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The successful prediction of protein structure from amino acid
sequence requires two features: an efficient conformational search
algorithm and an energy function with a global minimum in the
native state. As a step toward addressing both issues, a threading-
based method of secondary and tertiary restraint prediction has
been developed and applied to ab initio folding. Such restraints are
derived by extracting consensus contacts and local secondary
structure from at least weakly scoring structures that, in some
cases, can lack any global similarity to the sequence of interest.
Furthermore, to generate representative protein structures, a re-
duced lattice-based protein model is used with replica exchange
Monte Carlo to explore conformational space. We report results on
the application of this methodology, termed TOUCHSTONE, to 65
proteins whose lengths range from 39 to 146 residues. For 47 (40)
proteins, a cluster centroid whose rms deviation from native is
below 6.5 (5) A is found in one of the five lowest energy centroids.
The number of correctly predicted proteins increases to 50 when
atomic detail is added and a knowledge-based atomic potential is
combined with clustered and nonclustered structures for candidate
selection. The combination of the ratio of the relative number of
contacts to the protein length and the number of clusters gener-
ated by the folding algorithm is a reliable indicator of the likeli-
hood of successful fold prediction, thereby opening the way for
genome-scale ab initio folding.

he inability to predict routinely the tertiary structure of a

protein from its amino acid sequence remains one of the
most challenging unsolved problems in biophysics. Contempo-
rary approaches to this problem can be divided roughly into
three categories of increasing complexity: (/) homology model-
ing (1, 2), (i) threading (3, 4), and (iii) ab initio folding (5-9). The
first two methods use the structures of already solved proteins as
templates. The third, the ab initio method, does not require that
an example of the fold of the protein of interest be previously
solved. In principle, such an approach is very powerful; however,
significant unresolved issues remain. First, there are problems
with the search algorithms used to explore the protein’s confor-
mational space (10). Second, the energy functions used to
evaluate the fitness of a given conformation cannot, in general,
distinguish the native structure from alternative, protein-like
decoys (11). To compensate for the imperfections in the energy
functions, another way of selecting representative folds is re-
quired, with clustering of the structures being a promising
approach (7-9). Finally, for a folding algorithm to be practical,
one has to develop criteria that allow one to estimate the
likelihood that a given prediction will be successful.

In this article, we address each of these issues and present the
results on the application of our ab initio method to a represen-
tative 65-protein test set. To restrict the protein’s conformational
space, we employ the SICHO (SIde CHain Only) model (5) to
represent the protein as a lattice chain connecting vertices, each
vertex lying at the center of mass of a given residue’s a-carbon
and side chain heavy atoms. To restrict further the conforma-
tional search as well as to improve the correlation of energy with
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fold quality, we used both predicted secondary structure and
tertiary contacts. Residue-based contacts are extracted from a
threading protocol (3) for the generation of consensus contacts
even when the proteins used to predict these contacts are not
globally similar to the fold of the sequence of interest. Quite
often, the number and accuracy of the predicted contacts is
sufficient to guide the model into the neighborhood of the native
fold. Another set of restraints that contains predicted distances
of pairs of residues in local fragments also is used. To address the
issue of fold selection, we combine the structure-clustering
algorithm of Betancourt and Skolnick (12) with a knowledge-
based heavy-atom pair potential selection procedure to select
representative structures (13). This statistical potential is distance-
dependent and is based on 167 types of residue-specific heavy
atoms. Finally, to estimate the likelihood that the prediction is
successful, we show that the number of predicted contacts and
the number of obtained clusters from the simulations provide a
confidence level for the prediction quality. We call the entire
procedure TOUCHSTONE.

Methods

The SICHO Lattice Model. The SICHO model is a 646-neighbor
lattice embedded in an underlying cubic lattice grid with a
spacing of 1.45 A. The energy function consists of three types of
terms: Egencrics Especific; aNd Erest. Egencric biases the model chain
toward protein-like conformations and is independent of amino
acid sequence (5). Egpecific Is @ sequence-dependent potential that
consists of three terms: a weak bias toward the predicted
secondary structure (14, 15), a sequence-dependent short-range
geometric bias for fragments (16), and a protein-specific pair-
wise potential (17). Homologous proteins are removed from the
database when the latter two terms are calculated. As in
threading discussed below, no proteins with an E value < 0.01
are considered. The last term, E g, is the newly derived restraint
term extracted from threading (see below).

Prediction of Tertiary Restraints. Two kinds of restraints are
incorporated into our prediction scheme. The first type is the
side chain contact predictions derived from the threading results.
Here, a pair of residues predicted to be in contact must be at least
five residues apart in the sequence. Quite often in threading,
even when no template is hit with a significant Z score, common
contacting substructures can be found in templates with weak Z
scores from which the contacts can be predicted. Sometimes
these common substructures that are in contact have a similar
secondary structure and sometimes they do not, but they can
experience similar interaction environments. In particular, our
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new threading algorithm, PROSPECTOR (3), uses four differ-
ent scoring functions. For the top 20 scoring structures (the top
5 structures from each scoring function), whose Z scores are
>1.3, a contact is predicted when it is present in 25% of the
structures. These contacts are also converted to a protein-
specific pair wise potential (17), which is used in the subsequent
threading iteration. The consensus contacts are again collected,
and the procedure is repeated for a third time. Then, all of the
predicted contacts from all stages are used in the folding
simulation. The restraint potential is not designed to satisfy all
predicted contacts, because they are not exactly correct. This
inaccuracy is because these contacts are sometimes collected
from incorrect hits and also because of alignment problems in
the threading algorithm. Therefore, a given structure has a

Table 1. Predicted tertiary restraints and folding simulation results

preferable energy gain when a predicted contact is satisfied
within plus or minus two residues. Furthermore, there is no
energy penalty when at least 50% of all of the predicted contacts
are satisfied. The 50% figure comes from the average accuracy
of the contact prediction, which is 73.6% (see below). The
threshold should be lower than this average accuracy to ensure
that too many wrong contacts are not enforced. In practice, for
62 of the 65 proteins, the accuracy is better than 50%. Finally,
local distance restraints are derived from multiple sequence
alignments for short-sequence fragments no more than four
residues in length.

We employ replica exchange Monte Carlo (18) to search
conformational space. This protocol has been shown to be more
effective than the conventional simulated annealing in a simple

ID N (aa) Npc 5=2 Nioc Best (A) LowE (A) Noc Clus (A) Atom (A) Simons
Small
lixa 39 74 0.78 18 2.8 4.7 7 4.5 (2) 43
1fc2C 44 28 0.86 49 2.7 7.7 2 3.6 (2) 3.5
6pti 57 109 0.69 29 5.1 9.3 7 7.3 (5) 6.7
1rpo 61 22 0.55 222 2.8 11.9 4 3.7 (4) 3.6 92-40-27
(03
1bw6A 56 86 0.91 99 3.5 4.9 7 5.0 (1) 4.9 1-1-1
2ezh 65 64 0.59 127 3.7 5.2 6 5.2(2) 5.7 1-1-1, 17-14-14
1c5a 66 66 0.56 71 4.0 8.5 6 5.8 (3) 5.8
1hp8 68 23 0.91 219 3.2 4.0 2 4.9 (1) 4.7 *-3-1
2bby 69 77 0.84 148 3.1 49 5 4.9 (1) 4.9 *-1-1
1ftz 70 81 0.88 164 2.3 3.1 2 2.9 (1) 3.0
1pou 71 191 0.67 102 2.7 3.4 10 3.7 (1) 29 28-28-28
1lea 72 100 0.92 88 2.9 3.9 5 3.7(1) 3.6 *-89-89
1kjs 74 40 0.63 212 3.7 6.7 6 4.5 (1) 4.6 1-1-1
1ner 74 101 0.71 131 3.0 4.6 6 4.1 (1) 4.0 *-60-25
1nkl 78 24 0.71 217 2.3 33 5 3.0(1) 2.9 15-15-15
1aoy 78 144 0.97 120 3.3 4.5 5 4.5 (1) 4.4 **1
1a32 85 98 0.28 272 5.0 7.3 4 7.4(1) 5.6 1-1-1
1ngr 85 184 0.74 146 24 4.2 3 2.7 (1) 2.8 *-3-3
2af8 86 59 0.54 157 4.3 13.0 10 8.9 (2) 8.4 *-1-1
2ezk 93 14 0.71 193 8.6 14.3 8 10.4 (1) 11.2 210-210-210
2ifb 100 57 0.63 203 4.0 10.3 10 5.8 (5)t 5.1 *ok ok
256bA 106 91 0.87 175 2.8 4.0 3 3.4(1) 3.1
1hmdA 113 143 0.83 151 2.3 3.1 5 2.6 (1) 2.8
1hlb 138 384 0.12 327 2.6 3.4 9 2.6 (1) 2.7 **7
1mba 146 262 0.89 276 2.6 3.5 3 2.7 (1) 2.7
B
1tfi 50 58 0.88 18 24 6.2 5 4.4 (3) 4.1
1bg9A 53 67 0.96 67 41 9.4 8 6.9 (1) 6.5 *-72-2
1nxb 53 90 0.88 40 2.6 7.4 3 3.6 (3) 3.7 *-*4
1shg 57 137 0.76 116 3.1 5.7 8 4.9 (1) 4.1
1vif 60 19 0.74 23 3.7 5.8 12 4.5 (1) 4.8 *-*.3
1fas 61 117 0.97 3 2.6 3.8 3 3.4(1) 3.7
1csp 64 92 0.95 50 2.8 4.1 7 3.6 (1) 3.7 8-8-2
1sro 66 64 0.30 141 4.0 7.8 6 6.4 (2) 6.5 1-1-1
Tpse 69 83 0.76 74 6.5 12.2 6 8.4 (4) 8.5 *ok_*
1ah9 71 113 0.78 76 6.8 9.8 8 9.9 (2) 8.4 *ok ok
Tiyv 79 72 0.53 115 7.8 12.2 11 10.6 (3) 9.1 *ok_*
Trip 81 77 0.70 85 7.3 12.0 21 9.3 (5) 9.8 *ok_*
1tit 89 271 0.92 144 1.9 33 3 2.4(1) 2.2 *ok ok
1wiu 93 224 0.97 158 2.5 3.3 3 2.6 (1) 2.9 *ok_*
2pcy 929 168 0.92 72 3.2 4.3 4 4.0 (1) 4.0
1ksr 100 162 0.91 126 3.8 7.4 9 5.1 (1) 5.9 *ok ok
1tlk 103 380 0.69 103 4.3 7.2 2 5.4 (1) 5.6
1thx 108 216 0.94 109 2.2 3.2 5 2.2 (1) 2.8
4fgf 121 162 0.84 103 7.6 8.3 5 9.7 (1) 9.2 *okk
2azaA 129 142 0.89 79 3.9 5.7 3 4.5 (1) 4.9
10126 | www.pnas.org/cgi/doi/10.1073/pnas.181328398 Kihara et al.



Table 1. (continued)

ID N (aa) Npc 5=2 Nioc Best (A) LoweE (A) Noc Clus (A) Atom (A) Simons

af
1gpt 47 71 0.96 4 2.2 5.6 4 4.4 (1) 3.3
2fdn 55 33 0.33 10 6.5 10.2 10 9.6 (4) 7.6 |
1pgx 56 61 0.30 54 1.9 2.8 4 2.3 (1) 2.2 13-1-1
2ptl 60 67 0.18 78 2.2 3.0 3 2.5(1) 2.9 1-1-1
2fmr 65 82 0.83 89 3.3 43 2 3.7 (1) 3.6 -2-
1cis 66 112 0.82 46 3.6 47 6 4.8 (2) 46
Tctf 68 61 0.56 56 5.7 10.7 5 9.6 (2) 8.2 4-4-4
1stu 68 19 0.74 99 3.4 10.2 10 8.0 (4) 5.9 *-42-42
1ubi 76 147 0.92 75 2.3 4.2 8 3.6 (1) 2.9
Tvee 77 30 0.60 59 43 10.7 6 9.9 (1) 8.6 *%.19
1poh 85 191 0.67 124 2.7 3.5 5 3.3(1) 3.3
1ife 91 125 0.54 83 5.8 12.3 10 6.3(3) 6.5
2sarA 9% 123 0.96 50 3.5 4.9 6 4.1(1) 48
1stfl 98 25 0.80 74 48 10.6 9 11.6 (3) 7.8
1tsg 98 156 0.63 100 7.3 9.3 7 8.7 (1) 8.1 ok
1shaA 103 308 0.85 119 3.1 47 13 3.6 (1) 4.0
lerv 105 261 0.93 129 2.3 3.0 2 2.3(1) 2.6 *-#.5
5fdl 106 54 0.52 86 8.3 14.0 5 9.7 (4) 10.2
Tcewl 108 154 0.92 103 47 7.1 5 7.2 (1) 7.0
1pdo 121 181 0.74 203 4.0 7.7 2 6.5(2) 6.2 *#.3

ID, proteins that have a cluster in the top five lowest energy clusters equal to or below 6.5 A rmsd from the native are emphasized in bold. N, the length of
the protein chain. Ny, the number of predicted contacts. 5 = 2, accuracy of the predicted contacts allowing two residue shifts. Njoc, the number of predicted
short-range distant restraints for local fragments. Best, the rmsd in angstroms of the best structure in the entire simulation trajectories. LowE, the rmsd of the
lowest energy structure. No, the number of obtained clusters. Clus, the rmsd of the best cluster centroids in the top five “lowest energy” clusters. Those cases
=6.5Armsd arein bold. The order of the cluster is written in the parentheses. Atom, the rmsd of the best structure selected in the top five by the atomic potentials
where results better than the best cluster centroids are emphasized in bold. Simons, the results shown in table 1 of the paper by Simons et al. (7). Ranks of the
cluster centers for three cutoffs are shown, from left, 5, 6, and 7 A rmsd. The asterisks are used when no clusters are detected. Underlined numbers with a single
line are those cases in which we considered our results to be better, whereas the ones with a double underline indicate those cases in which our results are worse.

The ninth cluster is 4.9 A rmsd.

protein-like model (19). Fifty copies at different temperatures
covering the entire folding transition region are used. Then, the
conformations in trajectories at the three lowest temperatures
are clustered (12). It takes about 100-150 days of computer time
to perform 50 runs for a protein. Clustering is performed in two
steps: (i) first, structures are clustered within each trajectory, and
(ii) the resulting obtained centroids are clustered again among
the different trajectories.

Structure Selection with an Atomic Potential. A heavy-atom knowl-
edge-based potential (13) is used to rank-order the structures
generated from the Monte Carlo simulations; then, they are
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Fig. 1. The number of the predicted long-range contacts and their accuracy
(within onr or two residues) are shown. Proteins of the different structural
type are plotted separately: A, small proteins; ®, a-helical proteins; O, B-
proteins; <, ap-proteins. N¢, number of clusters.
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rebuilt at atomic detail (20). A scan-and-delete procedure is
applied, in which the lowest energy structure is selected for each
cluster, and then all of the higher-energy structures in the same
cluster are removed. After this process, all of the nonclustered
structures and the lowest energy structures from each cluster
remain. The top five lowest energy structures are then selected.

Results and Discussion

The 65 test proteins, which cover a wide variety of protein types,
are given in Table 1. There are 4 small proteins (which have little
secondary structure), 21 a-proteins, 20 B-proteins, and 20 af-
proteins, according to the CATH classification (21) obtained
from the BIOMOLQUEST server (22). The proteins range in length
from 39 to 146 aa. The test set also includes 40 proteins randomly
chosen from the paper by Simons et al. (7).

The tertiary restraints and the results of the folding simula-
tions are also found in Table 1. The average accuracy of
secondary structure predictions (Qsz) is 79.1%. On average,
33.0% of the long-range contacts are correctly predicted, and, on
average, 73.6% are correct within plus or minus two residues.
However, the average error in the rms deviation (rmsd) of the
local fragment prediction was 0.38 A. It also should be noted that
the number of predicted contacts has substantially increased
from our other study (6), where correlated mutation analysis was
used.

Fig. 1 shows that the prediction accuracy grows as the number
of predicted contacts increases; accuracy reaches 70% for 34 of
45 cases where the number of restraints is larger than the number
of protein residues. This improvement occurs because the en-
hancements of the number and the accuracy of the restraints
occur at the same time when the threading algorithm detects
significant common local structures.
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Fig. 2.

Superimposition of representative experimentally observed and predicted structures. The predicted structures are shown by thick lines, and the native

structures are shown by thin lines. (A) 1aoy, rmsd 4.5 A. (B) 1mba, rmsd 2.7 A. (C) 2pcy, rmsd 4.0 A. (D) 2azaA, rmsd 4.5 A. () 1shaA, rmsd 3.6 A. (F) 1erv, rmsd

2.3 A.(G) 1cewl, rmsd 7.2 A. (H) 1tsg, rmsd 8.7 A. (/) 5fd1, rmsd 9.7 A.

For 47 of 65 proteins (72.3%), at least one cluster centroid
(within the top five centroids, at most) with an rmsd 6.5 A from
native was successfully obtained (44 = 6 A, 39 = 5 A). 2Ifb has
the ninth cluster with an rmsd of 4.9 A. All have the correct
topology. When the atomic potential is used in the selection
procedure, 50 proteins were successfully predicted (46 = 6 A,
39 = 5 A). If the best structure is counted, 58 proteins (89.2%)
have a structure =6.5 A. On the other hand, the lowest energy
structures of only 36 proteins satisfy this criteria. This result
shows the imperfections in the current folding potentials as well
as the practical usefulness of selecting structures by populations
with the clustering algorithm. In many cases, there are pairs of
topological mirror-image structures (where the chirality of turns
is reversed, but helices, if present, are right-handed) among the
obtained cluster centroids. It is interesting to note that when one
of the centroids has the proper fold, in most cases the mirror-
image structure is also obtained.

10128 | www.pnas.org/cgi/doi/10.1073/pnas.181328398

Fig. 2 shows some representative results for the superimpo-
sition of the experimental and predicted structures extracted
from the native-like cluster. The predicted (experimental) struc-
tures are shown by thick lines and the native structures are shown
by thin lines. Fig. 24 shows laoy, whose rmsd from native is 4.5
A. Fig. 2B shows Imba whose rmsd from native is 2.7 A. Fig. 2C
shows the best cluster centroid of 2pcy whose rmsd from native
is 4.0 A. Fig. 2D shows 2azaA, with an rmsd from native of 4.5
A. Fig. 2E shows 1shaA with an rmsd from native of 3.6 A. Fig.
2F shows lerv whose rmsd from native is 2.3 A. Fig. 2G shows
lcewl, whose rmsd from native is 7.2 A. Fig. 2H shows ltsg,
whose rmsd from native is 8.7 A, and Fig. 21 shows 5fd1 whose
rmsd from native is rmsd 9.7 A.

To make an ab initio folding algorithm practical, one has to
establish the level of confidence of a given prediction. In the
majority of the cases in Fig. 3 there is a proper fold when the
number of obtained clusters is small. Indeed, if the number of

Kihara et al.
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Fig. 3. The number of successful cases relative to the number of clusters.

Black, the successful cluster (rmsd <6.5 A) is obtained as the first cluster;
crosshatch, the second cluster; horizontal hatch, one of the other clusters;
white, successful cluster not obtained.

clusters is equal to or less than five, a proper fold is obtained in
28 of 33 (84.8%) cases. Moreover, all 16 cases were successful
when the number of the obtained clusters was two or three.
Fig. 4 shows the relationship between the quality of the
simulation results and the number of the predicted contacts,
which is another indication of how successful the simulation
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Fig. 4. The number of long-range restraints and the quality of the clusters

for each protein. (A) rmsd of the best cluster centroid. (B) rmsd of the best
structure among all of the simulations. A, small proteins; ®, a-helical proteins;
0, B-proteins; &, ap-proteins. Nc, number of clusters.
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Table 2. Summary of successful predictions with the number of
clusters and restraints

Number of restraints*

Number of

clusters 100 or more 150 or more
3 or less 13/13 (100%) 8/8 (100%)
5 or less 23/26 (88.5%) 13/13 (100%)
7 or less 30/36 (83.3%) 16/18 (88.9%)

*Ratio of the number of the predicted contacts to the number of amino acids
in the protein.

should be. When the number of restraints is more than the
number of residues in the sequence, a cluster centroid closer than
6.5-A rmsd to the native structure is obtained in 32 of 41 cases
(78.0%). When the number of restraints is 150% or more relative
to the sequence length, the success rate improves further to
88.0% (22 of 25 proteins). A proper fold is always obtained in
either of two cases: (i) when the number of obtained clusters is
equal to or less than three or (if) as shown in Table 2, when the
number of clusters is less than or equal to five, and the number
of provided restraints is 150% or more of the sequence length.

Itis important to note that in contrast to other methods (7, 23),
both the accuracy of contact prediction and the success rate
when the number of predicted contacts is sufficiently large are
completely independent of the type of secondary structure of the
protein.

There are two situations in which our method failed to obtain
a native-like cluster. In the first case, there are no proper
structures below 6.5 A in the predicted structure pool, so that
there is no chance to get a resulting proper cluster centroid (eight
cases: 2ezk, 1ah9, liyv, 1rip, 4fgf, 1ctf, 1tsg, and 5fd1). However,
for 4fgf, 1tsg, and 5fd1, the global topology of the best cluster is
almost correct (rmsds of 9.7 A, 87 A, and 9.7 A, respectively).
For 1ah9, the positions of the last two B-strands are exchanged,
and the rest of the structure is correct in the seventh cluster
centroid (rmsd of 7.5 A). For Ictf, even the best structure did not
have the correct topology, although its rmsd was <6.5 A. For the
other proteins, global assembly of the correctly predicted local
substructures went wrong.

The other undesirable scenario is when there are some proper
folds below 6.5 A in the pool. These folds were neglected or
averaged out during the two steps of the clustering procedure
because there were too few of them (10 cases: 6pti, 1a32, 2af8,
1bq9A, 1pse, 2fdn, 1stu, lvce, 1stfl, and 1cewl). However, for
1a32, the topology of the first cluster centroid is correct despite
its poor rmsd. A small number of good structures are included
in this cluster, but they are averaged out by a larger number of
improper folds. As for 1Istu, in the fourth cluster centroids, the
direction of the C-terminal helix deteriorated because of the
contamination of incorrect structures in the cluster, but the rest
of its fold is correct. Interestingly, the eighth cluster centroid of
1stu is the mirror image of the native structure. As for 1cewl, in
the first cluster centroid, a B-sheet with a large helix located over
it are consensus and thus well reproduced, but the remaining
fragment comprising residues 60-80 was distorted. For 1bq9A,
structures with an rmsd <5 A were neglected in the clustering
process. For 1pse and 2fdn, there was only one proper structure
(rmsd 6.5 A) in the simulations, which was neglected in the
clustering procedure.

Also, we have tried candidate selection by using the atomic
potential to address the issue of rare but good quality structures.
Furthermore, when the near-native structures do form a cluster,
the atomic potential/cluster picking procedure can usually also
pick those good candidates in the top five (see below). In each
of 65 proteins, five structures are selected for final analysis. The
best structures selected by the atomic potential also are shown
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in Table 1. In three cases, 1a32, 1stu, and 1bq9A, the atomic
potential selected near-native structures that don’t belong to any
cluster, which are 2-3 A better than cluster-selecoted ones. In
2fdn, the atomic potential picked a structure 7.6-A rmsd from
native, whereas the best cluster has an rmsd of 9.6 A. For the rest
of the cases, the two methods have comparable performance.
With this procedure, we have successfully predicted the near-
native structure in 50 of the 65 cases (76.9%), an improvement
of 3 proteins.

In examining the 40 proteins also used by Simons ez al. (7), our
method clearly did better in 19 proteins and worse in 5. For the
remaining 16 proteins, the results are almost the same or
sufficiently similar; thus, it is hard to say which is better (because
of differences in clustering methods).

Conclusions

We have demonstrated that ab initio structure prediction has
become more feasible by using tertiary restraints derived from
threading results, even when the threaded structures lack the
global topology of the target protein. For 47 of 65 proteins, the
simulated structures are clustered into a proper fold of less than
6.5-A rmsd to the native structure. When the atomic potential is
used, the number of correct predictions increases to 50 of 65. The
resulting structure can be used for further analyses such as
functional annotation by matching three-dimensional active-site
motifs (24) or for low-resolution ligand docking (25).

Based on the present study, we can draw the following
conclusions. First and foremost, by using predicted tertiary
restraints of moderate accuracy, it is possible to predict protein
structures of up to ~150 residues in length. For example, 1mba,
which is 146-residues long, has folded to 2.7-A rmsd from native
structure, which was not previously possible. Considering the
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components of a unified approach for protein structure/function
prediction (26, 27) that also includes generalized comparative
modeling and that is applicable for large-scale prediction. Efforts
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estimated to take a minimum of 8,500 CPU days on our cluster.
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