consistency of Recon 2M.1, its

GPR associations were updated according to the latest GPR in-
formation from the Virtual Metabolic Human database (https://
vmh.uni.lu/). Entrez gene IDs used in the GPR associations of
Recon 2M.1 were subsequently converted to three different types
of transcript IDs for three major genome annotation databases
[i.e., Ensembl (37), RefSeq (38), and UCSC (39); Fig. 1A and SI
Appendix, Fig. S1]. Therefore, the Recon 2M.1 now has TPR as-
sociations in which each reaction is associated with transcript IDs
in place of gene IDs (Fig. 1A). When the Recon 2M.1 gets in-
tegrated with RNA-Seq data, transcript expression values can be
mapped onto these transcript IDs in the TPR associations.

Relative Expression Levels of PTs in Human Metabolic Genes. To
generate the GeTPRA for human metabolic genes, we questioned
whether, for each metabolic gene, it would be sufficient to con-
sider only PTs, or whether entire transcripts (both PTs and NPTs)
should be considered. This is because systems-level studies so far
have focused only on PTs with respect to the functions and SLs of
their corresponding protein products, while only a limited number
of NPTs were characterized. Thus, we examined how important it
is to consider NPTs at the systems level in generating accurate
GeTPRA. To answer this question, relative expression levels of
PTs compared with total transcript levels were first examined for
each metabolic gene to define fractional expression (FE; Fig. 2A).
Subsequently, the FEs of metabolic genes in the 446 TCGA per-
sonal RNA-Seq data were investigated (Fig. 1E and Dataset S1).
PTs were chosen for each gene on the basis of the annotation
available at the APPRIS database (9); it should be noted that a
gene can have multiple PTs, and 12.4% of human genes have
a single PT.
Overall distribution of FEs of the metabolic genes in both

nontumor and tumor samples suggests that PTs of each metabolic
gene exert different levels of metabolic activities (Fig. 2A and
SI Appendix, Fig. S2). Approximately 75% of metabolic genes
appeared to have FEs >0.8 (Dataset S5). Among them, essential
genes reported in Wang et al. (35) have an average FE value of
0.93 and suggest that essential genes operate reactions mainly
through their PTs (SI Appendix, Fig. S3). Meanwhile, ∼6% of the
metabolic genes were found to have FEs <0.2 (blue regions in Fig.
2A) in both nontumor and tumor samples. For these genes
exhibiting such low FEs, NPTs rather than PTs are likely playing
more important roles. This suggestion is also based on an obser-
vation that almost all the NPTs of genes showing FEs <0.2 actually
encode protein products (Fig. 2B). Genes having FEs <0.2 are
mainly involved in extracellular transport reactions and keratan
sulfate synthesis reactions. Further evidence of changes in ex-
pression levels of PTs decoupled from total transcript levels in
nontumor and tumor samples is available in SI Appendix, Fig. S4.
These lines of evidence suggest NPTs should also be considered in
addition to PTs to precisely describe GeTPRA of various types of
cells (e.g., normal and cancer cells).

Reconstruction and Analysis of 1,784 Personal GEMs. To date, per-
sonal GEMs have been reconstructed by including a particular
metabolic reaction when the total transcript level of the corre-
sponding gene is greater than a certain threshold value (11). The
importance of PTs in personal GEMs is obvious, but the relative
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importance of NPTs is not known. On the basis of the above re-
sults showing different levels of importance exerted by NPTs, two
different types of personal GEMs, one with total transcript-level
data (T-GEM) and the other with PT-level data (P-GEM), were
reconstructed to further gauge potential influence of NPTs in
human metabolism. Recon 2M.1 was integrated with 446 TCGA
personal RNA-Seq data to generate personal GEMs using the
task-driven Integrative Network Inference for Tissues (tINIT)
method (24, 40). A modified weight function was used for the
implementation of the tINIT method to minimize the effects of
outliers in the RNA-Seq data and sample variations (Fig. 3A and
SI Appendix, SI Materials and Methods and Figs. S5–S7 and
Dataset S6). Through this procedure, a total of 1,784 personal
GEMs were reconstructed: 446 T-GEMs and 446 P-GEMs each
for both nontumor and tumor samples (Fig. 3A). All these per-
sonal GEMs were found to satisfy essential metabolic tasks (i.e.,
generation of ATP, biomass, 8 nucleotides and 10 key interme-
diates; see SI Appendix, SI Materials and Methods for details;
Dataset S7).
To confirm the overall model validity, these 1,784 personal

GEMs were examined by comparing T-GEMs and P-GEMs, as
well as by analyzing them in the context of the FEs of metabolic
genes for both nontumor and tumor samples (Fig. 2A). Obvi-
ously, T-GEMs had greater metabolic contents than P-GEMs in
both nontumor and tumor samples of all cancer types (SI Ap-

pendix, Fig. S8). Pairwise comparison of T-GEMs and P-GEMs
revealed that 475 and 462 reactions (associated with 34 and
35 metabolic pathways, respectively) were exclusively present in
T-GEMs reconstructed for nontumor and tumor samples, re-
spectively (SI Appendix, Fig. S9). The corresponding metabolic
pathways of reactions unique to nontumor and tumor T-GEMs
were overall redundant (i.e., 28 metabolic pathways being
shared between the two types of T-GEMs); such a high degree
of similarity between the nontumor and tumor T-GEMs was
consistent with the overall similar distribution of FEs of all of
the metabolic genes in both nontumor and tumor samples (Fig.
2A). Reactions unique to both T-GEMs were largely involved in
extracellular transports, which were also consistent with the
observations made for the FEs <0.2. This observation is at-
tributed to the fact that extracellular transport contains the
greatest number of reactions among pathways (SI Appendix,
Fig. S10) and possesses the greatest number of reactions asso-
ciated with genes having FEs <0.2 in Recon 2M.1 (SI Appendix,
Fig. S11). However, there are also many metabolic genes
exhibiting FEs <0.2 that play major roles in metabolic reactions
(SI Appendix, Fig. S11). Thus, it could be concluded that the
1,784 personal GEMs reflected the observed characteristics of
the FEs of metabolic genes in nontumor and tumor samples
and were considered to be suitable for further examination of
potential roles of NPTs in human GEMs.

Fig. 1. A scheme of Recon 2M.1 development and its use in reconstructing personal GEMs. (A) A concept of alternative splicing of human genes and its use in
TPR associations of Recon 2M.1. Transcript IDs were obtained from Ensembl (37), RefSeq (38), and UCSC (39) databases. (B) A procedure of systematic re-
finement of the Recon 2Q. Biochemically inconsistent reactions include unbalanced, artificial, blocked, and/or redundant reactions. Iterative manual curation
was conducted while validating the Recon 2M.1. (C) Results of the gene essentiality simulation using Recon 2 (20), Recon 2Q (13), Recon 2.2 (21), and Recon
2M.1. Experimental information on a total of 870 essential and 15,425 nonessential genes was obtained from Wang et al. (35). Accuracy, sensitivity, and
specificity values were calculated using equations defined in SI Appendix, SI Materials and Methods, along with the prediction results. FN, false negatives; FP,
false positives; TN, true negatives; TP, true positives. (D) Predicted profiles of glucose uptake rate and lactate and ATP production rates when maximizing the
cell growth rate of the four human GEMs along the oxygen uptake rate. Relevant reaction IDs are shown in parentheses. (E) Reconstruction of 1,784 personal
GEMs using Recon 2M.1 and 446 TCGA personal RNA-Seq data across the 10 cancer types, and their use to analyze principal and nonprincipal transcripts.
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Importance of Considering NPTs in Human GEMs. Presence of a large
number (tens to hundreds) of NPT-associated genes in the
T-GEMs discussed here and comparative gene enrichment
analysis of T-GEMs and P-GEMs revealed that NPT-associated
genes/reactions should not be ignored in the reconstruction of
personal GEMs. Although genes with FEs <0.2 make up only
6% of the entire metabolic genes considered (Fig. 2A), the
number of such genes is not insignificant; overall, 446 nontumor
T-GEMs had 44–214 genes with FEs <0.2 (Dataset S8). This
trend also stands true for the tumor samples, as 446 tumor
T-GEMs had 44–216 genes with FEs <0.2 (Dataset S8). This
observation indicates that metabolic activities exerted by NPT-
encoded proteins in both nontumor and tumor samples should
not be ignored. These genes with FEs <0.2 included in
T-GEMs were further selected and analyzed by comparing
T-GEMs and P-GEMs for both nontumor and tumor samples
[blue regions in SI Appendix, Fig. S12; comparative gene en-
richment analysis using Fisher’s exact test with false discovery
rate (FDR)-corrected P value < 0.05]. A total of 20 genes with
FEs <0.2 appeared to be significantly enriched in T-GEMs for
both nontumor and tumor samples. Among them, protein
isoforms for sufficiently expressed PTs and NPTs of ACHE,
AMPD1, AMPD2, AMPD3, CCBL1, FGA, GCNT2, GLS2,

MOGAT2, SLC14A1, SLC15A2, SLC4A7, SLC7A10, SLC7A7,
SLC7A8, ST3GAL3, TH, and TXNRD2 genes were found to
share the same sets of protein domains (Fig. 3B and Dataset
S9). In contrast, protein isoforms of CPS1 and GLS genes do
not, which indicates that a single metabolic gene might play
multiple biological roles, if functional, through different sets of
protein domains and SL sequences in their protein isoforms
(Fig. 3B). If the information on NPTs (i.e., 44–214 genes in
446 nontumor T-GEMs and 44–216 genes in 446 tumor
T-GEMs) was not considered in reconstructing personal GEMs
as in P-GEMs, the chance to identify GeTPRA would be highly
limited. These results suggest NPTs should also be considered
in reconstructing human GEMs when their expression levels are
sufficiently high. This information is reflected in the recon-
struction of human Recon 2M.2, as described here.

Systematic Generation of GeTPRA. On the basis of the three studies
presented here, we designed a framework that systematically gen-
erates GeTPRA as a resource for the study of human metabolic
genes and network (Fig. 4A). Establishment of the framework for
the GeTPRA was motivated by the fact that protein isoforms of a
single metabolic gene can have multiple SL sequences and/or dif-
ferent domains (e.g., CPS1 and GLS in Fig. 3B). The framework

Table 1. Comparison of model properties of Recon 2, Recon 2Q, Recon 2.2, Recon 2M.1, and Recon 2M.2

Property Recon 2 Recon 2Q Recon 2.2 Recon 2M.1 Recon 2M.2

Total no. of reactions 7,440 7,327 7,785 5,825 5,842
Total no. of metabolites 5,063 4,962 5,324 3,368 3,368
No. of unique metabolites 2,626 2,531 2,652 1,735 1,735
No. of transcripts 2,194 2,167 N/A 15,692 (Ensembl) 15,597 (Ensembl)

4,028 (RefSeq) 4,005 (RefSeq)
14,094 (UCSC) 14,004 (UCSC)

No. of unique genes 1,789 1,775 1,674 1,682 1,663
No. of blocked reactions (% of all reactions) 1,603 (21.5%) 1,546 (21.1%) 1,863 (23.9%) 744 (12.8%) 737 (12.6%)
No. of dead-end metabolites (% of all metabolites) 1,176 (23.2%) 1,066 (21.5%) 1,088 (20.4%) 239 (7.1%) 240 (7.1%)
No. of balanced reactions (% of all reactions) 6,340 (85.2%) 6,242 (85.2%) 7,035 (90.4%) 4,568 (78.4%) 4,574 (78.3%)
No. of gene-mediated reactions (% of all reactions) 3,918 (52.7%) 3,879 (52.9%) 4,727 (60.7%) 3,914 (67.2%) 3,940 (67.4%)
No. of metabolites with chemical formula

(% of all metabolites)
4,877 (96.3%) 4,807 (96.9%) 5,318 (99.9%) 3,310 (98.3%) 3,310 (98.3%)

No. of metabolites with compound IDs of
ChEBI, HMDB, HumanCyc and/or KEGG
(% of all metabolites)

3,081 (60.9%) 3,341 (67.3%) 3,274 (61.0%) 2,321 (68.9%) 2,321 (68.9%)

No. of metabolites with structural information
using InChI and/or SMILES (% of all metabolites)

2,914 (57.6%) 3,023 (60.9%) 3,360 (63.1%) 2,333 (69.3%) 2,333 (69.3%)

Fig. 2. Relative expression levels of principal transcripts (PTs) in metabolic genes from 446 TCGA personal RNA-Seq data across the 10 cancer types. (A) Heat
maps showing the distribution of FEs for all the metabolic genes from nontumor and tumor samples of the RNA-Seq data. FE is calculated by dividing principal
transcript levels (PTLs) by total transcript levels (TTLs) for each metabolic gene, i. Metabolic genes in blue regions have high TTLs but low PTLs (i.e., low FE
values), whereas metabolic genes in red regions have both consistent TTLs and PTLs (i.e., high FE values). Unexpressed genes are shown in gray. (B) Relative
expression levels of PTs, coding NPTs, and noncoding NPTs for three different ranges of FEs in the nontumor and tumor samples.
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uses software tools that extract catalytic and compartmental in-
formation of each protein isoform; EFICAz2.5 (41) and Wolf PSort
(42) were used in this study, which predict EC numbers and SLs for
each given peptide sequence, respectively. The results (Dataset S10)
suggest the EFICAz and Wolf PSort are reliable for the prediction
of GeTPRA, although they have room to be further improved. As a
first step of the framework, the peptide sequences of 2,688 PT- and
4,594 NPT-encoded proteins resulting from 7,282 transcripts of
1,682 metabolic genes defined in Recon 2M.1 were retrieved from
Ensembl and subjected to EFICAz2.5 and Wolf PSort analyses;
genes were considered only if they have Ensembl and Entrez gene
IDs consistently cross-referenced. As a result, 1,106 metabolic genes
could be assigned for their EC numbers and SLs, and 576 genes
could not (top pie chart in Fig. 4A). Among 1,106 metabolic genes,
556 (50%) genes were predicted to have a single consistent SL and
an EC number for their 1,037 protein isoforms. A total of 468 (42%)
metabolic genes generated 2,048 protein isoforms with a single EC
number, but multiple SLs. Also, 21 (2%) metabolic genes generated
protein isoforms with a single SL, but multiple EC numbers. Finally,
61 (6%) metabolic genes generated protein isoforms with multiple
SLs and EC numbers (Fig. 4A). Thus, protein isoforms belonging to
the last three categories can carry out multiple metabolic functions.
Those unassigned 576 metabolic genes were not considered in
GeTPRA (Dataset S11) because their protein isoforms could not be
assigned with EC numbers and/or SLs.
With EC numbers predicted for each protein isoform, their

corresponding metabolic reactions were retrieved from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (43),
using KEGG API (www.kegg.jp/kegg/rest/) (Fig. 4A). The re-
trieved metabolic reactions were subsequently standardized using
MNXM IDs from MNXref namespace and assigned with com-
partments according to the predicted SLs. As a result, a total of
11,415 GeTPRA including 2,976 candidate unique reactions were
generated as an output of the framework (Fig. 4A). Overall, 65%
of GeTPRA have experimental evidence available at BRENDA
(44), UniProt (45), and/or Human Protein Atlas (HPA) (10,
46), while the remaining 35% GeTPRA are not experimentally
supported (leftmost pie chart in Fig. 4A). It should be noted
that contents and accuracies of GeTPRA appeared to be barely
influenced by the version of Ensembl in the framework
(Dataset S10).
On the basis of these results, GeTPRA was used to upgrade

Recon 2M.1. The candidate reactions from GeTPRA, which
were not available in Recon 2M.1, were added to the model one

by one if they had experimental evidence, and examined with flux
variability analysis to confirm whether they actually carry meta-
bolic fluxes (Dataset S11). As a result, 25 candidate reactions
were predicted to carry metabolic fluxes. They were manually
curated, and 23 metabolic reactions were finally added to Recon
2M.1 (Fig. 4B and SI Appendix, Fig. S13 and Dataset S12). The
23 reactions are mediated by 43 PT- and 14 NPT-encoded pro-
teins of 21 metabolic genes (i.e., ACOT7, ALDH1L2, ALDH6A1,
ALDH7A1, BLVRA, CCBL1,DCTPP1,GLUL,GRHPR,HSD17B1,
IP6K1, IP6K3, ISYNA1, ME2, MPST, PPOX, SPR, SULT2A1, TST,
UCK1, and UCK2). The corresponding reactions added were in-
volved in rather diverse metabolic pathways encompassing metabo-
lisms of amino acids, carbohydrates, energy, lipids, nucleotides,
xenobiotics, cofactors and vitamins. Despite the potential biochemical
importance of these 23 reactions, they were not present in the previous
Recon models.
Having used 23 metabolic reactions of GeTPRA, the remaining

2,953 reactions of GeTPRA were further employed to correct
existing reactions in Recon 2M.1 that have obvious errors. Among
the remaining 2,953 reactions, GPR/TPR associations of 272 met-
abolic reactions in Recon 2M.1 were found to be inconsistent with
the remaining 2,953 reactions of the GeTPRA. Thus, GPR/TPR
associations of these 272 reactions were manually curated. As a
result, GPR/TPR associations of 85 reactions in Recon 2M.1 were
modified, and six reactions were removed according to the GeT-
PRA, all having experimental evidence (Fig. 4C and Dataset S13).
The resulting updated human GEM Recon 2M.2 was validated in
the same way as Recon 2M.1 (Fig. 1 C and D). Gene essentiality
analysis showed that the specificity obtained with Recon 2M.2 was
35.8% (Fig. 4D), which was slightly better than that (35.3%)
obtained with Recon 2M.1 (Fig. 1C). Also, Recon 2M.2 was able to
generate a biologically reasonable glucose uptake rate and lactate
and ATP production rates in response to changes in oxygen uptake
rate (Fig. 4E). Although we used Recon 2M.1 as an input for the
GeTPRA framework, any Recon model can also be considered for
an update if the model has consistent TPR associations and bi-
ologically reasonable simulation performance (Figs. 1 C andD and 4
D and E).

Simulation of Cancer Metabolism Using T-GEMs Built with Recon 2.2,
2M.1, and 2M.2. Next, we simulated cancer metabolism using
T-GEMs built with Recon 2.2, 2M.1, and 2M.2 as template
models to further validate GeTPRA Recon 2M.1 and 2M.2. For
this, 446 nontumor and 446 tumor T-GEMs were first built using

Fig. 3. Consideration of PTs and NPTs in personal GEMs built with TCGA personal RNA-Seq data. (A) Reconstruction of a total of 1,784 personal GEMs
through integration of Recon 2M.1 with 446 personal RNA-Seq data across the 10 cancer types. Information on total transcript and principal transcript levels
(TTLs and PTLs) from the TCGA RNA-Seq data were used to build T-GEMs and P-GEMs, respectively, for personal nontumor and tumor samples. All personal
GEMs were built using the tINIT algorithm (24, 40) with a rank-based weight function (SI Appendix, SI Materials and Methods and Fig. S5). Abbreviations of
the cancer type names and the number of personal GEMs reconstructed for each cancer type are available in Fig. 1E and Dataset S1, respectively. (B) Twenty
metabolic genes (dotted gray box) enriched in nontumor and/or tumor T-GEMs. Information on protein domains of these enriched metabolic genes was
obtained from Ensembl (52). Protein isoforms of CPS1 and GLS have different sets of protein domains and subcellular localizations. Blue and red UCSC
transcript IDs indicate PTs and NPTs, respectively.
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Recon 2.2, 2M.1 (already reconstructed earlier; Fig. 3A), and
2M.2 as template models and by using the tINIT method and 446
TCGA personal RNA-Seq data (SI Appendix, SI Materials and
Methods). Upon generation of the personal nontumor/tumor
T-GEMs, their metabolic fluxes were predicted by using the
expression data from nontumor and tumor samples of the 446
TCGA personal RNA-Seq data as constraints and implementing

the least absolute deviation method (47, 48) (SI Appendix, SI
Materials and Methods). In this process of setting constraints for
the Recon 2M.1- and 2M.2-based T-GEMs, the GeTPRA
dataset (Dataset S11) was also used to specifically map tran-
scripts to their corresponding reactions with correct compart-
ments (Fig. 5A and SI Appendix, SI Materials and Methods). In
case of T-GEMs built with Recon 2.2, gene information was

Fig. 4. Systematic generation of GeTPRA. (A) A framework that generated the GeTPRA (red box; Dataset S11). Peptide sequences of metabolic genes defined in
Recon 2M.1 were retrieved from Ensembl (52). EC numbers and SLs of all the protein isoforms of metabolic genes in Recon 2M.1 were predicted using EFICAz2.5
(41) and Wolf PSort (42), respectively. The top pie chart right to the flowchart shows the number and percentage of the genes having protein isoforms with
availability of corresponding predictions (i.e., EC numbers and/or SLs). “Either EC or SL” with an asterisk indicates genes that have multiple protein isoforms,
where some protein isoforms were assigned with only EC numbers, whereas others were assigned with only SLs. Reactions were retrieved from KEGG database
(43) and standardized with MNXM IDs from MNXref namespace (53, 54). A pie chart left to the flowchart represents the number and percentage of the GeTPRA
with availability of corresponding experimental evidence [i.e., HPA (10, 46) for SLs, and BRENDA (44) and UniProt (45) for EC numbers]. Four pie charts on the
right side represent the number and percentage of the remaining metabolic genes after each process in the framework. The remaining metabolic genes may
have a single and/or multiple EC number or numbers and SL or SLs through protein isoforms. (B) Ten representative metabolic reactions which were newly added
to Recon 2M.1 according to the GeTPRA (see the full list of 23 newly added reactions in Dataset S12). Blue and red UCSC transcript IDs indicate PTs and NPTs,
respectively. Metabolic reactions are represented with KEGG reaction IDs. (C) Four representative metabolic reactions whose GPR/TPR associations were updated
based on the GeTPRA. For better readability, gene symbols are presented here instead of transcript IDs. Updated gene symbols in the Recon 2M.1 are shown in
red. (D) Results of the gene essentiality simulation using the Recon 2M.2. Information on essential and nonessential genes used for the Recon 2M.1 validation
was also used here (Fig. 1C). (E) Predicted profiles of glucose uptake rate and lactate and ATP production rates via oxidative phosphorylation when maximizing
the cell growth rate of the Recon 2M.2 along the oxygen uptake rate. Relevant reaction IDs are shown in parentheses.

Ryu et al. PNAS | Published online October 24, 2017 | E9745

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713050114/-/DCSupplemental/pnas.1713050114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713050114/-/DCSupplemental/pnas.1713050114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713050114/-/DCSupplemental/pnas.1713050114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713050114/-/DCSupplemental/pnas.1713050114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713050114/-/DCSupplemental/pnas.1713050114.sd11.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713050114/-/DCSupplemental/pnas.1713050114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713050114/-/DCSupplemental/pnas.1713050114.sd11.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1713050114/-/DCSupplemental/pnas.1713050114.sd12.xlsx


mapped to all the relevant reactions (24). As a result, T-GEMs
built with Recon 2.2, 2M.1 and 2M.2 all generated biologically
reasonable flux profiles of lactate dehydrogenase (LDH_L),
pyruvate kinase (PYK), and ATP synthase (ATPS4m) in tumors
versus nontumors (SI Appendix, Fig. S14). However, for the
entire metabolism, nontumor and tumor T-GEMs built with
Recon 2.2 had the greatest percentage of reactions missing rel-
evant SL evidence among active reactions (carrying fluxes) (Fig.
5B); SL evidence was obtained from HPA (www.proteinatlas.org/).
T-GEMs built with Recon 2M.2 had the lowest percentage of
reactions that are not experimentally supported. As a conse-
quence, the use of GeTPRA more likely prevents reactions from
carrying fluxes if relevant experimental evidence (e.g., SL data) is
not available (Fig. 5 B and C and Dataset S14). In addition,
modification of GPR/TPR associations in Recon 2M.2 through
the GeTPRA (Fig. 4) enabled correct prediction of additional
reaction flux values compared with those built with Recon 2.2 and

2M.1, as seen in the case of the reaction PRO1x (Fig. 5D). In
conclusion, simulations with the T-GEMs built with Recon
2M.2 overall provided more reliable flux distributions. A series
of these simulations demonstrates that GeTPRA, Recon 2M.1 and
2M.2 can be used to understand more accurately the effects of
transcript-level changes on metabolic fluxes at the systems level,
and consequently allow studying nondiseased and diseased states
for further medical applications.

Prediction of Anticancer Targets Using Tumor T-GEMs Built with
Recon 2.2 and 2M.2. As an example of applications of T-GEMs
developed by incorporating GeTPRA, the tumor T-GEMs built
with Recon 2.2 and 2M.2 were compared in predicting antican-
cer targets. The potential anticancer targets were first selected by
identifying those metabolic reactions that had fluxes predicted to
be significantly increased in tumor T-GEMs in comparison with
the counterpart nontumor T-GEMs across the 10 cancer types.

Fig. 5. Simulation of cancer metabolism using T-GEMs built with Recon 2.2, 2M.1 and 2M.2. (A) Prediction of reaction fluxes using nontumor and tumor
samples of the 446 TCGA personal RNA-Seq data. For T-GEMs built with Recon 2M.1 and 2M.2, the GeTPRA dataset serves to specifically map transcripts to
their corresponding reactions with correct compartments. For T-GEMs built with Recon 2.2, expression values of genes are directly mapped to all of the
relevant reactions. The black arrows from a gene or a transcript to reaction compartments indicate integration of expression values with a reaction. The gray
dotted arrow indicates no integration for the transcript expression value, as the protein isoform does not have relevant SL evidence. (B) Average percentage
of reactions without SL evidence among active reactions for all of the T-GEMs in each cancer type. SL evidence was collected from the HPA (v16.proteinatlas.
org) (10, 46). (C) Three representative reactions having high flux values in the nontumor/tumor T-GEMs built with Recon 2.2. These flux values should be low
or zero because these reactions do not have relevant SL evidence (see Dataset S14 for details). The reaction r0615 for pyrroline-5-carboxylate reductase 2
(PYCR2) is located in cytosol in Recon models, whereas its protein isoform was experimentally located to be in mitochondria (image). This inconsistency was
also observed for the reactions CYTK9 for cytidine/uridine monophosphate kinase 1 (CMPK1) and CSNATp for carnitine O-acetyltransferase (CRAT). Legends
for bars are same as in B. (Top and Bottom) Nontumor and tumor T-GEMs, respectively. All of the shown immunohistochemistry images were obtained from
the HPA (10, 46). Antibody IDs of the shown immunohistochemistry images are HPA022815 for CRAT; HPA053730 for CMPK1; and HPA056873 for PYCR2.
(D) Correct prediction of the PRO1x flux values by correcting its gene PRODH2 (encoding proline dehydrogenase 2) in Recon 2.2 and 2M.1 to PYCR3 (encoding
pyrroline-5-carboxylate reductase 3) in Recon 2M.2 based on the GeTPRA. The high flux value of PRO1x in nontumor T-GEMs built with Recon 2.2 and 2M.1 for
the LIHC was caused by the incorrect assignment of PRODH2 that is known to be highly expressed in liver according to the HPA. PYCR3 is moderately
expressed in all cell types. Error bars mean ± SD.
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Fig. 6. Prediction of anticancer targets using T-GEMs built with Recon 2.2 and 2M.2. (A) Heat maps representing relative growth rates (see SI Appendix, SI
Materials and Methods for the definition) of tumor T-GEMs built with Recon 2.2 (Upper Left) and 2M.2 (Bottom Left) on single knockouts of 502 metabolic
reactions. These 502 reactions were the ones having fluxes predicted to be commonly significantly increased in tumor T-GEMs built with Recon 2.2 and Recon
2M.2 compared with their counterpart nontumor T-GEMs across the 10 cancer types (Fig. 5; FDR-corrected P value < 0.01). Relationships among the reactions
predicted as anticancer targets (yellow node with red letters), their corresponding pathways (pink node with blue letters), and approved drugs inhibiting the
corresponding reactions (DrugBank IDs, “DB” followed by five digits in black) are shown in the form of network next to each heat map. (B) A heat map
representing relative growth rates of tumor T-GEMs built with Recon 2.2 on single knockouts of 353 reactions with fluxes predicted to be significantly in-
creased in comparison with the counterpart nontumor T-GEMs across the 10 cancer types (FDR-corrected P value < 0.01). The same type of network shown in
A is also shown here below the heat map. (C) A heat map representing relative growth rates of tumor T-GEMs built with Recon 2M.2 on single knockouts of
322 reactions with fluxes predicted to be significantly increased in comparison with the counterpart nontumor T-GEMs across the 10 cancer types (FDR
corrected P value < 0.01). The relative growth rates were obtained in the same manner as A. The same type of network shown in A is also shown here below
the heat map. Information on the approved drugs and their targets was obtained from DrugBank 5.0 (55).
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These reactions were obtained from the previous section (Fig.
5) and subsequently subjected to single-knockout simulations
(see SI Appendix, SI Materials and Methods for the knockout
simulation method). Recon 2.2- and 2M.2-based T-GEMs
had 502 reactions in common that showed increased fluxes
in tumor T-GEMs (Fig. 6A), whereas Recon 2.2-based
T-GEMs had a unique set of 353 such reactions (Fig. 6B).
T-GEMs built with Recon 2M.2 had 322 unique reactions (Fig.
6C). These reactions were deemed final anticancer targets if their
single knockouts reduced growth rates of tumor T-GEMs to less
than 5% (25, 31) of their normal growth rates. As a result, Recon
2M.2-based T-GEMs generated greater numbers of both anti-
cancer targets and approved drugs inhibiting the predicted targets:
a total of 77 targets and 80 drugs from Recon 2M.2-based tumor
T-GEMs versus a total of 55 targets and 74 drugs from Recon 2.2-
based tumor T-GEMs. It should be noted that although these
drugs are known to inhibit the predicted anticancer targets, they
are not necessarily anticancer drugs. Therefore, the drugs known
to inhibit the predicted targets could be considered as anticancer
drugs (49, 50) if they were initially developed for diseases other
than cancers. Recon 2.2- and 2M.2-based tumor T-GEMs gener-
ated 32 and 50 reactions as anticancer targets, respectively, on
single knockouts of the 502 common reactions; 67 and 61 ap-
proved drugs were found to inhibit these anticancer targets from
the Recon 2.2- and 2M.2-based tumor T-GEMs, respectively (Fig.
6A). Meanwhile, tumor T-GEMs built with Recon 2M.2 generated
27 anticancer targets across 13 metabolic pathways by knocking out
the 322 reactions, nine of which appeared to be inhibited by 19 ap-
proved drugs (Fig. 6C). Tumor T-GEMs built with Recon 2.2 gen-
erated 23 anticancer targets across nine metabolic pathways, but only
seven approved drugs were found to inhibit these targets (Fig. 6B).
Interestingly, the anticancer targets that reduce the ratio of glycolytic
to oxidative ATP flux (AFR) (25) were predicted only from the
Recon 2M.2-based T-GEMs (SI Appendix, SI Materials and Methods):
D-glucose exchange (EX_glc_LPAREN_e_RPAREN_), enolase,
glyceraldehyde-3-phosphate dehydrogenase, phosphoglycer-
ate kinase, PYK, and triose-phosphate isomerase. A decrease
in the AFR value on perturbation of a reaction is a strong
indicator of an anticancer target, as the AFR value is posi-
tively correlated with cancer cell migration. Among the pre-
dicted targets reducing the AFR, glyceraldehyde-3-phosphate
dehydrogenase and phosphoglycerate kinase were previously
validated by experiments (25). These targets were not pre-
dicted using Recon 2.2-based T-GEMs, suggesting that Recon
2M.2-based T-GEMs that incorporate GeTPRA allow more
accurate prediction.

Discussion
In this work, we established a framework to generate GeTPRA
and demonstrated its use in upgrading human GEMs and fur-
ther application studies. The GeTPRA presented in this article
are based on the transcript, EC number, KEGG reaction, and
protein SL data available up to now, and thus can be continu-
ously updated. Toward the development of more thorough
and robust GeTPRA and reconstruction of a better human
GEM, the following things need to be considered. First, the
definitions of PT and NPT, although we used the most up-to-
date information from APPRIS, are still being updated. Cur-
rent definition of PTs for human metabolic genes can be am-
biguous because their relative contribution to metabolic
activities in comparison with total transcript levels (i.e., FEs
presented in Fig. 2A) can vary significantly across environ-
mental and biological conditions. It should be emphasized that
functionally unknown NPTs should not be ignored, as they
might play important roles in human metabolism, as we
reported in this study (Fig. 3B). Second, GeTPRA need to be
continuously updated, as mentioned earlier. Particular atten-
tion should be paid to the GeTPRA data that were removed

from further consideration in our study. Such GeTPRA data
representing blocked reactions in the Recon 2M.1 or not having
experimental evidence do not necessarily mean they are bi-
ologically irrelevant in human metabolism. Rather, they should
also be considered for future biochemical studies, including
experimental validation, depending on a research purpose.
Thus, GeTPRA can be used as a conceptual framework to
further explore biological roles of transcripts generated from
human metabolic genes. Of course, every time human genome
annotation gets updated, the GeTPRA should be updated
through reexecution of the framework. Third, quality control
and quality assurance tests need to be established for Recon
development. Despite continued efforts in updating the meta-
bolic contents in the Recon models, simulation performance
has been shown to be rather poor (Fig. 1 C and D). However, it
is nice to see that more and more useful genetic and bio-
chemical data, such as the gene essentiality data (35) used in
this study, are becoming available to perform appropriate
quality control and quality assurance tests. We might humbly
suggest that Recon 2M.1 and 2M.2 serve as template models for
reconstructing future Recon models.
It is hoped that the GeTPRA framework, the current version

of GeTPRA, Recon 2M series (i.e., 2M.1 and 2M.2), and
source codes to generate them will serve as community re-
sources for fundamental studies on human metabolic genes and
network. Beyond basic research, application studies such drug
targeting, as showcased earlier, and identification of disease-
related metabolic reactions can be performed using GeTPRA
and Recon 2M.2 based on diseased cell-specific transcriptome
data because many diseases and alternative splicing events are
highly associated with each other. Such application studies
might further contribute to exploring the effects of novel bio-
active compounds on human metabolism to present novel ways
of treating diseases (51). Through further community effort
based on our study, it is believed that upgraded human GEMs
will become available.

Materials and Methods
All the materials and methods conducted in this study are detailed in SI
Appendix, SI Materials and Methods: standardization of metabolite IDs with
MNXM IDs defined in the MNXref namespace, refinement or removal of
biochemically inconsistent reactions (Datasets S2 and S15), validation of
Recon 2M.1 (Datasets S2–S4), conversion of GPR to TPR associations in Recon
2M.1, acquisition of 446 TCGA personal RNA-Seq data across 10 cancer types
and statistical comparative expression analyses (SI Appendix, Fig. S4), re-
construction of 1,784 personal GEMs across 10 cancer types (SI Appendix,
Figs. S5–S7, Datasets S3 and S6), simulation of cancer metabolism using
T-GEMs built with Recon 2.2, 2M.1 and 2M.2, prediction of anticancer tar-
gets using tumor T-GEMs built with Recon 2.2 and 2M.2, and metabolic
simulations in General (Dataset S3).

Eight versions of COBRA-compliant SBML files are available for Recon
2M.1 and Recon 2M.2 at https://zenodo.org/record/583326, depending on
the use of MNXref versus BiGG IDs and of Entrez gene IDs (GPR associations)
versus Ensembl transcript IDs versus RefSeq transcript IDs versus UCSC tran-
script IDs (TPR associations for the last three database IDs). COBRA-compliant
SBML files of the 1,784 personal GEMs (both P-GEMs and T-GEMs) built with
Recon 2M.1, 892 personal GEMs (only T-GEMs) built with Recon 2M.2, and
892 personal GEMs (only T-GEMs) built with Recon 2.2 are also available as
zip files at https://zenodo.org/record/583326. Source codes used in this study
are available (https://bitbucket.org/kaistmbel/recon-manager) for the col-
lection of scripts used to generate and simulate Recon 2M.1 and 2M.2 and
for the implementation of the GeTPRA framework (https://bitbucket.org/
kaistmbel/getpra).
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