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Summary

Objective—To compare general and disease-based modeling for fluid resuscitation and 

vasopressor use in intensive care units.

Methods—Retrospective cohort study involving 2944 adult medical and surgical intensive care 

unit (ICU) patients receiving fluid resuscitation. Within this cohort there were two disease-based 

groups, 802 patients with a diagnosis of pneumonia, and 143 patients with a diagnosis of 

pancreatitis. Fluid resuscitation either progressing to subsequent vasopressor administration or not 

was used as the primary outcome variable to compare general and disease-based modeling.

Results—Patients with pancreatitis, pneumonia and the general group all shared three common 

predictive features as core variables, arterial base excess, lactic acid and platelets. Patients with 

pneumonia also had non-invasive systolic blood pressure and white blood cells added to the core 

model, and pancreatitis patients additionally had temperature. Disease-based models had 

significantly higher values of AUC (p < 0.05) than the general group (0.82 ± 0.02 for pneumonia 

and 0.83 ± 0.03 for pancreatitis vs. 0.79 ± 0.02 for general patients).

Conclusions—Disease-based predictive modeling reveals a different set of predictive variables 

compared to general modeling and improved performance. Our findings add support to the 

growing body of evidence advantaging disease specific predictive modeling.
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1. Introduction

A body of literature already exists describing predictive modeling across a range of clinical 

outcomes in intensive care units. To date, much of this modeling has taken the approach of 

focusing on general intensive care unit (ICU) populations and an “average” patient [1]. One 

explanation for this is the tendency for clinical trials to enroll heterogeneous group of 

patients in order to maximize external validity of the findings, however, predictive models 

developed using this approach often perform poorly when applied to specific subsets of 

patients [2]. Another explanation for general population modeling is the lack of data 

supporting the application of these techniques to smaller subsets.

Recent advancements in modern ICUs have facilitated the capture of human signals with 

heightened resolution and an imperative to store them electronically. The burgeoning interest 

in and ability to capture large datasets provides predictive risk modelers with a substrate to 

apply tools and techniques to a study size that is now statistically robust. Where small 

groups of patients clustered together under disease headings previously might struggle for 

statistical robustness, large data sets now seem to be particularly fertile ground for analytics 

of this type to inform clinical guidelines.

Predictive modeling requires input variables and an outcome of interest [3, 4]. In this study, 

the chosen outcome is failed fluid resuscitation requiring subsequent vasopressor therapy. 

Fluid resuscitation therapy is often the first and mainstay treatment for correcting signs and 

symptoms synonymous with intravascular volume depletion. The goal of this therapy is to 

maximize preload and increase cardiac output. Effective intravascular pressure is the key for 

efficient perfusion at the cell level and thus treatment should ideally be started as soon as 

possible and subsequent therapy titrated against response [5–7]. Subsequent therapy for 

failed fluid resuscitation and blood pressure support often requires vasopressors. Fluid 

resuscitation and vasopressor administration are therefore common activities in ICUs and 

their management is important.

In this paper we compare fluid resuscitation and vasopressor administration predictive 

models for two disease-based conditions, pneumonia and pancreatitis, and compare these 

models to that for a general ICU population. We hypothesize that ICU patients with 

pneumonia and pancreatitis not only will have different models compared to general ICU 

patients, and that these models will have better performances in regards to prediction of non-

response to fluid resuscitation.

2. Materials and Methods

2.1 Study Design and Population

This retrospective cohort study used data from the Multi-parameter Intelligent Monitoring 

for Intensive Care (MIMIC II) database [8]. This is a large database of ICU patients 

admitted to the Beth Israel Deaconess Medical Center (BIDMC), collected from 2001 to 

2008, and that has been de-identified by removal of all Protected Health Information. The 

MIMIC II database currently contains more than 25,000 patients and includes high 

frequency sampled data of bedside monitors, clinical data and demographic data. BIDMC is 
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a 621-bed teaching hospital with 28 medical, 25 surgical (including neurosurgical), 16 

cardiothoracic surgical and 8 cardiology ICU beds.

The criteria for patients inclusion included: i) only medical and surgical ICU patients; ii) 

>15 yrs of age; iii) patients containing at least one measurement for all twenty-five variables 

from ► Table 2; iv) in the case of multiple ICU admissions, only the first stay was 

considered to exclude later developed complications; v) patients having at some point during 

the ICU stay, fluid resuscitation via normal saline or lactated Ringer’s solution at a 250 mL/

hour rate, for more than one hour. The criteria for the outcome variable was the use of a 

vasopressor for more than two hours following initiation of the above-mentioned fluid 

resuscitation. Thus, we looked for patients who required additional fluid resuscitation in the 

ICU and predicted among these patients, which ones would respond and which ones would 

proceed to require vasopressors. A flowchart of the inclusion procedure is depicted in ► 
Figure 1.

We addressed elements of data preprocessing as follows: 1) missing data was imputed 

consistent with the accepted last value carried forward method [9, 10]; 2) outliers were 

addressed using the inter-quartile range method [9]; 3) normalization of the data used the 

min-max procedure; and 4) data time points were rounded to closest heart rate samples using 

a gridding approach [12]. As previously mentioned, the primary outcome variable was 

vasopressor administration, and for modeling purposes this outcome was defined as binary: 

one if vasopressors were administered and zero if vasopressors were not administered (► 
Figure 2). For both outcomes, fluids were a prerequisite representing some attempt at fluid 

resuscitation, and we critiqued for normal saline and lactated Ringer’s solutions as the most 

commonly used infusions, and the infusions of choice for hypovolemic shock as 

recommended by the College of Surgeons [13, 14]. The list of vasopressors applicable to the 

data extraction and recommended by expert advisors included: phenylephrine, 

norepinephrine, dopamine, vasopressin, and epinephrine.

The variables included represent time series, where the number of samples depends on the 

amount of time a patient received fluids. An example of the first scenario of ► Figure 2a 

would be a patient starting receiving fluids at 1 am and requiring vasopressors at 10 am. 

After 6 hours receiving vasopressors (4 pm) the patient no longer needs them and starts 

receiving fluids until 8 pm. From 8 pm on, the patient no longer needs fluids or 

vasopressors. For this patient, a total of 19 samples (8 pm – 1 am) for each of the variables 

from ► Table 1 are passed to the model. The outcome variable is also formed by 19 samples 

where from 1 am to 8 am (2 hour prediction window) they would take the value 0, from 8 

am to 2 pm the value 1, and from 2 pm until the 8 pm again the value 0. Bringing together 

all samples for each variable and for all patients forms the complete dataset. This complete 

dataset is then randomly divided into two subsets: one for feature selection and another for 

model validation.

Our modeling was undertaken on two disease-based groups of patients, one with an ICD-9 

diagnosis of pneumoniaa and another with an ICD-9 diagnosis of pancreatitisb. These two 

models were then compared to all subjects representing the general ICU population. The 

choice of pancreatitis and pneumonia reflected both good patient numbers, but also the 
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belief that these two disorders are anatomically and pathologically distinct which would 

improve modeling performance and clinical applicability. The choice of ICD-9 codes for 

patient selection was based on the same approach used by Angus et al. [15] and Martin et al. 

[16]. However, as argued elsewhere [17], ICD-9 administrative data may not accurately 

reflect the true prevalence of comorbidities in hospitalized patients, so we also employed 

natural language processing (NLP) to supplement the identification of patient cohorts. This 

NLP was performed using a very simple word segmentation of the physicians and nurses’ 

notes, and identification of a set of keywords. Keywords for pneumomia included: 

“pneumonia”, “pneum” and “pna”; keywords for pancreatitis included: “pancreatitis”, “sap” 

and “pctt”.

For inputs to the model we utilized the twenty-five variables shown in ► Table 2. These 

were determined with expert advice and adhering to the following criteria: i) routinely 

acquired ICU variables (e.g., bedside monitors and laboratory tests); ii) pneumonia severity 

index and Ranson’s criteria for acute pancreatitis; iii) the variables selected as inputs were 

limited by patients with enough measurements; and iv) all chosen inputs should be 

independent with minimal correlation.

2.2 Model Definitions and Construction

Fuzzy modeling (FM) was selected as a modern approach with rules-based outcomes 

particularly suited to clinical scenarios. Fuzzy modeling is a tool that captures subjective 

clinical decision making in a non-linear algorithm that is then suitable for computer 

implementation [18]. This approach is appealing as it provides not only a transparent, non-

crisp model, but also a linguistic interpretation in the form of if-then rules, which can 

potentially be embedded into clinical decision support processes [19, 20]. In this work, first-

order Takagi-Sugeno (TS) fuzzy models [19] were used.

In this work, first-order Takagi-Sugeno (TS) fuzzy inference systems [19] were used, which 

are described by rules of the type:

Ri: If x1 is Ai1 and … and xM is AiM then y = ax + b, i = 1, 2,…, K where, K is the number 

of rules, x is the input vector, M is the number of inputs (features), AiM is the antecedent 

fuzzy set and y is the consequent function (output) for rule Ri. The overall output is 

determined through the weighted average of the individual rule outputs. Given that this is a 

classification problem, and that we have a linear consequent, a threshold t is required to turn 

the continuous output y ∈ [0, 1] into the binary output y ∈ {0, 1}. In this way, if y < t then y 

= 0, and if y ≥ t then y = 1. This threshold t was determined during the feature selection 

stage (by maximizing the value of AUC) and used during the model validation stage. The 

number of rules K, the antecedent fuzzy sets AiM and the consequent parameters are 

determined using fuzzy clustering in the product space of the input and output variables 

[20]. These models were developed based on the Matlab Fuzzy Logic Toolbox.

aPneumonia ICD-9 codes: 003.22; 020.3; 020.4; 020.5; 021.2; 022.1; 031.0; 039.1; 052.1; 055.1; 073.0; 083.0; 112.4; 114.0; 114.4; 
114.5; 115.05; 115.15; 115.95; 130.4; 136.3; 480.0; 480.1; 480.2; 480.3; 480.8; 480.9; 481; 482.0; 482.1; 482.2; 482.3; 482.30; 
482.31; 482.32; 482.39; 482.4; 482.40; 482.41; 482.42; 482.49; 482.8; 482.81; 482.82; 482.83; 482.84; 482.89; 482.9; 483; 483.0; 
483.1; 483.8; 484.1; 484.3; 484.5; 484.6; 484.7; 484.8; 485; 486; 513.0; 517.1
bPancreatitis ICD-9 codes: 577.0; 577.1; 577.2; 577.8; 577.9; 579.4
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2.2.1 Feature Selection—Feature selection (FS), from the clinical point of view, is a 

process that reveals new predictive variables that had not been previously considered 

relevant to a given medical condition. From the engineering point of view, it is a crucial step 

in order to reduce model complexity and remove inputs that are redundant or do not improve 

the classification performance [20]. In Mendonça et al., a detailed description of the 

sequential forward selection search approach used here is reported [21]. Briefly, a model is 

built for each of the features in consideration and evaluated using a certain performance 

criterion. The feature that returns the best value of the performance criterion is the one 

selected. Then, other feature candidates are added to the previous best model, one at a time, 

and evaluated. Again, the combination of features that maximizes the performance criterion 

is selected. This procedure is repeated until the value of the performance criterion stops 

increasing. In the end, all the relevant features for the considered process should be obtained. 

Discrimination based on the area under the receiver-operating curve (AUC) [23, 24], was 

used as the performance criterion in our study. The main advantage of this technique relates 

to its simplicity, graphical representation, and transparent interpretation of the results, while 

the main disadvantage relates to fact that it is greedy and thus susceptible to finding local 

maxima [22].

2.2.2 Statistical Analysis—In the present work, we used the t-test as the test statistic to 

evaluate the hypothesis that the different between the means is significant. This test was 

applied to the means of the AUC, Specificity and Sensitivity, comparing each group of 

patients’ models in a pair-wise fashion.

2.2.3 Model Construction—To train and test the models, the dataset was initially 

randomly divided into two subsets of the same size: one for feature selection and the other 

for model assessment (MA). In the FS data subset, a combination of sequential forward 

selection with fuzzy modeling or logistic regression was performed to find the subset of 

features that produces the best AUC. The best model was selected after ten rounds of 

training and testing upon the FS data subset, using respectively 60% and 40% of the data. 

This 60/40 selection was random for each of the rounds.

In order to assess the validity and robustness of the discovered model, a 10-fold cross-

validation was performed in the MA data subset [25]. Values of AUC, sensitivity, specificity 

and goodness of fit are reported for this validation step.

To further test our hypothesis and to assess the validation of the models, we have tested two 

additional scenarios. The first consisted of applying the general model generated using the 

all patient’s FS dataset, on the pneumonia and pancreatitis MA datasets, respectively. This 

scenario tests the performance of the models when similar patients populations are used. The 

second scenario tests the performance of the models when similar features are used. We have 

created two additional models on the MA dataset of the general population using the 

variables selected for the pneumonia and pancreatitis groups, and compare them with the 

specific models developed on their respective populations’ MA datasets.
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3. Results

From the inclusion criteria, exclusion criteria, and preprocessing, a total of 2944 patients 

were selected. From these 2944 patients, 802 had an ICD9 diagnosis of pneumonia and 143 

an ICD9 diagnosis of pancreatitis. Clinical and demographic characteristics of these groups 

are shown in ► Table 1. No significant differences were found between the pneumonia and 

pancreatitis subgroups with respect to hospital length of stay, ICU length of stay, APACHE 

III, or SOFA scores. Age (p < 0.05) was significantly different between the two subgroups.

Fluid and vasopressor administration is also shown in ► Table 1. Pancreatitis patients 

received both a greater overall volume of fluids and received vasopressors for longer periods 

than did patients with pneumonia.

The effect size and p-values obtained from the univariate logistic regression analysis of the 

initial set of variables is shown in ► Table 2. Correlation analysis between the variables 

showed three significantly correlated groups (p < 0.05). Firstly, hemoglobin, red blood cell 

count, and hematocrit; and secondly, mean non-invasive blood pressure and systolic non-

invasive blood pressure, and thirdly arterial pH and arterial base excess. To strengthen the 

analysis we removed hemoglobin, red blood cell, mean non-invasive blood pressure, and 

arterial pH.

With regards to the number of rules generated, 4 rules (deriving from 4 clusters) were 

obtained for the general patients group while 3 rules were obtained for the pneumonia and 

pancreatitis groups.

► Figure 3 shows the cumulative stepwise performance contribution of each of the variables 

to the relevant models. From this figure, it is can be seen that only a few of the first variables 

significantly (p < 0.05) increase the value of AUC. In other words, the first variables selected 

by the forward selection approach have a significantly higher contribution to the models than 

the remaining variables. Arterial base excess, lactic acid, and platelets are common to all of 

the groups. Pneumonia patients add non-invasive systolic blood pressure and white blood 

cells, and pancreatitis patients add temperature to the models.

Performance metrics in ► Table 4 show: i) satisfactory discrimination for all three groups of 

patients; and ii) significantly different (p < 0.05) values of AUC, specificity and sensitivity 

between different groups of patients. Pneumonia and pancreatitis patients returned an AUC 

of 0.82 ± 0.02 and 0.83 ± 0.03, while general patients re turned an AUC of 0.79 ± 0.02. 

Respective AUC curves are presented in ► Figure 4.

Given the risk of comparing mixed scenarios, i.e. combining comparison using different 

features with different patient populations, ► Table 5 and ► Table 6 present respectively 

the results corresponding to the performance of the models when similar patients 

populations are used, and when similar features are used.

From ► Table 5 follows that general models perform significantly worse (p < 0.05) when 

applied to the pneumonia and pancreatitis MA datasets, as compared to using the best-fitted 

pneumonia and pancreatitis models in the same datasets. From Table 6 follows that using 

Fialho et al. Page 6

Methods Inf Med. Author manuscript; available in PMC 2017 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pneumonia and pancreatitis best features in the general patient population dataset leads to 

significantly inferior (p < 0.05) results than using this features in the respective patients’ 

populations.

To crosscheck our findings, we compared the models with a more traditional modeling 

approach using logistic regression. We observed the same phenomenon: namely, a core set 

of variables common to all three groups, and different variables added to the pneumonia and 

pancreatitis sub-groups. We note different variable selection between the fuzzy logic and 

logistic regression models, and this is explainable with a more detailed description of the 

modeling algorithms. However, this difference does not detract from the key findings and is 

not a key focus of this article. Similarly, during the feature selection step we also compared 

the performance of sequential forward selection with backward elimination. Backward 

elimination selected in general more features, however, the performance of the models did 

not significantly change.

4. Discussion

Our interest in this study was primarily to explore the consequences for predictive risk 

modeling of a group of patients aggregated together as general ICU patients, as compared to 

a more granular assessment of disease-based subsets of ICU patients. Our key finding is that 

variable selection is significantly different between general patient groups and disease-based 

groups. Furthermore, not only are the variables different, but the modeling performance is 

also improved in the disease-based groups. Pneumonia and pancreatitis patients returned, 

respectively, an AUC of 0.82 ± 0.02 and 0.83 ± 0.03, while general patients returned an 

AUC of 0.79 ± 0.02. The validation of these results was confirmed by the testing of two 

additional scenarios. The first tested the performance of the models when similar patients 

populations are used, and the second tested performance of the models when similar features 

are used. There are several implications from these findings.

Firstly, the trend towards large datasets and advanced analytics is opening new frontiers of 

knowledge discovery and creating opportunities for challenging existing models and 

paradigms. MIMIC II is one of the most complete ICU datasets. However, only recently we 

have been able to consider subsets of the data for specific conditions, such as we have 

studied here, with sample sizes that are robust enough to support clinical guidelines and new 

thinking.

Secondly, our purpose was not to make clinicopathological correlations between individual 

variables and the underlying pathology, but rather to draw attention to the utility inherent in 

our study design which, utilizes common and easily acquired ICU data such as temperature 

and heart rate. These features are likely to increase usability and have meaningful 

application in low resource environments.

Thirdly, these results could have implications for a number of generalized predictive index 

scores that are currently utilized in ICUs. Scoring tools such as SOFA and APACHE are 

generalized predictive instruments with more of a focus on physiological parameters that 

may indirectly imply disease. For example, impaired renal function is an input into some of 
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these generalized formulae and may indirectly imply a chronic renal disease such as 

glomerulonephritis amongst all other renal pathology. In contrast, patient specific disease-

based modeling can specifically use glomerulonephritis as an inclusion criteria, and bring 

with it into the model other associated and attendant variables that chronic renal disease may 

not. Current generalized index scores undoubtedly have a place as they are predicated on a 

few quick, easily-acquired assessments, as compared to disease-based predictive risk 

modeling which is more algorithmically intensive and time consuming. It is possible that 

generalized and focused predictive modeling can together serve valuable goals. Index scores 

may continue to provide excellent quick assessments, but when critical management 

decisions are being made at the edge of probabilities, disease-based models may more 

accurately inform decision-making.

There are some limitations to the analysis and interpretation of these results. First, several 

variables often referred to in the literature as being related to shock and vascular perfusion 

were not taken into account due to their inconsistent capture in the database. These variables 

include invasive arterial blood pressure and central venous pressure. However this is 

mitigated with the inclusion of other significant blood pressure measurements including 

systolic blood pressure and mean blood pressure. Second, despite the goal of maximizing 

sensitivity while maintaining specificity, a few false negatives were still present. This can be 

further explained as the non-detection of patients not responsive to fluid resuscitation (and 

thus more likely to require vasopressor therapy within 2 hours (false negatives)), and this 

may occur due to: i) patients simply deteriorated too fast (within the 2-hour window) to be 

caught by the algorithms; ii) additional information was available to the clinician but not to 

the algorithms, and the clinicians intervened due to patients’ conditions other than 

hemodynamic instability. Expert opinion and review of the data suggests the numbers of 

cases in this category is low. Finally, our findings findings of improved accuracy with patient 

subset-specific models were demonstrated in only two clinical conditions from a single 

center, and these findings may need to be validated in other scenarios using data from 

multiple ICUs.

5. Conclusions

Improved technology means that larger amounts of data can be captured daily at the point of 

care, turning specific groups of patients representative enough for researchers to explore 

them. These patient-specific data, together with modern predictive modeling tools, allow 

challenging existing generalized guidelines and models of care.

In this work we bring together both the tools and the clinical data environment to 

demonstrate the power of disease-based modeling compared to general modeling – the gold 

standard in clinical practice. We recommend further work be done to revisit some of the 

existing ICU risk models and that disease-based modeling across a range of pathologies be 

explored.
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Figure 1. 
Patient selection flowchart
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Figure 2. 
Two case scenarios: a) patient is non-responsive to fluid resuscitation (>250 mL/hour) and 

vasopressor therapy is required in the next two hours; b) patient is responsive to fluid 

resuscitation (>250 mL/hour) and does not require vasopressors in the next two hours (fluid 

resuscitation is maintained at >250 ml/hour, replaced by fluid management protocol at <250 

mL/hour). t0 − initial time of analysis; t − current time; t + 2 h – prediction time.
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Figure 3. 
Evolution of area under receiver-operating curve (AUC) along with the stepwise inclusion of 

each of the variables pertaining to each best fitted fuzzy modeling (FM) for: a) All patients, 

b) Pneumonia and c) Pancreatitis patients.
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Figure 4. 
Receiver-operating curves (ROC) of the most predictive fuzzy model for all patients, 

pneumonia patients and pancreatitis patients
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Table 1

Baseline characteristics of the study populations of patients. Values were measured as median (interquartile 

range) or % (n/total). ICU – intensive care unit; LOS – length of stay; SOFA – Sequential Organ Failure 

Assessment.

All Pneumonia Pancreatitis p-value

No. of patients, n 2944 802 143 n/a

Age, yr 67 (12) 68 (12) 59 (12.3) <0.01

Male, % 56.4 55.8 55.9 n/a

Mortality, % 46.1 58.7 50.3 n/a

Hospital LOS, days 13 (7.0) 20 (10.5) 19 (10.3) NS

ICU LOS, days 6.0 (4.9) 12.0 (4.4) 11.5 (3.9) NS

Mean APACHE III* 62(12) 63 (13) 63 (12) NS

Mean SOFA 9 (6.5) 9 (6) 10 (7) NS

Time between admission and initiation of fluid resuscitation, hours 6.5 (28.3) 15(69) 8.0 (45.1) NS

Total time receiving fluid resuscitation, hours 4.8 (7) 5 (7) 6.6 (10.8) < 0.05

Total volume of fluids received, ml 3000 (4600) 3000 (5000) 4500 (5500) <0.01

Rate of fluids administration, mL/hour 667 (510) 576 (460) 638 (606) NS

Patients on vasopressors, % 57.6 40.9 49.6 n/a

Time between initiation of fluid resuscitation and initiation of vasopressors, hours 4 (12.6) 7 (16) 4 (11) NS

Total time receiving vasopressors, hours 1.8 (8) 5 (12) 7 (14) < 0.05

n/a – non applicable

NS – not statistically significant (p>0.05)

*
due to the lack of data neurologic abnormalities (0 – 48 points) and chronic health evaluation (0 – 23 points) were not added to the score

Methods Inf Med. Author manuscript; available in PMC 2017 November 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fialho et al. Page 16

Ta
b

le
 2

L
is

t o
f 

va
ri

ab
le

s 
co

ns
id

er
ed

 a
nd

 r
es

pe
ct

iv
e 

un
iv

ar
ia

te
 r

eg
re

ss
io

n 
an

al
ys

is
. A

ll 
la

b-
re

la
te

d 
va

ri
ab

le
s 

re
fe

r 
to

 s
er

um
 m

ea
su

re
m

en
ts

. O
R

 –
 o

dd
s 

ra
tio

; C
I 

– 

co
nf

id
en

ce
 in

te
rv

al
s.

V
ar

ia
bl

es
 (

un
it

s)
A

ll 
pa

ti
en

ts
P

ne
um

on
ia

P
an

cr
ea

ti
ti

s

O
dd

s 
R

at
io

(9
5%

 C
I)

p-
va

lu
e

O
R

(9
5%

 C
I)

p-
va

lu
e

O
R

(9
5%

 C
I)

p-
va

lu
e

H
ea

rt
 R

at
e 

(b
ea

ts
/m

in
)

1.
06

(1
.0

2 
– 

1.
10

)
0.

00
56

0.
94

(0
.8

8 
– 

1.
01

)
0.

16
0.

69
(0

.5
9 

– 
0.

81
)

<
 0

.0
01

Te
m

pe
ra

tu
re

 (
C

)
0.

86
(0

.8
2 

– 
0.

89
)

<
 0

.0
01

0.
77

(0
.7

2 
– 

0.
83

)
<

 0
.0

01
0.

43
(0

.3
7 

– 
0.

51
)

<
 0

.0
01

Sp
O

2 
(%

)
0.

89
(0

.8
6 

– 
0.

93
)

<
 0

.0
01

0.
86

(0
.8

1 
– 

0.
93

)
<

 0
.0

01
1.

02
(0

.8
7 

– 
1.

21
)

0.
77

0

R
es

pi
ra

to
ry

 R
at

e 
(b

re
at

hs
/m

in
)

0.
92

(0
.8

8 
– 

0.
96

)
<

 0
.0

01
1.

12
(1

.0
4 

– 
1.

20
)

0.
00

27
0.

97
(0

.8
2 

– 
1.

13
)

0.
66

2

G
C

S 
To

ta
l

0.
62

(0
.5

9 
– 

0.
65

)
<

 0
.0

01
0.

70
(0

.6
5 

– 
0.

76
)

<
 0

.0
01

0.
57

(0
.4

8 
– 

0.
67

)
<

 0
.0

01

H
em

at
oc

ri
t (

%
)

1.
31

(1
.2

5 
– 

1.
37

)
<

 0
.0

01
1.

28
(1

.1
9 

– 
1.

37
)

<
 0

.0
01

1.
60

(1
.3

6 
– 

1.
89

)
<

 0
.0

01

Pl
at

el
et

s 
(1

03 /
μL

)
0.

56
(0

.5
3 

– 
0.

59
)

<
 0

.0
01

0.
46

(0
.4

2 
– 

0.
50

)
<

 0
.0

01
0.

42
(0

.3
4 

– 
0.

51
)

<
 0

.0
01

W
B

C
 –

 W
hi

te
 B

lo
od

 C
el

ls
 (

10
3 /

μL
)

1.
69

(1
.6

2 
– 

1.
76

)
<

 0
.0

01
1.

62
(1

.5
0 

– 
1.

74
)

<
 0

.0
01

1.
85

(1
.5

5 
– 

2.
19

)
<

 0
.0

01

H
em

og
lo

bi
n 

(g
/L

)
1.

37
(1

.3
2 

– 
1.

42
)

<
 0

.0
01

1.
35

(1
.2

6 
– 

1.
45

)
<

 0
.0

01
1.

93
(1

.6
3 

– 
2.

27
)

<
 0

.0
01

R
B

C
 –

 R
ed

 B
lo

od
 C

el
ls

 (
10

6 /
μL

)
1.

28
(1

.2
3 

– 
1.

33
)

<
 0

.0
01

1.
12

(1
.0

4 
– 

1.
21

)
0.

00
16

1.
72

(1
.4

5 
– 

2.
03

)
<

 0
.0

01

B
U

N
 –

 B
lo

od
 u

re
a 

ni
tr

og
en

 (
m

g/
dL

)
1.

02
(0

.9
8 

– 
1.

06
)

0.
24

3
1.

06
(0

.9
9 

– 
1.

14
)

0.
08

9
0.

73
(0

.6
1 

– 
0.

88
)

0.
00

2

C
re

at
in

in
e 

(m
g/

dL
)

1.
58

(1
.5

2 
– 

1.
63

)
<

 0
.0

01
1.

55
(1

.4
7 

– 
1.

65
)

<
 0

.0
01

1.
36

(1
.1

9 
– 

1.
57

)
<

 0
.0

01

G
lu

co
se

 (
m

g/
dL

)
0.

86
(0

.8
2 

– 
0.

90
)

<
 0

.0
01

1.
05

(0
.9

7 
– 

1.
13

)
0.

22
0.

70
(0

.5
9 

– 
0.

84
)

0.
00

1

Po
ta

ss
iu

m
 (

m
E

q/
L

)
1.

40
(1

.3
5 

– 
1.

46
)

0.
36

1.
01

(0
.9

4 
– 

1.
09

)
0.

67
1.

06
(0

.9
1 

– 
1.

25
)

0.
42

5

C
hl

or
id

e 
(m

E
q/

L
)

0.
98

(0
.9

4 
– 

1.
02

)
<

 0
.0

01
1.

22
(1

.1
3 

– 
1.

31
)

<
 0

.0
01

1.
16

(0
.9

1 
– 

1.
25

)
0.

07

So
di

um
 (

m
E

q/
L

)
0.

52
(0

.5
0 

– 
0.

55
)

<
 0

.0
01

0.
65

(0
.6

0 
– 

0.
70

)
<

 0
.0

01
0.

69
(0

.5
8 

– 
0.

82
)

<
 0

.0
01

Methods Inf Med. Author manuscript; available in PMC 2017 November 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fialho et al. Page 17

V
ar

ia
bl

es
 (

un
it

s)
A

ll 
pa

ti
en

ts
P

ne
um

on
ia

P
an

cr
ea

ti
ti

s

O
dd

s 
R

at
io

(9
5%

 C
I)

p-
va

lu
e

O
R

(9
5%

 C
I)

p-
va

lu
e

O
R

(9
5%

 C
I)

p-
va

lu
e

M
ag

ne
si

um
 (

m
g/

dL
)

1.
15

(0
.9

5 
– 

1.
38

)
0.

00
3

0.
98

(0
.9

1 
– 

1.
06

)
0.

74
1.

31
(1

.1
1 

– 
1.

54
)

0.
00

2

N
B

P 
– 

N
on

-i
nv

as
iv

e 
sy

st
ol

ic
 b

lo
od

 p
re

ss
ur

e 
(m

m
H

g)
0.

39
(0

.3
7 

– 
0.

41
)

<
 0

.0
01

0.
37

(0
.3

3 
– 

0.
40

)
<

 0
.0

01
0.

54
(0

.4
5 

– 
0.

65
)

<
 0

.0
01

N
B

P 
– 

N
on

-i
nv

as
iv

e 
m

ea
n 

bl
oo

d 
pr

es
su

re
 (

m
m

H
g)

0.
47

(0
.4

5 
– 

0.
49

)
<

 0
.0

01
0.

45
(0

.4
1 

– 
0.

49
)

<
 0

.0
01

0.
57

(0
.4

8 
– 

0.
67

)
<

 0
.0

01

A
rt

er
ia

l p
H

0.
54

(0
.5

2 
– 

0.
57

)
<

 0
.0

01
0.

47
(0

.4
4 

– 
0.

50
)

<
 0

.0
01

0.
41

(0
.3

4 
– 

0.
48

)
<

 0
.0

01

A
rt

er
ia

l B
as

e 
E

xc
es

s 
(m

E
q/

L
)

0.
38

(0
.3

6 
– 

0.
40

)
<

 0
.0

01
0.

32
(0

.3
0 

– 
0.

35
)

<
 0

.0
01

0.
49

(0
.3

9 
– 

0.
61

)
<

 0
.0

01

L
ac

tic
 A

ci
d 

(m
g/

dL
)

2.
0

(1
.9

7 
– 

2.
11

)
<

 0
.0

01
2.

18
(2

.0
5 

– 
2.

31
)

<
 0

.0
01

3.
09

(2
.6

9 
– 

3.
58

)
<

 0
.0

01

U
ri

ne
 O

ut
pu

t (
m

L
)

0.
73

(0
.6

9 
– 

0.
76

)
<

 0
.0

01
0.

66
(0

.6
0 

– 
0.

72
)

<
 0

.0
01

1.
25

(1
.0

5 
– 

1.
48

)
0.

01
2

A
ge

 (
yr

)
1.

19
(1

.1
4 

– 
1.

24
)

<
 0

.0
01

1.
09

(1
.0

2 
– 

1.
17

)
0.

01
5

1.
23

(1
.4

0 
– 

1.
25

)
<

 0
.0

01

SO
FA

1.
62

(1
.5

4 
– 

1.
70

)
<

 0
.0

01
1.

52
(1

.4
0 

– 
1.

65
)

<
 0

.0
01

0.
77

(0
.6

7 
– 

0.
90

)
0.

00
7

Methods Inf Med. Author manuscript; available in PMC 2017 November 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fialho et al. Page 18

Table 3

List of variables selected and area under receiver-operating curve (AUC) for the best fitted fuzzy modeling 

(FM), for each patient group, model after the forward selection procedure, using the feature selection (FS) 

subset.

Number of variables selected Variables selected AUC

All Patients 10 Arterial base excess
Lactic Acid
Platelets
Sodium
Non-invasive systolic blood pressure
White blood cells
SOFA
BUN
Creatinine
SpO2

0.83 ± 0.01

Pneumonia 6 Arterial base excess
Platelets
Non-invasive systolic blood pressure
Lactic acid
Sodium
White blood cells

0.85 ± 0.01

Pancreatitis 5 Lactic acid
Platelets
Temperature
Arterial base excess
Sodium

0.89 ± 0.01
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Table 4

Results of the 10-fold cross validation step on the model assessment (MA) subset using, for each patients’ 

subgroup and modeling technique, the respective complete set of most predictive variables derived from the 

feature selection stage.

All Patients AUC 0.79 ± 0.02

Specificity 0.78 ± 0.03

Sensitivity 0.79 ± 0.02

Pneumonia AUC 0.82 ± 0.02

Specificity 0.81 ± 0.03

Sensitivity 0.82 ± 0.04

Pancreatitis AUC 0.83 ± 0.03

Specificity 0.82 ± 0.04

Sensitivity 0.84 ± 0.03
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Table 5

Results of the 10-fold cross validation step on the model assessment (MA) subset of the pneumonia and 

pancreatic patients, using the general model developed in the feature selection stage

Pneumonia patients
(all patients’ features)

Pancreatitis patients
(all patients’ features)

AUC 0.76 ± 0.02 0.78 ± 0.03

Specificity 0.74 ± 0.03 0.77 ± 0.02

Sensitivity 0.76 ± 0.03 0.78 ± 0.04
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Table 6

Results of the 10-fold cross validation step on the model assessment (MA) subset of the general population, 

using pneumonia and pancreatitis most predictive features from the feature selection stage

All patients
(pneumonia features)

All patients
(pancreatitis features)

AUC 0.77 ± 0.03 0.75 ± 0.04

Specificity 0.77 ± 0.02 0.76 ± 0.03

Sensitivity 0.76 ± 0.03 0.73 ± 0.03
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