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A B S T R A C T

The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While
convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image.
Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly
weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or
nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain
during the resting state. This model is estimated using a Bayesian framework which accurately quantifies un-
certainty and automatically finds the most accurate and parsimonious combination of basis functions describing
the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal
dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical
representations of the striatum derived from structural MRI, and two different soft functional parcellations of the
striatum derived from resting-state fMRI (rfMRI). We found that a combination of ~50 multiscale functional basis
functions accurately represented the striatal dopamine activity, and that functional basis functions derived from
an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most
parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI
were more accurate than both structural and generic basis sets in representing dopamine function in the striatum
for a fixed model order. We demonstrate the translational validity of our framework by constructing classification
models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only
basis set that performs well across all comparisons and performs better overall than the classical voxel-based
approach. This spatial model constitutes an elegant alternative to voxel-based approaches in neuroimaging
studies; not only are their atoms biologically informed, they are also adaptive to high resolutions, represent high
dimensions efficiently, and capture long-range spatial dependencies, which are important and challenging ob-
jectives for neuroimaging data.
1. Introduction

Neuroimaging techniques have become invaluable tools for clinical
research and practice in many brain disorders thanks to their ability to
noninvasively investigate brain structure and function with relatively
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high spatial resolution. Data acquisition techniques such as MRI and PET
allow the rich spatial structure that emerges from interactions between
brain regions to be probed in high detail. However, the predominant
analysis approaches that rely on the voxel as the unit of analysis do not
take full advantage of this source of information. In the classical mass-
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univariate approach, which entails fitting independent temporal models
at each sampled brain location (i.e. each voxel), spatial dependencies are
effectively disregarded or dealt with suboptimally (e.g. by smoothing the
data). This ignores an important source of information encoded by sta-
tistical dependencies between brain regions. The mass-univariate
approach also generates a large number of statistical estimates that
depend arbitrarily on the voxel size in the image. These spatially unin-
formed estimates need to be combined and inferred upon using complex
post-hoc correction methods such as random field theory (Nichols, 2012;
Worsley et al., 1996), the accuracy of which has been recently called into
question (Eklund et al., 2016). Voxel-based features are also potentially
suboptimal for multivariate approaches such as pattern recognition
(Wolfers et al., 2015; Mwangi et al., 2014) essentially because voxels lack
biological meaning. While pattern recognition approaches can make use
of correlations between brain regions, the nature of neuroimaging data
often leads to severely ill-posed problems (e.g. with hundreds of thou-
sands of features and tens to hundreds of samples). Therefore,
whole-brain voxel-based approaches are not optimal for discriminating
conditions if the underlying signal is localized to particular regions or
networks. For multivariate approaches as well as mass-univariate ap-
proaches it is therefore desirable to find parsimonious representations of
brain structure or function that can more faithfully represent the un-
derlying signal. Such models may predict clinically-relevant outcomes
more accurately than voxel-based approaches and may be more inter-
pretable in the sense that discriminating features may be cleanly related
to underlying neuronal units of computation.

In light of these considerations, there have been some proposals to
take spatial dependencies into account using multivariate approaches,
and the field of spatial statistics offers attractive methods in this respect.
Various discrete spatial models have been proposed for neuroimaging
data (e.g., Penny et al., 2005; Woolrich et al., 2004) but these generally
only provide local smoothing for the parameter estimates from mass-
univariate analysis. They do not accommodate long-range de-
pendencies that are intrinsic to neuroimaging data, nor overcome the
arbitrary dependence on voxel size or the intricate structure-shape re-
lationships of the brain. A more accurate and flexible approach is the
spatial mixedmodel, in which an additional term, called a spatial random
effect, is added to the model. Here, spatial dependencies are typically
modeled using a continuous (usually Gaussian) spatial random field. The
covariance matrix of this term describes the spatial correlation between
allocations (e.g., voxels), and the inversion of this matrix is necessary to
obtain suitable estimates under this model (Wikle and Royle, 2002). The
immediate problem of applying this approach to neuroimaging data is
the computational burden of this matrix inversion. Accordingly, this
approach has principally been used in the context of restricted regions of
interest (Bowman et al., 2008; Groves et al., 2009) although some studies
have made use of data reduction techniques to approximate the under-
lying spatial process (Hyun et al., 2014; Zhu et al., 2014). An efficient
alternative to model high-dimensional spatial processes is the use of low
rank models, in which the covariance matrix is approximated by a
reduced number of basis functions (Cressie and Johannesson, 2008).
Most commonly, these basis functions are taken to be nonlinear func-
tions, such as radial basis functions (RBFs), b-splines, or wavelets, that
are placed all over the spatial domain. In spatial applications, multiple
resolutions are typically used to capture both short and long ranges of
spatial dependencies.

In this work, we introduce a spatial statistical modelling framework
that uses data-driven basis functions to model neuroimaging data. These
basis functions are derived from measures of brain function, and there-
fore more closely reflect the underlying biology relative to generic basis
functions. While various spatial basis sets are possible, we propose to use
a soft multiscale functional parcellation derived from resting-state fMRI
(rfMRI). For this, we employ a parcellation strategy known as Instanta-
neous Connectivity Parcellation (ICP, van Oort et al., 2016). Our ratio-
nale is based on emerging evidence of temporally independent, spatially
overlapping, subnetworks within anatomical regions and functional
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networks in the human brain (Smith et al., 2012). These subnetworks are
believed to represent fine-scale units of computation used by the brain for
processing. We use these subnetworks as basis function because of their
correspondence with biology. There are various strategies that we could
employ to extract these subnetworks (e.g., Yeo et al., 2011; Craddock
et al., 2012; Shen et al., 2013; Gordon et al., 2016; Glasser et al., 2016),
but the ICP approach is well suited to deriving such subnetworks as it
combines three features: first, ICP sub-divides brain networks on the
basis of fine-grained temporal similarities instead of temporally averaged
correlations. Second, ICP does not impose a spatial contiguity constraint,
meaning that brain regions that are not spatially adjacent can still
participate in the same subnetwork. Finally, ICP follows a top-down
strategy for parcellation, which generates sets of parcels at different
levels of granularity which allows us to model multiple ranges of spatial
dependencies in the image. We compare this approach to a variety of
basis sets including: i) generic isotropic bisquare functions commonly
used in spatial applications (Cressie and Johannesson, 2008); ii) struc-
tural parcellations of the striatum derived from two different atlases; and
iii) functional parcellations of the striatum obtained from Independent
Component Analysis (ICA).

For model fitting, we propose to use a Bayesian regression framework
to automatically find a linearly weighted sum of basis functions that
accurately fits an imaged brain region (or to the whole brain). The
resulting basis function fit and the corresponding weights can be used in
a second level of analysis to investigate the phenotype of the imaged
subjects. To illustrate, we test our framework to predict quantitative
SPECT data of the dopamine transporter (DAT) availability in the healthy
striatum. DAT imaging allows assessing the integrity of presynaptic
dopaminergic neurons of the nigrostriatal pathway and it is widely used
in the clinical practice of movement disorders (Tatsch and Poepperl,
2013). We provide an example of how this method can be applied to a
real clinical application. For this, we use the DAT data to automatically
differentiate between different diagnosed sub-cohorts corresponding to
different parkinsonian disorders. We hypothesized that spatial models
that are informed by brain function would be superior to spatial models
that are informed only by the structural anatomy and to generic models
that do not incorporate knowledge of the underlying biology. Therefore,
we compare functionally informed basis functions derived from resting
state fMRI to anatomical basis functions derived from two widely used
anatomical parcellations of the striatum and also to generic basis func-
tions commonly used in spatial applications. The clinical application we
have chosen provides an exacting test of this hypothesis for three reasons:
(i) the spatial resolution of SPECT is low relative to alternative methods
(e.g. fMRI) meaning that clinically relevant spatial dependencies are
difficult to detect; (ii) anatomical subdivisions are well-defined for the
striatum, which biases the analysis in favour of anatomical parcellations
and (iii) the data modality used to create the basis set (BOLD fMRI,
indirectly measuring oxygen consumption) measures different aspects of
the underlying biology relative to the clinical biomarker (DAT SPECT,
measuring dopamine function). Therefore the method must learn de-
pendencies that generalize across different aspects of brain function.

Our approach is related to several lines of work in the neuroimaging
literature. Gershman et al. (2011) developed a spatial modeling approach
for neuroimaging data, referred to as topographic latent source analysis
(TLSA). In TLSA, fMRI data are modeled as a superposition of image
sources constructed from adaptive RBFs. Like our approach, TLSA ab-
stracts away from the voxel as a unit of analysis, instead performing in-
ferences over underlying neuroanatomical regions. However, in TLSA
generic isotropic RBFs are used that do not map cleanly onto their bio-
logical sources (i.e. brain nuclei). The approach also requires running
heavy optimization machinery in order to fit a given data set. Our
approach is also related to dictionary learning approaches (e.g. Varo-
quaux et al., 2011) and to approaches that model neuroimaging data
using multi-scale parcellations (e.g. Jennaton et al., 2012; Bellec, 2013).
These approaches generally aim to segment a set of neuroimaging data
into subject-specific or group level atlases. In contrast, our approach
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focuses on enabling statistical inference using various candidate basis
sets. This is useful in many different contexts, including: (i) improving
the accuracy of models that predict brain structure or function from
clinical or demographic data (e.g. Marquand et al., 2016) (ii) abstracting
away from the voxel as the unit of analysis which may lead to a lower
multiple comparisons penalty in mass-univariate analysis, or to more
accurate multivariate prediction of psychometric or clinical variables
from neuroimaging data; (iii) adjudicating between different candidate
basis sets or parcellations by providing a means to compare which most
accurately explains the data at hand.

Our spatial model is generic, and can be adapted to investigate many
different brain regions and research questions. Moreover, the proposed
methodology provides four additional benefits: (i) biological interpret-
ability of the computation units in the analyses (ii) a substantial reduc-
tion in the number of parameters for making inferences in neuroimaging
studies, which consequently reduces correction penalties and enhances
power; (iii) a faithful representation of the complex spatial structure of
neuroimaging data in low dimensions and (iv) a quantification of the
uncertainty in the predictions thanks to the Bayesian nature of the
approach. In this work we demonstrate the validity of ICP basis set to
make inferences in functional neuroimaging. Importantly, the multiscale
nature of the ICP algorithm allows to efficiently capture the multiple
ranges of spatial correlation in the brain. This enables to model spatially
non-stationary correlation structures and long range dependencies in the
data. These are both very challenging for classical spatial statistical
models, yet are inherent properties of brain organization (Glasser
et al., 2016).

2. Methods

2.1. Notational preliminaries

Throughout this section and what follows, we use bold lowercase
characters to denote vectors (a), bold uppercase letters to denote
matrices (A), plain letters to denote scalars (A or a), where we generally
reserve lowercase letters for indexing and uppercase letters for fixed
quantities.
2.2. Statistical model formulation

We use a flexible regression framework to model neuroimaging data
in the spatial domain. To achieve this, we first reshape the preprocessed
and masked three dimensional data volumes from each of S subjects into
a vector ys of dimension V, where s ¼ 1;…; S. Our aim is to predict these
data using a set of basis functions fϕmðxÞgMm¼1, that vary over the spatial
domain, x, which for simplicity we take here to be coordinates in the
Cartesian coordinate system. While these could be subject specific, here
we employ a common set of basis functions across all subjects (described
below). We consider that ys results from a linear combination M spatial
basis functions plus a noise term:

ys ¼
XM
m¼1

wm;sϕmðxÞ þ εs

where, ws ¼ ½w1;s;…;wM;s�T is an M-dimensional vector of regression
coefficients (weights) that are specific to each subject s and are adjusted
to predict the class labels as accurately as possible. εs represents additive
Gaussian noise εs � N ð0; β�1Þ with β denoting the noise precision (i.e.
inverse variance).2 In this paper, we cast this problem in the context of
Bayesian hierarchical models, where prior distributions are placed over
model parameters of interest. This provides several important benefits:
2 Throughout this paper for convenience we work with precisions and precision
matrices rather than covariances and covariance matrices.
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most importantly, Bayesian models account for the uncertainty in the
parameter estimates and provide implicit regularization of model pa-
rameters. They also provide a simple and elegant method to combine
data from multiple subjects via a shared prior over the regression co-
efficients ðwsÞ as outlined below.

In the first instance, we place a prior distribution over the regression
coefficients only ðwsÞ. This yields a hierarchical generative model that
can be succinctly summarized by the joint likelihood,3 which factorises in
the following way:

pðY;Φ;Wjα; βÞ ¼
YS
s¼1

pðysjΦ; β;wsÞpðwsjαÞ (1)

Here, Φ is a V �M matrix that collects all the basis functions, W ¼
½w1;…;wN � is an M � S matrix that collects the weight vectors for each
subject and Y is a V � S matrix collecting the neuroimaging data for all
subjects. We assume a Gaussian prior over the weights for each subject,
such that pðwsjαÞ ¼ N ðws

��μ;Λ�1
α Þ. Here, the precision matrix, Λα (in-

verse covariance matrix, i.e. Λ�1
α ¼ Σα), is shared across subjects and we

make it explicit that it depends on a vector of hyperparameters
(α ¼ ½α1;…; αM �T ). Without loss of generality, we also assume that the
prior mean, μ, is zero. For the model in equation (1), the precision matrix
is taken to be diagonal and is parameterized with an independent
parameter for each basis function ðαmÞ along the leading diagonal. These
parameters control the precision of each basis function, constituting an
‘automatic relevance determination’ prior (ARD; Mackay, 1995). Under
this prior, the independent parameters for each basis function allow
non-informative and redundant basis functions to be down-weighted and
informative ones to be emphasized in a consistent manner across sub-
jects. We could also take this one step further and apply priors over the
precision parameters that further encourage them towards sparsity,
which is the basis for the relevance vector machine (Tipping, 2001).
However, we consider in our case that we do not have sufficient prior
knowledge as to whether we should expect the model to be sparse.
Therefore, we estimate the precision parameters from the model in
equation (1) in an unconstrained manner, using an empirical Bayesian
approach, described in the next section. The basic set up of this model is
schematized in Fig. 1.

The model specified by equation (1) is appealing due to its simplicity,
but it does not fully account for the uncertainty in the parameter esti-
mates in that it places a prior distribution on the weight vector co-
efficients only. It also does not properly account for spatial correlations
between basis functions. To address these problems, we employ a full
Bayesian treatment of the problem, where we place prior distributions
over all variables of interest and explicitly model correlations between
basis functions. This gives rise to a hierarchical generative model in
which the joint likelihood factorises in the following way:

p
�
Y;Φ;W;Λα; β

��θβ; θα� ¼ p
�
β
��θβ�pðΛαjθαÞ

YS
s¼1

pðysjX; β;wsÞpðwsjΛαÞ

(2)

In this case, we have extended the generative model in equation (1) to
accommodate correlations between the basis functions by allowing off-
diagonal entries in Λα (and therefore also Σα). We then place priors
over the precision matrix of the ARD coefficients ðpðΛαjθαÞÞ and the noise
precision ðpðβ��θβÞÞ in addition to the weights, where θα and θβ denote the
parameters of prior distributions for Λα and β. More specifically, we
specify that the prior over the weights has the same Gaussian form as
before: pðwsjΛαÞ ¼ N ðws

��0;Λ�1
α Þ, the prior over the ARD precision ma-

trix has a Wishart distribution pðΛαjθαÞ ¼ W ishðΛαjN;PÞ where N
3 The joint likelihood is the product of the likelihood and prior and is proportional to
the posterior distribution.



Fig. 1. (A) The basic spatial model in matrix notation: the S neuroimaging vectors of
dimension V (Y) result from a linear combination of M basis functions (Φ) and the cor-
responding weights (W). (B) Diagram of the model: DATSCAN images in the striatum are
modeled as a superposition of M weighted striatal basis functions. A zero-mean Gaussian
prior with precision αm is placed over each weight, which determines the importance of
each basis function for predicting the data.
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denotes the prior degrees of freedom and P denotes the prior precision.4

Finally, we specify that the prior over the regression coefficients has the
form of a Gamma distribution pðβjθβÞ ¼ G amðβja; bÞ), where a and b are
shape and rate parameters. This choice of priors greatly simplifies the
inference in this model because it facilitates an efficient Gibbs sampling
framework that capitalizes on the conjugacy of these distributions as
described in Section 2.4.
2.3. Model estimation and inference: Empirical Bayes

For both of the models considered here (equations (1) and (2)),
inference proceeds by estimating the posterior distribution over all pa-
rameters of interest. This is straightforward for the basic model specified
in equation (1), because for fixed α and β the posterior distribution over
W can be computed in closed form according to Bayes’ rule. For the
model in equation (1), the posterior can be written as:

pðWjY;Φ;α; βÞ ¼ likelihood� prior
marginal likelihood

¼
Q

spðysjΦ; ws; βÞ pðwsjαÞ
pðYjΦ; α; βÞ

It is straightforward to show (see e.g (Bishop, 2006)) that by
combining a factorised Gaussian prior and Gaussian likelihood, the
4 Throughout this paper, we use a parameterisation of the Wishart distribution over D�
D matrices whereby W ishðXjN;PÞ ¼ KjPjN=2jXjðN�D�1Þ=2 exp

�
� 1

2 trðXPÞ
�
, where

K�1 ¼ 2ND=2πDðD�1Þ=4YD
d¼1

Γ½ðN þ 1� dÞ=2�. Here N denotes the degrees of freedom and P is

a symmetric, positive definite precision matrix.
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posterior is also a factorised Gaussian, such that pðWjY;Φ;α; βÞ ¼Q
s
pðwsjys;Φ;α; βÞ: The posterior weight vector for each subject (ws) can

then be written as:

pðwsjys;Φ;α; βÞ ¼ N
�
ws

��ws;A�1
�

(3a)

A ¼ βΦTΦþ Λα (3b)

ws ¼ βA�1 ΦTys (3c)

Now, in order to calculate this posterior distribution, it is necessary to
estimate optimal values for the hyperparameters α and β. For the model
in equation (1), we achieve this using an empirical Bayes, or type-II
maximum likelihood approach in which we work with point estimates
of the hyperparameters (Bishop, 2006; Tipping, 2004). This is done by
optimising the logarithm of the denominator of Bayes rule, namely the
log marginal likelihood, with respect to the hyperparameters. The intu-
ition behind this approach is that the marginal likelihood describes the
probability of the data (Y) after integrating out the dependence on the
parameters (W). As such, it embodies a tradeoff between model fit and
model complexity and so by maximizing the marginal likelihood, one
obtains an optimal balance between the two. In this case, the marginal
likelihood can also be computed in closed form. This takes the following
form, where we have taken advantage of the independence of subjects
and have omitted the dependence on Φ for notational clarity:

log pðYjα; βÞ ¼ log∫ pðYjW; βÞpðWjαÞdW

¼ SV
2

log β � SV
2

log 2 π � S
2
logjΛαj � S

2
logjAj

� β

2

XS
s¼1

ðys �ΦwsÞT ðys �ΦwsÞ �wT
s Λαws (4)

To find α and β we employ a conjugate gradient optimization scheme
as described in (Rasmussen and Williams, 2006). This requires the de-
rivatives of the objective function given in equation (4), which can be
found by applying standard identities for derivatives of expressions
involving matrices and are given in the Appendix.

There are two key insights to note from the model specified by
equations (1), (3) and (4). First, equation (1) embodies the assumption
that subjects are independent realizations from the same distribution.
This means that while the hyperparameters are shared across a group of
subjects, the weights are estimated independently for each of S subjects.
This provides a simple way to induce coupling between subjects via their
shared reliance on a common set of hyperparameters. More generally,
one could also employ multi-task learning (Bonilla et al., 2008; Caruana,
1997; Marquand et al., 2014) to couple the data from different subjects
which does not require an independence assumption. However, this
would be computationally costly, so we do not pursue it here. Second,
equation (3a–c) shows that the posterior variance for the weights does
not depend on the value of the response variables (ys), only on the basis
functions ðΦÞ and noise precision (β). Since we have chosen these to be
fixed across subjects, this can lead to considerable computational im-
provements if this is accounted for in the implementation. In other
words, it is not necessary to recompute the noise precision for each
subject, only the posterior mean. For the remainder of this work, we refer
to the approachwhere the model in equation (1) is fit using by optimising
the objective function in equation (4) as ‘Empirical Bayes’.
2.4. Model estimation and inference: Full Bayes

For the model in equation (2), we adopt an alternative Markov chain
Monte Carlo (MCMC) inference approach. This is highly desirable
because it can accurately quantify the uncertainty over all variables in the
model and allows a richer hierarchical model to be specified over the
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parameters. In more detail, we employ a blocked Gibbs sampling algo-
rithm to estimate the full posterior distribution over quantities of inter-
est, rather than point estimates. This is achieved by repeatedly sampling
from the full conditional distribution of each block of variables condi-
tioned on the current estimates of all the others. This breaks a complex,
high-dimensional distribution into simpler, low-dimensional problems,
which can be sampled by conventional methods. Moreover, we choose
conjugate prior distributions for each block of parameters which means
that the full conditional distribution for each block of parameters can be
computed exactly and has a known distributional form, which makes
them easy to sample. In more detail, for each of t ¼ 1;…; T iterations in
the Markov chain, we draw samples from the full conditional distribu-
tions for W, β, and Λα based on the current estimates for the other pa-
rameters. This is achieved by repeatedly sampling from the full
conditional distributions given below, where we use a superscript to
denote the iteration number and again suppress the dependence on Φ:

p
�
Wðtþ1Þ��ΛðtÞ

α ; βðtÞ;Y
� ¼YS

s¼1

N
�
wðtþ1Þ

s jwðtþ1Þ
s ;

�
A�1
�ðtþ1Þ� (5a)

p
�
βðtþ1Þ��ΛðtÞ

α ;WðtÞ;Y
� ¼ G am

 
βðtþ1Þjaþ SV

2
; b

þ 1
2

X
s

�
ys �ΦwðtÞ

s

�T�
ys �ΦwðtÞ

s

�!
(5b)

p
�
Λðtþ1Þ

α

��WðtÞ; βðtÞ;Y
� ¼ W ish

 
Λðtþ1Þ

α jN þ S;Pþ
X
s

wðtÞ
s

�
wðtÞ

s

�T!

(5c)

For the remainder of this paper we will refer to the estimation of
equation (2) using equation (5a–c) as ‘Full Bayes’. We chose vague top
level priors for all models, such that a ¼ b ¼ 1, N ¼ M þ 2 and P ¼ I. For
each sampler, we check all posteriors samples for all model variables for
convergence and efficiency by inspection of Markov chains and compu-
tation of diagnostic statistics (e.g. potential scale reduction factors
(Gelman and Rubin, 1992)).
Table 1
Summary of the different basis sets evaluated in this work. The last column reports the
mean (standard deviation) absolute value of the spatial correlation across all basis func-
tions. For the functional basis sets (ICP and ICA), this value is after spatial smoothing (see
Methods).

Name Type Data
driven

Multi-
scale

N basis
functions

Correlation

ICP Functional Yes Yes 464 0.34 (0.24)
ICA Functional Yes No 464 0.21 (019)
Bisquare Generic No Yes 681 0.02 (0.06)
HO Structural No No 4 0.31 (0.19)
OI Structural No No 7 0.36 (0.17)
2.5. Computational complexity

While a detailed analysis of the computational complexity of the
different inference methods is outside the scope of this work, it is
nevertheless informative to make some brief remarks. For many appli-
cations, the computational cost of MCMC methods is high relative to
alternative methods. In this case, however, the Full Bayesian approach
based on MCMC compares very favourably to the alternative Empirical
Bayesian approach. The overall computational cost of the Full Bayes
approach is determined by the cost of computations per iteration, the
number of iterations to achieve convergence and the number of samples
collected for the posterior, which is in turn dependent on the autocor-
relation in the samples in the Markov chain. In this application, equation
(2) is linear in the parameters and conjugate priors we have employed
mean that all variables can be readily sampled. As a result, the Gibbs
sampling approach described in equation (5a–c) converges rapidly to the
target distribution and is highly efficient in that successive samples in the
Markov chains have low correlation for all sampled variables. In our
experiments, a short burn in period (200 samples) was judged as suffi-
cient to achieve convergence for all variables, and we used 1000 samples
to estimate the relevant posterior distributions. For models with high
numbers of basis functions the computational complexity is dominated
by the need to compute the conditional posterior over W equation (5a),
dominated by equation (3c), which has a cost of OðMVSÞ plus the cost of
inverting the posterior covariance matrix (OðM3Þ in the worst case).

The computational cost of the Empirical Bayes approach is
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determined by the cost of making each iteration and the number of it-
erations to reach convergence. The Empirical Bayes approach is rela-
tively efficient for small numbers of basis functions (e.g. the Oxford-
Imanova and Harvard-Oxford basis sets described below), but the
computational cost does not scale well to models with a large number of
basis functions (e.g ICP, ICA and bisquare basis sets described below). In
such cases, the computation is dominated by the cost of computing the
derivatives of the marginal likelihood, which require computing multiple
computationally expensive matrix products, many of which must be
recomputed for every ARD parameter (see Appendix). The cost of
computing the derivatives is over and above the cost for computing the
posterior over W, which must still be computed at every iteration. In
practice, for large problems (i.e. large M with V and S fixed) this means
that the MCMC approach is usually an order of magnitude faster than the
competing optimization approach.
2.6. Spatial basis functions

In this work we consider five approaches for constructing basis
functions for the spatial model. These consisted of: two data-driven
functional parcellations of the striatum based on (i) a recently devel-
oped instantaneous connectivity parcellation approach (van Oort et al.,
2016) and (ii) a group-level independent component analysis (ICA); (iii)
a set of generic basis functions widely used in spatial applications
(Cressie and Johannesson, 2008) plus two anatomical parcellations of the
striatum, derived from (iv) the probability maps derived from the
structural MRI-based Harvard-Oxford (HO) atlas, and finally (iv) the
DTI-based Oxford-Imanova (OI) atlas. Both anatomical atlases are
available in FSL (http://fsl.fmrib.ox.ac.uk/fsl). These basis sets are
described next and their most important characteristics are summarized
in Table 1 below:

2.6.1. Instantaneous connectivity parcellation derived basis functions
We obtained a multiscale functional parcellation of the bilateral

striatum by applying ICP to resting-state fMRI from 100 participants from
the Human Connectome Project (HCP) (Van Essen et al., 2013), pre-
processed using the HCP minimal processing pipelines (Glasser et al.,
2013). Our rationale for using fMRI for estimating the basis functions
using resting-state fMRI is that it provides a higher spatial resolution than
SPECT, and therefore can potentially provide a richer characterization of
the spatial structure of the functional architecture of the brain.

The ICP approach is described in detail elsewhere (Oldehinkel et al.,
2016; van Oort et al., 2016) but we provide a brief overview here. ICP is
based on the assumption that voxels that form a subregion within a larger
region exhibit similar, yet slightly different time courses compared to the
other voxels in the larger region. The aim of ICP is therefore to divide the
larger region into smaller, functionally homogenous sub-regions based
on their temporal signature. The differences between these temporal
signatures may be subtle, so in order to increase sensitivity for such
differences, we analyse the dynamics of the ‘instantaneous’ modes of
connectivity, reflecting the voxel-to-region differences in functional
connectivity. In essence, we amplify the differences in (groups of) voxel
time series by comparing them to a shared reference, here taken to be the

http://fsl.fmrib.ox.ac.uk/fsl
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grand mean average time course of the original region selected for
parcellation.

Pearson correlation is the most widely used metric to quantify func-
tional connectivity between brain regions or voxels. In such types of
analysis, the measure of association is based on temporal averaging,
which hides the rich dynamic information present in resting fMRI data.
With ICP, we expand upon the basic Pearson correlation by considering
the sequence of events across time. This proceeds by temporally
‘unfolding’ the time-averaged correlation between each voxel and the
reference timeseries. For normalized timeseries (i.e. having zero mean
and unit standard deviation) of length T, the Pearson correlation between
time courses a and b can be written as the mean of the element-wise
(Hadamard) product between them, i.e.:

ρa;b ¼
1
T

XT
t¼1

atbt

The essential intuition underlying the ICP method is that we analyse
the time-resolved instantaneous connectivity between a regionally-
specific reference time series and all voxels’ time series within the
same region. In contrast to Pearson correlation, we do not perform
temporal averaging over the quantity given above. This enables us to
make use of the instantaneous temporal dynamics to sub-divide the
original region into a set of subregions, based on the assumption that the
temporal dynamics are also spatially structured. We derive a set of spatial
modes describing this structure by feeding the temporally unfolded
timecourse of each voxel with the reference timecourse into a group-level
independent component analysis (ICA) as implemented in the FSL
MELODIC software (Beckmann et al., 2004; Jenkinson et al., 2012).
While we could also use this decomposition to derive a piece-wise con-
stant parcellation (see van Oort et al., 2016), these are not well suited for
use as spatial basis functions. Instead, we use a set of real-valued quan-
tities describing the relative confidence by which each voxel can be
assigned to each parcel (i.e. soft parcellation) which form the set of
candidate basis functions (Φ) for our spatial model. These confidence
measures are defined as the ratio between the probability of belonging to
the alternative distribution, relative to the explicitly modelled null dis-
tribution (see Beckmann et al., 2004 for further details).

The ICP algorithm described above requires that the model order of
the ICA decomposition be specified, although various approaches may be
used to select the model order automatically (van Oort et al., 2016). In
this work, we employ ICP do develop a multi-scale parcellation. Thus, for
the striatum, we obtained subdivisions from model orders of
Md ¼ f2;…;30g ¼ f2;…;30g, generating a total of M ¼ 464 basis
functions ðP30

d¼2MdÞ.

2.6.2. Independent component analysis derived basis functions
To act as a reference method, we compared the ICP method described

above to a standard group-level ICA decomposition with a model order
fixed to be equivalent to the ICP basis set above (M¼ 464). At such a high
model order, ICA generates a large number of basis functions with
generally very focal support (i.e., each having limited spatial extent). By
comparing with the ICP basis set above, this allowed us to assess the
importance of long-range interactions relative to local interactions in
accurately modelling neuroimaging data. For this we employed the
resting state data derived from the bilateral striatum from the same 100
subjects from the HCP dataset after the same preprocessing. We then
estimated a group-level ICA from the concatenated data from all subjects
and runs with the dimensionality fixed to M ¼ 464. Note that we could
also have employed ICP for this purpose, but we considered that at such a
high model order, potential differences between the methods would be
negligible.

2.6.3. Generic local bisquare basis functions
As second reference method, we evaluated the ability of a generic

basis set commonly used in classical spatial applications (Cressie and
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Johannesson, 2008). This involves tiling multi-resolutional basis func-
tions all over the spatial domain to capture multiple ranges of spatial
correlation (Cressie and Johannesson, 2008; Nychka et al., 2014). This
reference method is therefore useful to assess the value of data-driven
basis functions that aim to recapitulate the underlying biology with
respect to basis functions that are simply multi-scale. Following Cressie
and Johannesson (2008), we use local bisquare functions for this pur-
pose. These take the form:

ϕmd
ðxÞ ¼

8>>><
>>>:

"
1�

	
1
rd
jjx� cmd jj


2
#2
; if jjx� cmd jj � rd

0 otherwise

(6)

Here, the ϕmd
ðxÞ are the individual spatially-dependent basis functions,

which are indexed by md ¼ 1;…;Md at the d-th detail level where
again M ¼P

d
Md. The centres of each basis function are denoted by cmd

and rd denotes 1:5� the Euclidean distance between centre points at
the d-th detail level. Intuitively, this basis function set can be
considered as similar to a radial basis functions but with finite support
across space. Here we choose three detail levels, having
rd ¼ f6mm; 12mm; 18mmg, Md ¼ f589; 72; 20g yielding a total of
681 basis functions. Note that the total model order is higher than the
model order of the data-driven basis sets, but it was not possible to
obtain an exact match because it is necessary to tile the entire space
with basis functions.

2.6.4. Anatomical basis functions
For the anatomical basis sets, we used the probability maps derived

from: the 4 anatomical subdivisions (left and right putamen and caudate)
from the MRI-based Harvard-Oxford (HO) atlas, and the 7 subdivisions
from the connectivity DTI-based Oxford-Imanova (OI) atlas, supplied
with the FSL software package v.5.0.9 (http://fsl.fmrib.ox.ac.uk/fsl).

We show examples of the different basis sets used to model activity
in the striatum in Fig. 2. There are some characteristics that are worth
commenting on: First, the soft nature of the parcellations fits with the
idea that functional networks can be spatially overlapping (Smith et al.,
2012). Thus, these parcellation schemes accommodate for the fact that
one spatial unit may be involved in multiple, functionally relevant
networks. With regard to the specific basis sets, the ICP and ICA basis
sets are functional and data-driven and aim to derive the underlying
units for the basis set on the basis of the underlying functional anatomy.
They differ in that ICP provides a set of multi-resolution parcels,
allowing brain units of varying sizes and with substantial spatial
overlap to be combined to accurately model brain data. In contrast, the
ICA basis set is derived from a single high-dimensional decomposition,
so the parcels are all quite small and have lower spatial overlap. The
local bisquare basis set does not use biology, but instead places basis
functions across a regular grid and across multiple spatial scales. The
anatomical basis sets are data-driven on the basis of structural anatomy,
but are neither multi-scale nor functional. The intuition underlying
these basis sets is that function to a certain extent re-
capitulates structure.

To quantify the spatial complexity of the different basis sets, we show
normalized eigenspectra in Fig. 3 derived from performing an eigende-
composition of the ICP, ICA and bisquare basis sets separately. This
shows that the ICP has a lower intrinsic dimension than either the ICA or
bisquare basis sets (i.e. the eigenspectrum shows a greater proportion of
energy in few basis functions. The bisquare basis set that does not use
biology has the highest intrinsic dimensionality.

2.7. Correlation between features

It is apparent from Table 1 that there is high spatial correlation be-
tween the basis functions in the anatomical and data driven basis sets.

http://fsl.fmrib.ox.ac.uk/fsl


Fig. 2. Basis functions used to model activity in the striatum. For the high-dimensional basis sets (independent component analysis, instantaneous connectivity parcellation and local
bisquare functions), only examples are shown. Note also that the basis sets have not been masked to assist visualization.
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This has consequences both for model estimation and interpretation of
the coefficients. Collinearity between predictor variables (here, basis
functions) makes model estimation more difficult – especially in high
dimensions – because there are many possible linear combinations of
features that can yield the same predictions. Collinearity also complicates
the interpretation of the resulting regression coefficients (Kraha et al.,
2012). There are two essential problems when covariates are highly
collinear: (i) although unbiased, the regression coefficients have a high
variance and can therefore be sensitive to slight variations in the data.
This is again because there are many combinations of collinear covariates
that can predict the data equally well. (ii) Care must be taken in the
interpretation of high magnitude coefficients because a high magnitude
coefficient can arise because a covariate is directly useful in predicting
the data or because it acts as a ‘suppressor’ variable (Kraha et al., 2012);
that is, that it helps to cancel out noise or mismatch in other covariates
(Haufe et al., 2014). We perform two specific analyses to alleviate these
concerns. First, we evaluate the reproducibility of the coefficients under
different splits of the data, and second, we present structure coefficients
that show the univariate correlation between the predictors and each
covariate. These are a standard tool in linear regression models to assist
interpretation of regression coefficients in the presence of collinearity
(Kraha et al., 2012).
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2.8. Model evaluation

We applied our spatial model to study dopamine function in the
striatum as measured by DATSCAN, which is a reliable imaging test for
the identification of striato-nigral degeneration. This scan is accurate and
widely used in clinical practice for the diagnosis of Parkinson's disease
(PD) and its differentiation from other movement disorders without
presynaptic dopaminergic loss (e.g., essential tremor and drug-induced
parkinsonism). However, the discrimination of PD from other parkinso-
nian disorders such as progressive supranuclear palsy (PSP) is muchmore
challenging and current standardmethods of assessments of image do not
allow to make this differential diagnosis on the basis of DATSCAN images
alone (Tatsch and Poepperl, 2013). It is even more challenging to
discriminate putative subtypes of parkinsonian disorders from
one another.

We provide two illustrative examples of this method in what follows.
We first show a proof-of-concept example in which we use our method to
obtain an accurate low-dimensional representation of the striatum using
DATSCAN images of healthy controls (Section 2.8.1). Second, we provide
a translational clinical example where we discriminate: (i) subjects with
Parkinson's disease (PD) from healthy control subjects, (ii) PD subjects
from progressive supranuclear palsy (PSP), which is a related



Fig. 3. Eigenspectrum for the three high dimensional basis sets. Abbreviations: ICP ¼ instantaneous connectivity parcellation; ICA ¼ independent component analysis.
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parkinsonian disorder that is often misdiagnosed as PD in the early stages
(Section 2.8.2) and iii) PSP subtypes from one another. The subtypes we
considered were Richardson syndrome (RS) and pure akinesia with gate
freezing (PAGF). These discrimination problems reflect important dis-
tinctions in clinical decision making.

2.8.1. Low-dimensional representation of the healthy striatum
In this example we sought to develop a spatial model able to accu-

rately fit the DATSCAN of healthy control (HC) subjects. We compared
the model accuracy of this for all of the five candidate basis sets (ICP, ICA,
bisquare, HO and OI).

2.8.1.1. Subjects. We included a total of 100 subjects (52%males, 60 ± 7
years) reported as healthy by nuclear medicine specialists and who were
scanned with [123I]FP-CIT SPECT at Hospital Virgen del Rocio, Sevilla,
Spain. Details about the SPECT scanner and acquisition protocol can be
found in a previous work (Huertas-Fernandez et al., 2014). SPECT images
were spatially normalized into standard space using a custom template
(http://www.nitrc.org/projects/spmtemplates). No smoothing
was applied.

2.8.1.2. Model set-up and evaluation. The bilateral striata of the scans
were masked using a manually delineated region template of dimension

V ¼ 4622 (https://www.nitrc.org/projects/striatalvoimap). Data from
the striata of the N ¼ 100 healthy subjects were vectorised to form
Y(V�N) and intensity standardized to have zero mean and unit standard
deviation. Each of these is associated with an independent weight vector,
collected in the matrixW (M�N) but were dependent on a common set of
hyperparameters as described above. We formed Φ for each basis set
(ΦICP, ΦICA, Φbisquare, ΦHO, ΦOI) and each of the functional basis sets
were smoothed with an 8 mm full width at half maximum Gaussian
kernel to emulate the point spread function of the SPECT scanner (Cot
et al., 2004).

We evaluated the model performance by assessing the mean cross-
validated explained variance. Since the primary goal of this work was
spatial interpolation accuracy, we used a spatial subsampling method
similar to approaches commonly used in other spatial applications (e.g.
Hyun et al., 2014). For this we repeatedly retrained the model using 10
random subsamples of the data such that either 10, 20 or 50% randomly
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selected voxels were available for training and the remainder were used
for testing.

Having established the generalizability of each of these regression
models, we then vary the number of basis functions included in themodel
(such that M0 ≪ M). While there are various possible heuristics to select
which basis functions to include in the model, a natural and effective
approach is to select basis functions on the basis of their ARD coefficients,
which is also the strategy employed by the relevance vector machine
(Tipping, 2001). We first compare the explained variance for models
containing only the top 50 basis functions by this metric (derived from
the whole dataset) then examine the explained variance across a range of
model orders. For this, we ordered basis functions by relevance based on
their ARD coefficient and successively added informative basis functions
in order to construct a complexity/accuracy tradeoff curve. Thus, for
M0 ¼ 1, the model included only the most relevant bases; forM0 ¼ 20, the
model included the 20 top relevant bases, etc.

2.8.2. Discrimination of parkinsonian disorders
In this example, we used our framework to build spatial models with

the different basis sets (ICP, ICA, bisquare, HO and OI) to construct
features for disease classification purposes. We applied spatial models to
discriminate three decision problems that represent the most important
clinical problems for parkinsonian disorders, namely to discriminate: i)
healthy controls from PD; ii) PD (in early stages, see below) from PSP and
iii) PSP subtypes from one another (RS vs. PAGF). We also computed the
classification performance of aclassical voxel-wise classifier (i.e., using
all striatal voxels) in order to have a non-spatial approach as a reference.

2.8.2.1. Subjects. We included next to the 100 HC subjects described in
the previous section, 100 patients diagnosed with PD (63% males,
63 ± 12 years); 50 of them in early stage (disease duration 3 ± 2 years)
and the other 50 in late stage (disease duration 13 ± 5 years); and 53
patients diagnosed with PSP (73 ± 7 years; disease duration 3 ± 2 years).
Forty-three of the PSP patients presented with the classical Richardson
Syndrome (PSP-RS), whereas the other 10 presented with a pure akinesia
and gait-freezing (PSP-PAGF) phenotype. The diagnosis of PD was made
using the UK Parkinson's Disease Society Brain Bank clinical diagnostic
criteria and the PSP patients were diagnosed and labeled based on
established clinical criteria (Williams et al., 2005). All patients were also
scanned at the same site (Huertas-Fernandez et al., 2014).

http://www.nitrc.org/projects/spmtemplates
https://www.nitrc.org/projects/striatalvoimap


Fig. 4. Explained variance (mean ± standard deviation across 100 subjects) as a function
of the number of basis functions included in the model. Inset shows a zoom on the per-
formance of all methods at low model orders.
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2.8.2.2. Model set-up and evaluation. The model set-up pipeline was the
same as for the previous example to form Φ for the different basis sets.
We also formed the output matrix Y for the disease groups (i.e., YPD and
YPSP) as we did for the healthy controls in the previous section. The
weights from these models then form features for the comparisons be-
tween normal controls and PD, PD (early stage) and PSP, and between the
PSP subtypes (RS vs. PAGF).

2.8.2.3. Classification method. We employed a Bayesian probit regres-
sion classifier with ARD priors for all comparisons (Albert and Chib,
1993). This involves combining a standard probit (or cumulative
Gaussian) likelihood, with a Gaussian prior over the regression co-
efficients. If we write the binary class labels for subject s as ts 2 f0;1g, we
can write the joint likelihood of this model by:

pðt;WjΛzÞ ¼ N
�
zj0; Λ�1

z

�YS0
s¼1

HðzTwsÞts ð1� HðzTwsÞÞ1�ts (7)

Here, t is a vector of length S0 that collects the classification target values
for all subjects included in the classification problem (note that S0≠S);
HðaÞ is the cumulative Gaussian density evaluated at a. This serves as a
response function that maps the real-valued regression values to the unit
interval; W are the estimated weights derived from the previous analyses
andws is a weight vector from a given subject. Nðzj0; Λ�1

z Þ is a Gaussian
prior over the classification regression coefficients (z) where the preci-
sion matrix, Λz, is again diagonal with an ARD parameter over each basis
function. These control the variance of the weights of the latent regres-
sion function in much the same way as in the regression models
considered in the previous section. However, unlike the linear regression
models considered above, there is no closed form solution for the pos-
terior or marginal likelihood owing to the nonlinearity in the classifica-
tion likelihood function. Since this model is equivalent to a linear
Gaussian process model we therefore make a Gaussian approximation to
the posterior density using the expectation propagation algorithm, which
has been shown to yield excellent performance (Nickisch and Rasmussen,
2008). We refer the reader elsewhere for details (Rasmussen and Wil-
liams, 2006). We evaluate the generalizability of all classification models
using stratified ten-fold cross-validation where we measured classifica-
tion performance via the area under the ROC curve (AUROC).

3. Results

3.1. Performance of different basis sets as a function of model order

We first chart the performance of the different basis sets as a func-
tion of the number of basis functions included in the model in terms of
proportion of variance explained (Fig. 4). This plot was generated by
sequentially adding basis functions to the model on the basis of their
ARD coefficient estimated from the entire dataset. As discussed in the
methods section, this provides a principled measure of the utility of
each feature for predicting brain activity. For simplicity, these models
were trained using the empirical Bayes approach although similar
conclusions were reached using the full Bayesian approach. This shows
that (i) all higher order basis sets (ICP, ICA and bisquare) predicted the
DATSCAN data extremely accurately if a sufficient number of basis
functions were included in the model, whereas (ii) the anatomical basis
sets were substantially less accurate across nearly all model orders for
which they were applied; Moreover, (iii) the data-driven basis sets (ICP
and ICA) perform better than the generic basis set across most model
orders, indicating that the data-driven basis sets give rise to more
parsimonious models of brain function. This is important because for
most applications it is crucial to derive a basis set that explains the data
accurately and parsimoniously (i.e. using few basis functions). For
example, it is reasonable to expect that more parsimonious models will
lead to improved sensitivity in subsequent analyses. Finally, (iv) we
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note that there is a relatively small difference between the different
data-driven parcellations although ICP outperforms ICA both at very
low model orders (<5) and at moderate model orders (between 15 and
75 basis functions).

3.2. Performance of different inference algorithms for a fixed model order

For the next analysis, we used a fixed model order of 50 basis func-
tions which provides a reasonable trade-off between accuracy and
computational complexity. Fig. 5 shows the performance of the high-
order models on the basis of the 50 most informative basis functions
according to their ARD coefficient. Similar to Fig. 4, this shows that at
lower model orders the data-driven basis sets (ICP and ICA) dominate the
generic bisquare basis set, where they explain approximately 15–20%
more variance in the data.

Fig. 5 also shows that: (i) using the whole dataset (Train
proportion ¼ 1.0), the full Bayes and Empirical Bayes methods explain
the DATSPECT data approximately equally accurately; (ii) as expected,
the predictive performance of all methods drops as a smaller proportion
of spatial data points are available to train the model (Train propor-
tion < 1.0); (iii) for the ICP basis set, in which basis functions have high
spatial correlation, the Empirical Bayesian approach overfits relative to
the full Bayesian approach. To see this, observe that the out of sample
explained variance decreases more rapidly under the empirical Bayes
approach (Fig. 5A) relative to the full Bayes approach (Fig. 5B) as the
proportion of training data decreases.

For completeness and to ensure that the choice of 50 basis functions
was not biased toward the ICP basis set, we repeated the analysis using
the entire set of basis functions (Supplementary Fig. 1). This lead to
identical conclusions except that the degree of overfitting observed when
combining the ICP basis set with the Empirical Bayesian approach was
considerably more severe.

3.3. Interpretation of model coefficients

An important benefit of this approach is to provide a low-dimensional
representation of the data which can be readily interpreted with regard to
underlying brain networks. To illustrate, we show the ARD coefficients
from the ICP model in Fig. 6. In this case, the model produced a relatively
sparse set of basis functions relevant for predicting striatal dopamine
function. For visualization purposes, we show these by deriving a ‘rele-
vance score’ from the Empirical Bayesian estimates (Fig. 6A), where we
divide the absolute value of αm for each basis function with respect to the



Fig. 5. Total variance explained by the Empirical Bayes approach (A) and the Full Bayesian approach (B) for models using only the top 50 basis functions.

Fig. 6. (A) Normalized relevance of the M weights using Empirical Bayes (B) Posterior variances of the weights using Full Bayes. Each weight correspond to a basis function obtained from
instantaneous connectivity parcellation into d ¼ {2,…,30} levels. These different levels of parcellation are denoted by bars along the x-axis.
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maximum (αMAX
m ). These largely correspond with the posterior variance

derived from a full Bayesian model having a diagonal covariance matrix
(Fig. 6B). This shows that there were relatively few basis function with
high relevance (e.g., m ¼ 1, 5, 65, and 434). Importantly, the top ranked
basis functions had also high structure coefficients (Supplementary
Fig. 2), and were highly consistent across cross-validation splits (r > 0.9)
which confirms the relevance of these variables for the model and pro-
vides strong evidence against the possibility of these high coefficients
being driven by suppressor effects.

Fig. 7 illustrates that the top-ranked basis functions largely mapped
different regions of the striatum and with different spatial length-scales
(i.e. smoothness). For example, the basis functions 65 and 434 were
spatially localised covering major regions of the caudate and putamen,
respectively. Hence, the combination of these basis functions capture
different spatial features and varying ranges of spatial correlation,
respectively. Finally, note that there were relevant basis functions across
multiple scales of parcellation and that not all of the top ranked basis
functions were bilaterally expressed.

3.4. Discrimination of parkinsonian disorders

Finally, we compare the predictive capability of the different basis
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sets for diagnostic classification (PD vs HC), for differential diagnosis (PD
vs PSP) and for separating subtypes of PSP (RS vs PAGF).

The AUROC for these classifiers using is shown in Table 2. These
results show that – although not necessarily optimal for all comparisons –
the ICP basis set produced good performance in all cases. In more detail,
the discrimination between PD and healthy controls is an easy classifi-
cation problem on the basis of DATSCAN images; all methods performed
approximately equally well and at ceiling levels. The discrimination be-
tween PD and PSP is known to be very challenging using DATSCAN and
this was reflected in our results. We obtained a moderate classification
performance across basis sets where the voxel-based approach produced
the highest accuracy, the ICA basis set performed relatively poorly and
the other approaches were intermediate. For the classifiers trained to
differentiate PSP subtypes (RS vs PAGF), the voxel-, OI- and ICA based
approaches performed poorly while the ICP basis set performed well,
with the other approaches were intermediate. This suggests that the
benefit of spatial methods is dependent on the classification problem and
the nature of the underlying pattern. Some classification tasks can be
solved by non-spatial methods whereas other classification tasks benefit
from methods that can capture subtle spatial differences. For example,
voxel-based classifiers can work well if the signal is distributed across the
whole region of interest (e.g. PD vs HC) whereas more subtle distinctions



Fig. 7. A selection of the top ranked basis function with coordinates given in MNI space.
Notation: basis function number (level).

Table 2
Area under curve of classifiers trained to discriminate parkinsonian disorders.

Basis set PD vs HC PD vs PSP RS vs PAGF Mean

ICP 0.99 0.78 0.88 0.88
ICA 0.93 0.65 0.56 0.71
Bisquare 0.99 0.76 0.75 0.83
Harvard-Oxford 0.99 0.79 0.76 0.83
Oxford-Imanova 0.99 0.82 0.57 0.79
Raw voxels 1.00 0.85 0.42 0.76
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may be better approached by a more focused approach where one or
more basis functions capture the salient differences (e.g. RS vs PAGF).

As noted, one of the benefits of using brain parcellations to build basis
sets is the interpretability of the discriminative features. We illustrate in
Fig. 8 two of the top-ranked discriminative ICP basis functions for each
comparison. Overall, these are congruent with the known pathophysi-
ology of these disorders which is important in the development of disease
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biomarkers in machine learning approaches. For example, the basis
functions for distinguishing PD from NC were centered on the putamen
and the ventral striatum whereas for PSP (vs. PD) were instead centered
on the caudate.

4. Discussion

In this work, we presented a new spatial modeling approach for the
analysis of neuroimaging data that entails characterizing spatially
distributed effects as a linear superposition of multiscale functional basis
functions. This framework provides an elegant alternative to classical
voxel-based approaches and provides several advantages including: (i) a
gain in interpretability since the units of analysis have a stronger bio-
logical basis relative to voxels or generic basis functions (van Oort et al.,
2016); (ii) incorporation of multi-resolutional spatial information in the
image, thus capturing not only local dependencies but also long range
interactions; (iii) the ability to integrate information from multiple im-
aging modalities to derive more accurate or parsimonious models and
(iv) a method to automatically identify meaningful subregions/subnet-
works. This leads to several other practical advantages: for
mass-univariate analysis this provides a great reduction of the number of
statistical tests, leading to enhanced statistical power. For multivariate
pattern recognition analyses, this may provide more accurate prediction
of clinical outcomes because the derived basis functions provide a better
match to the underlying neural computation units than voxel-based ap-
proaches or generic basis functions. Finally, our approach provides a
method by which alternative parcellation approaches can be compared
quantitatively. These properties enabled us to demonstrate that the ICP
approach we employ to create basis functions provided more accurate
models of brain function for a given model order than anatomical par-
cellation schemes predominantly used in the field and produced highly
competitive performance in a clinical discrimination task relative to a
range of competing approaches.

An important benefit of our approach is that it provides a full spatial
statistical model for the observed imaging data. This enabled us to
quantitatively compare different basis sets in terms of the accuracy with
which they can predict the observed imaging data. For this, we found that
the functional data-driven basis sets (ICP and ICA) performed better than
structural basis functions, and ICP performed considerably better than
structural basis functions at equivalent model order. Bisquare functions
performed well with a large number of basis functions, but at an equiv-
alent model order nearly always performed worse than the functional
basis sets. Moreover, ICP performed slightly better than ICA across many
model orders (Fig. 4). Taken together, these results allow us to draw the
following conclusions: (i) functional basis functions explain function
better than either structural or generic basis functions, even if the generic
basis functions are capable of modeling multi-scale interactions; (ii)
whilst long-range interactions are probably important (i.e. ICA per-
formed worse than ICP across most model orders), this difference is
probably less important than employing a basis set that is rooted in brain
function. Finally, (iii) the fact that oxygen consumption (BOLD fMRI)
helps to accurately explain dopamine function (DATSCAN) indicates that
by taking advantage of networks that putatively reflect the true under-
lying biology of human brain function, information can be usefully
combined across different imaging modalities. Nevertheless it is possible
that there are aspects of dopamine function that we are not able to
capture using resting fMRI (e.g. that are related to dopamine receptor
distribution but not function as measured by resting fMRI), which may
for example, put an upper bound on the accuracy obtainable in the
classification experiments.

Whilst our approach is flexible and provides benefits both for uni-
variate analysis and multivariate analysis techniques, one important
application is for generating biomarkers for clinical discrimination
problems. We illustrated this by using the coefficients of these spatial
models as biomarkers for diagnostic classification, differential diagnosis
and for discriminating subtypes of parkinsonian disorders. For diagnostic



Fig. 8. Representation of the top two ICP discriminative basis functions for each of the classifications considered in the text. Abbreviations: PD ¼ Parkinson's disease; HC ¼ healthy
controls; PSP ¼ progressive supranuclear palsy; RS ¼ Richardson's syndrome; PAGF ¼ progressive akinesia with gate freezing.
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classification all approaches perform comparably to one another and at
an accuracy that is highly competitive with existing benchmarks in the
field (Bowman et al., 2016). Differential diagnosis and discriminating
subtypes are both very challenging problems and it is therefore salient
that our approach also performed well in those cases. Whilst not the most
accurate in every condition, the ICP basis functions were the approach
that performed best across all discrimination problems. Notably, the
classical voxel based approach performed well in the diagnostic task
where it is reasonable to expect that discriminating information is
diffusely distributed across the whole striatum but performed very poorly
for discriminating subtypes of parkinsonian disorders, where the
discriminating information is probably restricted to select areas of the
striatum. This suggests that for the more subtle distinctions it is more
important to consider functional anatomy in developing biomarkers and
reinforces the value of using functionally defined basis functions that
map with biology for discrimination problems. Our results also provide
evidence for a biological basis for the distinction between subtypes of
PCP (i.e. RS vs PAGF), which often difficult on a clinical basis alone. This
complements evidence from clinicopathological studies that have shown
that RS and PAGF have different pathological burden and distribution in
the brain (Williams and Lees, 2009).

We evaluated two different approaches for statistical inference in
these models, and showed that in most cases a Full Bayesian approach is
to be preferred; first, it produces similar performance in cases with small
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numbers of basis functions or when the basis functions are uncorrelated
(e.g. the bisquare basis functions). In cases with high numbers of basis
functions and strong correlations between basis functions, the Full
Bayesian approach is more robust to overfitting than the competing
Empirical Bayes approach. Second, and unlike many problems where
MCMC methods are applied, it can be computed at a modest computa-
tional expense that is in many problem settings lower than what is
required for the competing approaches. Finally, the full Bayes approach
quantifies the uncertainty across all model parameters and propagates
that uncertainty through to the predictions. This is important for appli-
cation where predictive uncertainty is important. For example, in our
previous work, predictive uncertainty is used to quantify variation across
cohorts of participants (Marquand et al., 2016).

In this work we employ soft parcellations to construct a neural basis
set, which provides several advantages over the common approach of
hard partitioning the brain using clustering techniques. For example, soft
parcellations mitigate the risk of mixing signals from different brain re-
gions if the definition of the spatial parcels is inaccurate. They also allow
one spatial unit to be involved in different networks (see e.g. Fig. 1) and
for a more gradual transition in underlying organization. We combine
this with a principled method to select the most informative basis given
the data and the experimental question, and further show in that these
subdivisions can not only more accurately represent brain activity rela-
tive to other parcellation methods but also have a clear correspondence
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with pathophysiological processes. For example, in line with the docu-
mented striatal uptake loss pattern in DATSCAN (Tatsch and Poepperl,
2013), we have seen functional parcellations located in the putamen that
are discriminative for PD (vs. normal controls), and in the caudate for
PSP (vs. PD). The weights associated with these basis functions can be
used to investigate the association with phenotypic variables and may
constitute a new potential avenue for the development of imaging
biomarkers.

We elected to use a multivariate discrimination task to illustrate the
value of our method but our approach is also beneficial for mass uni-
variate analysis (which will be the topic of a follow-up report). For mass-
univariate analysis, the reduction in the number of parameters is sub-
stantial with respect to voxel-based univariate approaches. For example,
we were able to accurately model (R2 > 90%) the striatum of healthy
controls with only M ¼ 50 basis functions (M ≪ V, where V ¼ 4622). An
advantage of this reduction is a substantially lower multiple comparisons
penalty and therefore a gain in statistical power. The number of basis
functions and therefore the multiple comparison correction for univari-
ate analyses will depend on the number of subdivisions conducted with
ICP. For our example applications we subdivided the striatum into up to
30 parts, but this value can be different based on prior hypothesis or
knowledge about the level of granularity of certain region or network.
Van Oort et al. (2016) propose to use split-half reproducibility to learn
about the optimal granularity of the parcellation. In any case, the number
of subdivisions will always be much lower than the number of voxels so
the gain in statistical power will always be substantial. This enables the
detection of effects with smaller sample sizes. Also, in contrast to
voxel-based approaches, the number of parameters and consequently, the
multiple comparison penalty does not increase with spatial resolution.
Indeed, brain images at higher spatial resolutions may yield spatially
richer basis functions which may lead to more accurate predictions. In
this application, the ICP basis set we chose was optimized for prediction,
but for mass-univariate analysis it is probably advantageous to choose a
basis set with lower correlation between basis functions. For this, a hi-
erarchical approach is probably preferred, which is easily performed
using the ICP method (van Oort et al., 2016).

In addition to being highly accurate, our method is computationally
efficient and highly scalable relative to other spatial statistical ap-
proaches for neuroimaging data (Bowman et al., 2008; Hyun et al.,
2014; Zhu et al., 2014; Gershman et al., 2011). For example, in TLSA
(Gershman et al., 2011), activations are modeled using radial basis
functions, each of which requires both location and spatial bandwidth
parameters to be set resulting in many hyperparameters that have to be
optimised given the data. In contrast, our set of basis functions have
empirically-defined amplitudes and lengthscales and the optimisation
step refers only to the hyperparameters of the weights and not to the
configuration of the functions per se. Moreover, we expressly designed
our approach to be able to scale to high-resolution whole-brain pre-
diction. This is possible because the computational complexity is
effectively governed by the number of basis functions, not the number
of voxels. In contrast, the computational scaling of most of the other
spatial modelling approaches that we are aware of is dependent on the
number of voxels. Therefore, such methods are generally limited to
regions of interest (e.g. Bowman et al., 2008; Groves et al., 2009; Hyun
et al., 2014). Another important property of our method is the improved
modeling of the spatial information contained in the image. The spatial
correlation between locations, especially between distant voxels, is not
properly modeled by voxel-based approaches. In this sense, the multi-
scale nature of ICP allows to capture both local spatial dependencies
and long-range interactions, which can yield improved sensitivity
relative to voxel-wise approaches (Bowman et al., 2008). This could be
noted in PSP subtype classification example where the classifier using
the raw voxels gave very poor performance, which may indicate that
particular classification task required from richer spatial information to
detect subtle differences. However, we have seen that ICP may not
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always be the best basis set for all the applications (e.g., it was not
optimal for the PD vs. PSP comparison) and indeed we recommend to
evaluate our spatial model with other types of basis set for further ap-
plications. For example, fine-grained parcels obtained from ultra-high
resolution MRI can be used to develop spatial models for structural
MRI (Iglesias et al., 2015; Keuken et al., 2014). Multi-modal parcella-
tion methods (e.g. Glasser et al., 2016) are also good candidates for the
basis set, although such parcellations are often not multi-resolutional,
which is disadvantageous for modeling spatial dependencies across
multiple scales. Another potentially promising approach is may make
use of hierarchically defined whole-brain atlases (e.g. van Oort
et al., 2014).

Finally, our approach is generic and is able to accommodate the most
common types of designs and questions in neuroimaging studies. We
provide a framework that can be easily applied to modeling groups of
related scans so that studies involving case-control, multiple groups or
task fMRI experiments can be easily accommodated. The weights (W)
obtained can be used in further analyses to compare between groups or
investigate quantitative measures with parametric statistics or machine
learning techniques. This provides additional benefits to those noted
above, including the ability to use information encoded by spatial cor-
relation. We demonstrated the value and the flexibility of our approach
by using it to construct classifiers with different basis sets that were able
to accurately distinguish PD patients from controls. This degree of ac-
curacy is comparable to what is obtained using current procedures in the
diagnostic workflow of PD and other neurodegenerative parkinsonisms
(e.g. putamen quantification; Tatsch and Poepperl, 2013) and automated
diagnosis (Bowman et al., 2016), so this example is only intended to
validate our method using a well-established clinical application.
Furthermore, our approach can also be used to provide new insights into
disease mechanisms. For example, it would be interesting to use our
model to investigate the correlation between the degeneration of fine
striatal subnetworks with specific symptoms in parkinsonism, such as
rigidity, gait disorder or dyskinesias.

In summary, in this paper we presented a methodological framework
for spatial modeling in neuroimaging with multiple advantages relative
to existing approaches. In future work we would like to investigate other
neuroimaging modalities and other brain regions. The framework we
present is very generic and can be used to explore traits or symptoms in
any brain disorder from a new perspective and has high potential to lead
to methods that can be translated to real clinical practice.
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The derivatives of the log marginal likelihood with respect to the hyperparameters are given below
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Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.neuroimage.2017.08.009.
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