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Abstract

Increased levels of tumor necrosis factor (TNF) α have been linked to a number of pulmonary 

inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), acute 

lung injury (ALI)/acute respiratory distress syndrome (ARDS), sarcoidosis, and interstitial 

pulmonary fibrosis (IPF). TNFα plays multiple roles in disease pathology by inducing an 

accumulation of inflammatory cells, stimulating the generation of inflammatory mediators, and 

causing oxidative and nitrosative stress, airway hyperresponsiveness and tissue remodeling. TNF-

targeting biologics, therefore, present a potentially highly efficacious treatment option. This 

review summarizes current knowledge on the role of TNFα in pulmonary disease pathologies, 

with a focus on the therapeutic potential of TNFα-targeting agents in treating inflammatory lung 

diseases.

Keywords

TNF; pulmonary disease; lung injury; biologics; inflammation

1. Introduction

Proinflammatory cytokines including tumor necrosis factor (TNF) α, interleukin (IL)-1, IL-6 

and are key modulators of inflammation that initiate and drive many pulmonary pathologies 

and diseases. TNFα is especially important as its actions are numerous and quite diverse. 

These include stimulating leukocyte accumulation, proliferation and differentiation at the 

sites of injury and infection as well as oxidative stress, necrosis, apoptosis, angiogenesis, 

and tissue remodeling (Figure1) (Aggarwal, 2003; Mukhopadhyay et al., 2006). TNFα is 

primarily produced by macrophages and monocytes (Aggarwal et al., 2012; Suzuki et al., 
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2013). It is synthesized as a cell surface bound precursor, known as transmembrane TNFα 
(tmTNFα), a homotrimer of 26 KDa subunits. tmTNFα is cleaved by TNFα-converting 

enzyme (TACE) to a biologically active soluble form (sTNFα), a homotrimer of 17 KDa 

subunits (Horiuchi et al., 2010). TNFα is a hormone-like peptide that can act locally in an 

autocrine or paracrine manner or at distant sites by entering the bloodstream. Many 

inflammatory mediators stimulate the production of TNFα including bacterially-derived 

lipopolysaccharide (LPS), interleukin (IL)-1, IL-2, interferon-γ, granulocyte macrophage 

colony stimulating factor and platelet derived growth factor, as well as TNFα itself (Barbara 

et al., 1996; Semenzato, 1990; Suzuki et al., 2013).

The multiple activities of TNFα are mediated via binding to cell surface receptors. Two 

types of structurally distinct TNF receptors have been identified: Type 1 or TNFRI (a 55-

kDa protein) and Type 2 or TNFRII (a 75 kDa protein) (Aggarwal, 2003). TNFRI contains a 

death domain and is expressed on most cell types. In contrast, TNFRII expression is limited 

mainly to immune cells, endothelial cells, and nerve cells (Aggarwal et al., 2012). Although 

the presence of a TNF receptor is a prerequisite for biological responses, there doesn’t 

appear any relationship between the number of receptors and the magnitude of responses to 

TNFα (Semenzato, 1990). Both TNFRI and TNFRII bind TNFα, as well as lymphotoxin, a 

cytotoxic protein secreted by lymphoid cells, with approximately equal affinity. TNFα 
binding to its receptors initiates a signaling cascade involving mitogen-activated protein 

kinase and c-Jun Nterminal kinase, culminating in activation of the transcription factors, 

nuclear factor-kappa B (NF-κB) and activated protein 1 (AP-1) (Garg and Aggarwal, 2002). 

Activation of these intracellular signals is important in TNFα-mediated apoptosis, 

differentiation and proliferation, and production of proinflammatory proteins including IL-6, 

IL-8, IL-18, chemokines, inducible nitric oxide synthase, cyclooxygenase and lipoxygenase 

enzymes, as well as TNF, itself (Aggarwal et al., 2012). Downregulation of inflammation is 

associated with shedding of the extracellular domain of TNFRs and decreases in TNFα 
activity.

2. Biological activities of TNFα

TNFα is identical to cachectin, a peptide recognized for its ability to induce fever and 

wasting (Aggarwal et al., 2012; Clark, 2007). As a promoter of cachexia, TNFα inhibits the 

synthesis of lipoprotein lipase, an enzyme that cleaves fatty acids from triglycerides (Clark, 

2007). TNFα is also a master regulator of inflammation which is an important component of 

its pathogenic actions. TNFα is a neutrophil and eosinophil chemoattractant, and it 

stimulates the production of macrophage chemokines, such as CCL2. It also promotes 

inflammation by upregulating adhesion molecules important in leukocyte trafficking to 

inflammatory sites, including intracellular leukocyte adhesion molecule, endothelial 

leukocyte adhesion molecule-1, and vascular cell adhesion molecule-1(Kelly et al., 2007). In 

addition, TNFα stimulates the release of eicosanoids and platelet activating factor (Camussi 

et al., 1991; Kelly et al., 2007), which contribute to inflammation by promoting 

vasodilatation, and leukocyte adhesion and migration to sites of injury (Camussi et al., 1991; 

Michel et al., 2014; Semenzato, 1990). Oxidative and nitrosative stress are hallmarks of 

inflammatory diseases (Laskin et al., 2010; Thomas, 2001). TNFα is thought to be a major 

inducer of oxidative and nitrosative stress in inflammatory cells (Blaser et al., 2016; 
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Rahman, 2000). This leads to the activation of redox sensitive transcription factors including 

NF-κB and AP-1 which upregulate inflammatory gene expression. TNFα also depletes 

intracellular glutathione which contributes to its prooxidant effects (Obrador et al., 1998; 

Rahman, 2000).

Increases in TNFα are associated with cytotoxicity, a response mediated by its binding to 

the p55 receptor (TNFRI). This results in recruitment of TNFR-associated death domain and 

Fas associated death domain and caspases, key pro-apoptotic enzymes (Aggarwal et al., 

2012). TNFα can also activate caspases and promote apoptosis by stimulating mitochondria 

to release reactive oxygen species, cytochrome c and Bax, and by activating 

sphingomyelinases (Aggarwal et al., 2012; Garcia-Ruiz et al., 2003). Both soluble and 

transmembrane TNFα are equally effective in inducing apoptosis (Klimp et al., 2002).

TNFα is also a potent mitogen stimulating proliferation of epithelial cells (Lu et al., 1997). 

This is thought to be due in part to activation of the transcription factor AP-1 and 

upregulation of cyclin-D1 (Mukhopadhyay et al., 2009; Rahman, 2000). TNFα-mediated 

proliferation is thought to contribute to epithelial thickening and pulmonary fibrosis (Allen 

and Spiteri, 2002; Sasaki et al., 2000). TNFα also promotes fibrosis by inducing focal 

accumulation of fibroblasts and collagen deposition. It upregulates expression of matrix 

metalloproteinases and transforming growth factor (TGF) β, which are involved in tissue 

remodeling and fibrogenesis (Oikonomou et al., 2006; Piguet, 1990; Sasaki et al., 2000; 

Sullivan et al., 2005).

3. TNFα inhibitors

The recognition that TNFα plays a key role in inflammatory diseases and pathologies has 

led to the development of a number of drugs and biologics that target TNFα. Both chimeric 

mouse/humanized monoclonal anti-TNFα antibody (infliximab) and fully human 

monoclonal anti-TNFα antibodies (golimumab and adalimumab) have been developed; 

these bind to and inactivate membrane bound and soluble TNFα. Etanercept, a soluble 

fusion protein consisting of two p75 TNF receptors attached to an Fc fragment of human 

IgG1, is also available which mainly binds and inactivates sTNFα. Etanercept has better 

avidity and affinity for sTNFα than tmTNFα, and does not induce complement activation. In 

contrast, monoclonal anti-TNFα antibodies (i.e., infliximab, golimumab and adalimumab) 

bind to both monomeric and trimeric soluble and transmembrane forms of TNFα, which can 

activate complement cascade resulting in cytotoxicity (Liang et al., 2013). Despite 

differences in their mode of administration, efficacy and safety profile, these TNFα targeting 

agents have effectively been used to treat patients with TNFα-associated diseases such as 

Crohn’s disease, psoriatic arthritis, rheumatoid arthritis and ankylosing spondylitis with 

minimal toxicity (Hasegawa et al., 2001; Raychaudhuri and Raychaudhuri, 2009).

4. Role of TNFα in pulmonary diseases

Macrophages are the major source of TNFα in the lung; however, epithelial cells, 

eosinophils, and mast cells also have the capacity to release TNFα upon activation (Finotto 

et al., 1994; Gosset et al., 1991; Herfs et al., 2012; Khair et al., 1994). Increased levels of 
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TNFα have been linked to a number of pulmonary inflammatory diseases including asthma, 

chronic obstructive pulmonary disease (COPD), acute lung injury (ALI)/acute respiratory 

distress syndrome (ARDS), sarcoidosis, and interstitial pulmonary fibrosis (IPF). Each of 

these pathologies is characterized by airway injury, inflammation, and bronchial and 

parenchymal remodeling. TNFα contributes to these inflammatory diseases by recruiting 

inflammatory cells, stimulating the generation of inflammatory mediators, increasing 

oxidative and nitrosative stress, and inducing airway hyperresponsiveness (Anticevich et al., 

1995; Choi et al., 2005; Herfs et al., 2012; Hughes et al., 1995; Shah et al., 1995). In this 

review, we describe the role of TNFα in pulmonary disease pathologies, with a focus on the 

therapeutic potential of TNFα-targeting agents in treating pulmonary diseases (Table 1).

Asthma

Asthma is a chronic lung inflammatory disease characterized by persistent eosinophilic 

inflammation, airway hyperreactivity, mucus secretion and reversible airway obstruction. 

Increased levels of TNFα have been described in the airways of patients with severe asthma 

(Bradding et al., 1994; Howarth et al., 2005; Noguchi et al., 2002). Alveolar macrophages 

and peripheral blood monocytes isolated from patients with asthma produce increased 

amounts of TNFα and TACE, and express higher levels of TNFα receptors (Berry et al., 

2006). In patients with allergic asthma, high sputum TNFα levels are observed within 24 h 

of allergen challenge (Keatings et al., 1997); TNFα has also been reported to increase during 

asthma exacerbations or after allergen challenge in patients suffering from asthma (Thomas, 

2001). In healthy individuals, inhalation of recombinant TNFα increases airway 

hyperresponsiveness and sputum neutrophils (Thomas, 2001; Thomas and Heywood, 2002). 

This is thought to be due to a direct effect of TNFα on airway smooth muscle cells and 

release of leukotrienes (Anticevich et al., 1995; Choi et al., 2005). Blood monocytes and 

alveolar macrophages from asthmatic subjects have been reported to produce increased 

amounts of TNFα, as well as IL-8 and granulocyte macrophage colony stimulating factor, 

following LPS stimulation, when compared to normal subjects, suggesting selective 

augmentation of cytokine production (Hallsworth et al., 1994).

Animal studies have confirmed that TNFα plays a role in the pathophysiology of asthma and 

bronchial hyperresponsiveness. Thus, exposure of rats to endotoxin upregulates TNFα 
production by bronchial epithelial cells and alveolar macrophages, a response associated 

with bronchial hyperresponsiveness (Ermert et al., 2003; Kips et al., 1992). Ovalbumin-

induced asthma in rats is also associated with increases in TNFα in serum and lung (Cai et 

al., 2011). Additionally, mice lacking TNFα or TNFR are protected from lung inflammation, 

mucus secretion and late airway hyperresponsiveness in an ovalbumin-induced model of 

asthma, a response mimicked by administration of anti-TNFα antibody to wild type animals 

(Busse et al., 2009; Choi et al., 2005).

The efficacy of antagonizing TNFα in asthma has been evaluated both in animal models and 

in humans. In animal models of asthma, the results of anti-TNFα antibody treatment have 

been encouraging. In ovalbumin challenged rodents infliximab inhibited airway smooth 

muscle hyperreactivity and inflammatory damage (Cai et al., 2011; Deveci et al., 2008). 

Monoclonal anti-TNFα antibody treatment of mice also mitigated house dust induced 
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allergic inflammation, including increases in eosinophils, lymphocytes, macrophages, and 

neutrophils in bronchoalveolar lavage (BAL), and histopathological changes in the lung 

(Kim et al., 2006). Methacholine-induced airway hyperreactivity was also inhibited by 

infliximab. Similarly, in a murine model of acute asthma, adalimumab therapy reduced lung 

inflammation and inflammatory cell infiltration (Catal et al., 2014). Local administration of 

TNFα antisense nucleotide has also been reported to suppress allergic inflammation in mice 

by reducing release of TNFα and other Th2 cytokines, mucus secretion and inflammatory 

cell influx (Luo et al., 2012). Airway mucus cell metaplasia and hyperresponsiveness were 

also inhibited by monoclonal anti-TNF antibody in mice (Busse et al., 2009). In another 

study, etanercept was found to restore the therapeutic efficacy of glucocorticoids (GC) in an 

ovalbumin induced GC-insensitive mouse models of airway hyperinflammation (Dejager et 

al., 2015).

In humans with asthma the efficacy of antagonizing TNFα is less clear. Howarth et al. 

(2005) reported that treatment of patients with severe asthma with etanercept was associated 

with improvement in asthma symptoms, lung function and bronchial hyperresponsiveness. 

Additionally, in patients with corticosteroid refractory asthma, both etanercept and 

infliximab were reported to improve asthma, lung inflammation, lung function and quality of 

life and to reduce the frequency of asthma exacerbations and hospitalizations (Berry et al., 

2006; Morjaria et al., 2008; Taille et al., 2013). Infliximab was also observed to reduce 

asthma exacerbations in patients with moderate asthma (Erin et al., 2006). Conversely, 

etanercept had no effect in patients with moderate-to-severe persistent asthma (Holgate et 

al., 2011). Similarly, in a large multicenter trial of patients with severe asthma, golimumab 

treatment for 12 months failed to demonstrate a favorable risk-benefit profile (Wenzel et al., 

2009). Together these findings suggest that TNFα targeting may particularly be an effective 

strategy to treat severe or refractory asthma.

COPD

COPD is an inflammatory disease characterized by chronic progressive airway obstruction 

due to prominent localization of inflammatory cells including neutrophils, macrophages, T 

cells and mast cells in the airways and thickening of the airway walls (Aoshiba and Nagai, 

2004). In transgenic mice overexpressing TNFα, progressive histopathologic changes are 

observed including chronic inflammation, thickened interstitium, alveolar air space 

enlargement, septal wall destruction and bronchiolitis, consistent with emphysema, and 

increases in collagen; these mice also develop fibrosis (Fujita et al., 2001; Lundblad et al., 

2005; Miyazaki et al., 1995). Alveolar macrophages from cigarette smokers and patients 

with COPD release increased quantities of TNFα (Chung, 2005; Lim et al., 2000). In 

addition, higher levels of TNFα and sTNFRII are observed in BAL from chronic smokers 

and sputum from patients with COPD. Moreover, levels of TNFα and sTNFRII increase 

further during COPD exacerbations (Chung, 2005; Keatings et al., 1996; Woodruff et al., 

2014). Sputum levels of sTNFRII have been reported to be inversely related to forced 

expiratory volume 1 in patients with COPD, and serve as a prognostic biomarker for the risk 

of exacerbation (Takabatake et al., 2000; Vernooy et al., 2002; Woodruff et al., 2014). TNFα 
is thought to contribute to COPD by upregulating expression of adhesion molecules 

resulting in inflammatory cell influx, and increased production of matrix metalloproteinases 
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and tenascin, which promote tissue damage and remodeling (Chung, 2001). TNFα may also 

contribute to cachexia in COPD patients via activation of the transcription factor, NF-κB 

(Wagner, 2008).

Despite evidence suggesting a role of TNFα in COPD disease pathology, TNFα antagonists 

have shown only limited clinical efficacy. In patients with RA and COPD, etanercept, but 

not infliximab, reduced COPD hospitalizations (Suissa et al., 2008). Conversely, in a 

randomized double blind controlled trial, etanercept had no beneficial effect for treatment of 

acute exacerbations of COPD (Aaron et al., 2013). Similarly, in controlled studies, 

infliximab had no beneficial effect in patients with mild, moderate or severe COPD 

(Rennard et al., 2007; van der Vaart et al., 2005). Infliximab has been reported to have minor 

effects on systemic inflammation in cachectic patients with COPD, but local inflammation 

was unaffected (Dentener et al., 2008). The reason for the lack of efficacy of TNF 

antagonists in COPD is unclear. COPD is a heterogeneous inflammatory disease mediated 

by multiple cytokines; it is possible that blocking just one cytokine is not sufficient to 

control the disease pathology (Barnes, 2007; Matera et al., 2010).

ALI/ARDS

ALI and ARDS are life-threatening manifestations of an inflammatory response of the lung 

to various insults, and are characterized by severe hypoxemia, diffuse infiltration in the chest 

X-ray, and a substantial reduction in pulmonary compliance (Matuschak and Lechner, 2010). 

The early inflammatory phase of ALI, characterized by alveolar epithelial and endothelial 

barrier dysfunction, hemorrhage and protein rich pulmonary edema is followed by a 

proliferative phase involving alveolar epithelial cell proliferation, interstitial fibrosis and air 

space obliteration (Tomashefski, 2000; Vasudevan et al., 2004). Later in the pathology, 

fibrosis and emphysema are observed, along with loss of normal lung structure. ARDS 

represents a more severe and late phase of ALI.

Increased levels of TNFα have been detected in BAL, serum and epithelial lining fluid from 

patients with ALI and ARDS (Antonelli et al., 1994; Bauer et al., 2000; Hamacher et al., 

2002; Li et al., 2010; Reper and Heijmans, 2015; Roten et al., 1991; Singh et al., 2015; Suter 

et al., 1992; Vaillant et al., 1996). Higher serum levels of TNFα during early stages of ALI 

are associated with increased mortality at 2–3 months (Makabe et al., 2012). Higher levels 

of TNFα and sTNFRII in BAL are observed in patients in early stage ALI, when compared 

to patients with late phase ARDS (Hamacher et al., 2002). Pulmonary microvascular 

endothelial cells isolated from ARDS patients also express increased levels of TNFRII 

relative to microvascular endothelial cells from control patients (Grau et al., 1996). A 

multicenter study (Parsons et al., 2005) demonstrated that increased baseline plasma 

sTNFRI and sTNFRII levels are strongly associated with mortality and morbidity in ALI 

patients. Moreover, genetic variations in TNF receptor-associated factor 6 gene are linked to 

susceptibility to ALI in patients with sepsis (Song et al., 2012). In vitro, BAL from early 

stage ALI patients induced endothelial cell cytotoxicity, suggesting a role of TNFα in 

endothelial-interstitial barrier dysfunction (Hamacher et al., 2002).

In animal models of ALI or ARDS induced by endotoxin, mechanical ventilation, or 

extracorporeal circulation, TNFα has been implicated in disease pathogenesis (Kao et al., 
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2006; Li et al., 2013; Matuschak and Lechner, 2010). As observed in patients with ALI, 

TNFα accumulates rapidly in large quantities in the lung after injury in animals, and is 

considered an initiating cytokine in early disease pathology (Li et al., 2013). Pretreatment of 

rats with etanercept protected against hyperoxia-induced ALI, which is characterized by 

increases in TNFα and TNFRI, and disruption of alveolar-epithelial barrier functions 

(Guthmann et al., 2009). Monoclonal anti-TNFα antibody alone, or in combination with 

ibuprofen has also been reported to attenuate ALI in pigs (Mullen et al., 1993). Mice lacking 

TNFRI were protected from ventilation or acid-induced ALI, whereas TNFRII knockout 

mice developed pulmonary edema (Maniatis et al., 2012; Wilson et al., 2007). Similarly, 

inhibition of TNFR p55 using a specific antibody mitigated ventilation, or endotoxin plus 

ventilation-induced ALI, while anti-TNFα antibody was ineffective (Bertok et al., 2012). 

Consistent with these findings, clinical trials of monoclonal anti-TNFα antibody in patients 

with sepsis-induced ALI did not improve survival (Abraham et al., 1998; Abraham et al., 

1995), whereas p55 TNFR fusion protein treatment of patients with severe septic shock 

reduced mortality (Abraham et al., 1997). These studies suggest that divergent effects of 

TNFα binding to p55 and p75 receptors. Thus, while ligand activation of the p55 receptor 

promotes lung inflammation, activation of the p75 receptor is protective; this difference may 

underlie the lack of efficacy of non-selective anti-TNFα treatment in ALI.

Pulmonary sarcoidosis

Pulmonary sarcoidosis is a disease of unknown etiology characterized by the presence of 

granulomatous inflammation which can progress to fibrosis (Amin et al., 2014; Crommelin 

et al., 2014). Increased numbers of CD4+ T cells and inflammatory macrophages are present 

in the lungs of sarcoidosis patients which may contribute to disease progression (Allen et al., 

1998; Oswald-Richter et al., 2013). Lung fibrosis in sarcoidosis is an irreversible process 

which, in combination with ongoing inflammation, leads to bronchial distortion, cystic 

changes and loss of normal lung architecture and function (Mornex et al., 1994; Rozy et al., 

2006). TNFα, released by alveolar macrophages, is known to play a role in promoting 

inflammation and Th1 driven granuloma formation and propagation (Bachwich et al., 1986; 

Baughman et al., 1990; Nunes et al., 2005). Increased levels of TNFα are observed in 

exhaled breath condensate and BAL from patients with pulmonary sarcoidosis; moreover, 

macrophages isolated from patients with sarcoidosis express relatively greater levels of 

TACE, and release increased amounts of TNFα (Baughman et al., 1990; Rozy et al., 2006). 

Plasma levels of TNFα are also increased in patients with sarcoidosis (Baydur et al., 2011).

Pentoxifylline, a methylxanthine phosphodiesterase inhibitor known to block TNFα 
production (Fernandes et al., 2008), has been shown to downregulate spontaneous or LPS-

induced TNFα release from alveolar macrophages isolated from sarcoidosis patients (Tong 

et al., 2003). Inhibition of TNFα using infliximab or adalimumab significantly improved 

symptoms in patients with chronic sarcoidosis (Baughman et al., 2006; Callejas-Rubio et al., 

2008; Chebib et al., 2014; Crommelin et al., 2014; Rossman et al., 2006; Russell et al., 

2013; Sweiss et al., 2005); specifically, infliximab improved forced vital capacity (FVC) 

after 24 weeks of therapy (Baughman et al., 2006). Results with humanized anti-TNF 

antibody in sarcoidosis have been mixed. In an open label, single center study in patients 

with refractory sarcoidosis, treatment with adalimumab stabilized or improved FVC, 6-
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minute walk test distance of 50 m or greater, Borg dyspnea score and Physician’s and 

Patient’s Global Assessment (Sweiss et al., 2014). Improvement in overall health status 

compared to baseline was noted after 24 weeks, a response which persisted for at least 52 

weeks. A reduction in disease severity following adalimumab treatment has also been 

described in patients with recalcitrant sarcoidosis or prednisone- and methotrexate-resistant 

sarcoidosis (Callejas-Rubio et al., 2006; Milman et al., 2012). In contrast, in a randomized, 

double-blind, placebo-controlled trial of pulmonary sarcoidosis, golimumab failed to 

improve FVC at week 16 or 28 compared with placebo (Judson et al., 2014). Treatment with 

etanercept was also ineffective in treating pulmonary sarcoidosis (Utz et al., 2003).

Idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis is a chronic, progressive, life threatening lung disease of 

unknown etiology (Gross and Hunninghake, 2001). It is clinically characterized by a 

progressive decline in pulmonary function (Raghu et al., 2008). Increased levels of TNFα 
have been observed experimentally in the lungs of animals with pulmonary fibrosis and 

patients with IPF (Altintas et al., 2016; Lopez-de la Mora et al., 2015; Losa Garcia et al., 

1999; Lozo Vukovac et al., 2014; Pan et al., 1996; Riha et al., 2004; Schupp et al., 2015; 

Vaillant et al., 1996; Zhang et al., 1993; Ziegenhagen et al., 1998). Lung tissue and alveolar 

macrophages isolated from patients with IPF release increased amounts of TNFα and sTNF 

receptors compared to healthy subjects (Cu et al., 2009; Piguet et al., 1993; Zhang et al., 

1993). Additionally, in rodents, targeting TNFα attenuates pulmonary fibrosis suggesting 

role of TNFα in fibrogenesis (Malaviya et al., 2015; Piguet et al., 1993; Piguet and Vesin, 

1994; Sunil et al., 2014; Thrall et al., 1997; Zhang et al., 1993).

Raghu et al. (2008) investigated the efficacy of etanercept in a randomized, prospective, 

double-blind, placebo-controlled, multicenter exploratory trial in patients with clinically 

progressive IPF. Although etanercept had no significant effect on FVC and lung diffusing 

capacity, it did decrease the rate of disease progression. Similarly, in clinical trials, 

pirfenidone, a non-peptide synthetic molecule with TNFα inhibitory activity, slowed disease 

progression, improved survival, and attenuated decreases in FVC in IPF patients (Azuma et 

al., 2011; King et al., 2014; Maher, 2010; Takeda et al., 2014; Taniguchi et al., 2011). Partial 

pressure of arterial oxygen level at rest and exercise capacity, as evaluated by the 6-min walk 

test were also improved following pirfenidone treatment (Hagmeyer et al., 2016; Miyamoto 

et al., 2016). In addition to inhibiting TNFα, pirfenidone reduced lipid peroxidation and 

oxidative stress, and suppressed TGFβ production (Salazar-Montes et al., 2008). The 

improved efficacy of pirfenidone in IPF patients, when compared to etanercept, may be 

attributed to these additional actions.

Experimental models of acute lung injury and fibrosis

Exposure of humans and experimental animals to pulmonary irritants including ozone, 

particulate matter, cigarette smoke, silica, bleomycin, chlorine or mustard vesicants induces 

an acute inflammatory response in the lung characterized by multifocal inflammatory 

lesions, macrophage accumulation, perivascular and peribronchial edema, interstitial 

thickening, cytotoxicity, bronchiectasis and bronchiolization of alveolar walls which in long 

term may lead to alterations in lung function, tissue remodeling and pulmonary fibrosis 

Malaviya et al. Page 8

Pharmacol Ther. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Churg et al., 2009; Fakhrzadeh et al., 2004; Padilla-Carlin et al., 2011; Pendino et al., 1995; 

Razavi et al., 2013; Weinberger et al., 2011; Wollin et al., 2014; Yadav et al., 2010). 

Evidence suggests that macrophage-derived TNFα plays role in these pathogenic responses 

(Fakhrzadeh et al., 2008; Gossart et al., 1996; Lim et al., 2000; Malaviya et al., 2010; 

Michael et al., 2013; Weinberger et al., 2011). Both macrophages and epithelial cells release 

TNFα after exposure to ozone, mustards, silica or particulate matter (Barrett et al., 1999; 

Karacsonyi et al., 2009; Laskin et al., 2003; Michael et al., 2013; Osterlund et al., 2005; 

Ovrevik et al., 2009; Rusznak et al., 1996). Silica-induced TNFα expression has been shown 

to persist for more than 70 days in the lungs of mice (Piguet et al., 1990). In vitro TNF 

induces binding of particulates to rat tracheal explants (Xie et al., 2000). In rodents, this is 

associated with an increase in TNFRI signaling in the lung; TNFRII expression is also 

upregulated (Cho et al., 2007; Ortiz et al., 1999). Consistent with a role of TNFα in lung 

injury and disease pathology are findings that TNFRI−/−, TNFRII−/−, or TNFRI/II−/− mice 

are protected from ozone, silica or vesicant-induced lung injury and fibrosis (Cho et al., 

2001; Laskin et al., 1998; Ortiz et al., 2001; Pryhuber et al., 2003; Sunil et al., 2011). 

Similarly, treatment of rodents with pentoxifylline or anti-TNFα antibody attenuates 

histopathological alterations in the lung, inflammatory cytokine release, alveolar cell 

apoptosis and the development of emphysema following exposure to various pulmonary 

toxicants (Bhalla et al., 2002; Malaviya et al., 2015; Shvedova et al., 1996; Sunil et al., 

2014; Zhang et al., 2011). Damage to the alveolar-epithelial barrier, measured by increases 

in BAL protein and cell content following mustard exposure, along with expression of the 

oxidative stress markers, heme oxygenase-1 and lipocalin-2, is also reduced by 

pharmacologic inhibition of TNFα, (Malaviya et al., 2015; Sunil et al., 2014). Treatment of 

rats with anti-TNFα antibody also reduces mustard-induced increases in expression of the 

profibrotic mediator, TGFβ. This is associated with a marked inhibition of mustard-induced 

collagen deposition in the lung and fibrosis (Malaviya et al., 2015). Similar findings have 

been described in a silica-induced lung injury model (Piguet et al., 1990). In murine lung 

epithelial cells, anti-TNFα antibody inhibits silica-induced chemokine release and oxidative 

stress (Barrett et al., 1999). Taken together, these findings provide strong support for a role 

of TNFα in pulmonary injury and fibrosis induced by environmental toxicants and chemical 

threat agents.

5. Summary and conclusions

TNFα is a key mediator of local damage and inflammation in the lung. Several specific 

TNFα antagonists, including etanercept, infliximab, adalimumab and golimumab are 

currently used clinically for treatment of immune-inflammatory diseases. Although these 

agents are potent neutralizers of TNFα bioactivity, their efficacy varies in different 

pulmonary diseases. Whereas etanercept is more effective in reducing severe asthma or 

COPD, infliximab and adalimumab are efficacious in treating sarcoidosis. Fundamental 

differences in the molecular structure, dosing method and schedule, binding characteristics, 

and mode of action of TNF targeting agents are potentially responsible for the observed 

variability in clinical responses of these agents. Impairment of mechanical barriers of the 

lung may also play role. In injured lung, disease pathology is associated with increases in 

epithelial permeability, squamous metaplasia, increases in goblet cells, inflammatory cells 
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and protein rich pulmonary edema. Together, these changes may hinder overall drug 

availability. Differences in expression of other inflammatory molecules or heterogeneity of 

the disease may also play a role. Nonetheless, significant therapeutic responses of TNFα 
neutralizing agents in lung injury and inflammation are intriguing. Further research on the 

role of TNFα in acute and chronic pulmonary diseases may help to develop successful 

treatment strategies using TNF targeting agents.
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TACE TNFα-converting enzyme

LPS lipopolysaccharide

IL interleukin

NF-κB nuclear factor-kappa B

AP-1 activated protein 1

TGFβ transforming growth factor β

COPD chronic obstructive pulmonary disease

ALI acute lung injury

ARDS acute respiratory distress syndrome

IPF interstitial pulmonary fibrosis

BAL bronchoalveolar lavage

GC glucocorticoids

FVC forced vital capacity.
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Fig. 1. 
Multiple roles of TNFα in the pathophysiology of inflammatory diseases.
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Table 1

Summary of Studies of TNFα Targeting Agents in Inflammatory Lung Diseases

Disease/
pathology

Treatment Rodent/
human

References Outcome

Asthma Etanercept human Berry et al., 2006; 
Holgate et al., 2011; 
Howarth et al., 2005; 
Morjaria et al., 2008

Improvement in asthma symptoms, 
lung function and quality of life

mouse Dejager et al., 2015 Reversal of GC insensitivity

Anti-TNF antibody mouse Busse et al., 2009; Kim 
et al., 2006

Reduced lung inflammation and 
mucus cell metaplasia

Infliximab rat Cai et al., 2011 Reduced airway inflammation and 
hyperreactivity

mouse Deveci et al., 2008 Reduced inflammatory cell 
accumulation and decreased cytokine 
and chemokine release

human Taille et al., 2013 Improved asthma control and reduced 
frequency of exacerbations

Adalimumab mouse Catal et al., 2014 Attenuation of lung damage

Golimumab human Wenzel et al., 2009 No significant effect on forced 
expiratory volume in 1 sec. or asthma 
exacerbations

TNFα antisense mouse Luo et al., 2012 Reduced inflammatory cell infiltration 
and mucus secretion

COPD Etanercept and infliximab human Suissa et al., 2008 Reduced COPD exacerbations 
following etanercept treatment

Etanercept human Aaron et al., 2013 Reduced acute COPD exacerbations; 
equally effective as prednisone

Infliximab human Dentener et al., 2008; 
Rennard et al., 2007; van 
der Vaart et al., 2005

No significant effect on quality of life, 
inflammation or disease exacerbations

ALI/ARDS Anti-TNFα monoclonal antibody human Abraham et al., 1998; 
Abraham et al., 1995

No significant effect on mortality in 
septic shock patients

mouse Bertok et al., 2012 p55 receptor-specific domain antibody 
but not anti-TNFα antibody inhibited 
lung injury, edema and inflammation

pig Mullen et al., 1993 Combined ibuprofen and anti-TNFα 
antibody protect against ALI

p55 TNFR fusion protein human Abraham et al., 1997 Reduction in mortality in patients with 
severe sepsis

Etanercept rat Guthmann et al., 2009 Hyperoxia-induced lung injury and 
BAL cell content inhibited

Pulmonary sarcoidosis Infliximab human Baughman et al., 2006; 
Chebib et al., 2014; 
Rossman et al., 2006; 
Russell et al., 2013; 
Sweiss et al., 2005

Improvement in FVC and pulmonary 
disease

Adalimumab human Callejas-Rubio et al., 
2006; Milman et al., 
2012; Sweiss et al., 2014

Decrease in dyspnea, cough and 
disease pathology. Improvement in 
FVC and Borg dyspnea score

Golimumab human Judson et al., 2014 No significant effect

Etanercept human Utz et al., 2003 Terminated early due to treatment 
failure
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Disease/
pathology

Treatment Rodent/
human

References Outcome

IPF Etanercept human Raghu et al., 2008 Reduction in disease progression

Pirfenidone human Azuma et al., 2011; King 
et al., 2014; Maher, 
2010; Takeda et al., 
2014; Taniguchi et al., 
2011

Reduction in vital capacity decline, 
disease progression and increase in 
progression-free survival, suppression 
of cough and dyspnea

Experimental models 
of lung injury

Anti-TNFα antibody mouse Bhalla et al., 2002; 
Piguet et al., 1990; 
Shvedova et al., 1996

Inhibition of ozone, silica or cotton 
dust induced lung injury, decreased 
inflammatory cytokine release, 
inflammation and fibrosis

rat Malaviya et al., 2015 Marked inhibition in vesicant-induced 
lung injury, oxidative stress, numbers 
of cytotoxic, proinflammatory 
macrophages and fibrosis

Infliximab rat Zhang et al., 2011 Reduced airway inflammation and 
improvement in cigarette smoke-
induced histopathology; protection 
from emphysema

Pentoxifylline rat Sunil et al., 2014 Inhibition of vesicant-induced lung 
injury, inflammation and oxidative 
stress
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