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Abstract

We propose a multiscale weighted principal component regression (MWPCR) framework for the 

use of high dimensional features with strong spatial features (e.g., smoothness and correlation) to 

predict an outcome variable, such as disease status. This development is motivated by identifying 

imaging biomarkers that could potentially aid detection, diagnosis, assessment of prognosis, 

prediction of response to treatment, and monitoring of disease status, among many others. The 

MWPCR can be regarded as a novel integration of principal components analysis (PCA), kernel 

methods, and regression models. In MWPCR, we introduce various weight matrices to prewhitten 

high dimensional feature vectors, perform matrix decomposition for both dimension reduction and 

feature extraction, and build a prediction model by using the extracted features. Examples of such 

weight matrices include an importance score weight matrix for the selection of individual features 

at each location and a spatial weight matrix for the incorporation of the spatial pattern of feature 

vectors. We integrate the importance score weights with the spatial weights in order to recover the 

low dimensional structure of high dimensional features. We demonstrate the utility of our methods 

through extensive simulations and real data analyses of the Alzheimer’s disease neuroimaging 

initiative (ADNI) data set.
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1 Introduction

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study began in 2004 and is the 

first “Big Data” project for Alzheimer’s disease (AD), which has been a groundbreaking 

project. It has collected imaging, genetic, clinical, and cognitive data from thousands of 

subjects in order to delineate the complex relationships among the clinical, cognitive, 

imaging, genetic and biochemical biomarker characteristics of the entire spectrum of AD as 

the pathology evolves from normal aging (NC), to mild cognitive impairment (MCI), to 

dementia or AD. This paper is motivated by the joint analysis of fluorodeoxyglucose 

positron emission tomography (FDG-PET) data and clinical and behavioral variables from n 
= 196 subjects in the ADNI study. After applying a standard preprocessing pipeline, the 

dimension of the processed FDG-PET images is 79 × 95 × 69. We are particularly interested 

in addressing two questions:

• (Q1) the first one is to identify FDG-PET imaging biomarkers for classifying 

subjects to either AD or NC group;

• (Q2) the second one is to identify FDG-PET imaging biomarkers observed at 

baseline to accurately predict the change in the Alzheimer’s Disease Assessment 

Scale-Cognitive (ADAS-Cog) test score at least two years later after initial 

assessment.

Statistically, these questions of interest can be formulated as the use of a high-dimensional 

vector of features (or FDG-PET), denoted as x = (xg: g ∈ ), to predict an outcome variable, 

denoted as y, where  = {g1, …, gp} is a set of locations, in which p is the total number of 

locations in : In this case, x is a vector of FDG-PET imaging measures on a 3-dimensional 

(3D) lattice and y is either disease status in (i) or the change in the ADAS-cog score in (ii). 

Figure 1 shows some selected slices of the processed PET images from 3 randomly selected 

Alzheimer’s Disease (AD) subjects and 3 randomly selected normal control (NC) subjects.

To answer questions (Q1) and (Q2), we develop a multiscale weighted principal component 

regression (MWPCR) framework to deal with three challenges arising from the use of high-

dimensional x with strong spatial features (e.g., FDG-PET) to predict y. Such challenges 

include (i) noisy functional data, (ii) complex spatial information, and (iii) the remarkable 

variability of brain structure and function across subjects. For instance, in most 

neuroimaging studies, the dimension of neuroimaging data (or x) can be much larger than 

the number of subjects, which varies from several dozens to a few thousands. Moreover, 

different components of x may be highly correlated with each other and share some specific 

spatial structures (Friston, 2009; Vincent et al., 2011; Hinrichs et al., 2009; Cuingnet et al., 

2012).

Many existing supervised learning and variable selection methods (Hastie et al., 2009; 

Clarke et al., 2009; Fan and Fan, 2008; Bickel and Levina, 2004; Buhlmann et al., 2012; 

Tibshirani, 1996), however, can be sub-optimal for high-dimensional prediction problem 

considered here, since the effect of high dimensional data x (e.g., image biomarker) on y is 

often non-sparse (Li et al., 2015; Zhou et al., 2013; Friston, 2009; Hinrichs et al., 2009). 

First, the existing unstructured regularization methods can suffer from diverging spectra and 
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noise accumulation in high dimensional feature space (Reiss and Ogden, 2010; Bickel and 

Levina, 2004; Buhlmann et al., 2012; Fan and Fan, 2008), whereas the structured ones (e.g., 

fused Lasso or Ising prior) can be computationally challenging for high-dimensional 

imaging predictor (Vincent et al., 2011; Cuingnet et al., 2012; Fan et al., 2012; Goldsmith et 

al., 2014). Alternatively, it is imperative to use some dimension reduction methods, such as 

principal component analysis and/or screening methods, to extract and select important 

‘low-dimensional’ features, while eliminating redundant features (Skocaj et al., 2007; Bair et 

al., 2006; Fan and Fan, 2008; Krishnan et al., 2011; Zhao et al., 2012). Moreover, most 

supervised learning methods coupled with dimension reduction methods do not account for 

the strong spatial features of high-dimensional imaging data as discussed above (Allen et al., 

2014; Guo et al., 2015).

A general framework of MWPCR is developed to address some of the challenges discussed 

above. The MWPCR provides a simple solution to the problem of interest by hierarchically 

and spatially extracting low-dimensional ‘transformed’ variables from x in order to 

dramatically improve prediction accuracy. Compared with the existing literature (Allen et 

al., 2014; Guo et al., 2015; Shen and Zhu, 2015), we make several major contributions as 

follows:

• (i) MWPCR provides a comprehensive and powerful dimension reduction 

framework for integrating feature selection, smoothing, and feature extraction for 

continuous and discrete response variables (e.g., binary response for 

classification).

• (ii) We evaluate the finite sample properties of MWPCR by using both 

simulation studies and the analysis of ADNI data. Our numerical results reveal 

that MWPCR significantly outperforms many competing methods under some 

scenarios.

• (iii) We systematically investigate the theoretical properties of MWPCR under 

the high-dimensional binary classification setting. Specifically, we are able to 

reveal the importance of incorporating different types of weights for improving 

classification accuracy.

• (iv) The code for MWPCR was written in Matlab, which along with its 

documentation will be freely accessible from the public website http://

www.nitrc.org and our lab website http://odin.mdacc.tmc.edu/bigs2/.

The paper is organized as follows. In Section 2, we introduce the model setup of MWPCR. 

We discuss various strategies of determining global and local weights that account for an 

association between y and each individual feature xg across g ∈  and the spatial patterns of 

x. In Section 3, simulation studies are conducted to examine the finite sample performance 

of MWPCR. We conduct real data analysis in Section 4 based on ADNI data to address the 

two questions (Q1) and (Q2) discussed above. We give some concluding remarks in Section 

5. We also investigate some theoretical properties of MWPCR under the high-dimensional 

binary classification setting and put them in the supplementary document.
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2 Multiscale Weighted Principal Component Regression

In this section, we describe data structure and then introduce the model setup and estimation 

method of MWPCR.

2.1 Data Structure

Consider data from n independent subjects. For each subject, we observe a qy × 1 vector of 

discrete or continuous responses, denoted by yi = (yi,1, …, yi,qy)T, a qz × 1 vector of discrete 

and/or continuous clinical covariates, denoted by zi = (zi,1, …, zi,qz)
T, and a p × 1 vector of 

data xi = {xi,g: g ∈ } measured on  for i = 1, …, n. Let XT = (x1| …|xn) be a p × n matrix. 

In many cases, both qy and qz are relatively small compared with n, whereas p is much 

larger than n. For instance, in many imaging studies, it is common to use high dimensional 

imaging data to classify a class variable, such as disease status. In this case, qy is as small as 

one, whereas p can be several millions. Moreover,  = {g1, …, gp} is a set of prefixed 

locations, such as voxels in 3D lattices, so it is possible to define an edge set  = {(gk, gj): 

gk, gj ∈ } associated with . For instance, in spatial statistics and imaging analysis, one 

often uses pixels and their first-order (or high-order) neighboring pixels to construct edges in 

.

2.2 Model Setup

The proposed MWPCR consists of two components: a low-rank model for multi-scale 

weighted PCA (MWPCA) and a prediction model. Let Q(ℓ) be a p × p weight matrix at the ℓ–
th scale for ℓ = 1, …, L. The low-rank model for MWPCA can be written as

(1)

for ℓ = 1, …, L, where E(xi) = μ, K ≤ min(n, p), and  is an n × p matrix 

of measurement errors that follows a matrix-variate distribution with mean 0n,p and an 

arbitrary covariance matrix. Moreover, , and 

 are, respectively, n × K, K × K, and p × K matrices such that diag(D(ℓ)) 

≥ 0 and U(ℓ)TU(ℓ) = V(ℓ)TV(ℓ) = IK, where IK is a K × K identity matrix.

We combine all {U(ℓ)}ℓ≥1 from different scales into an n × (KL) matrix given by UC = (uC,1 

··· uC,n)T = (U(1), …, U(L)). We then build a prediction model R(yi; uC,i, zi, θ) with yi as 

response and uC,i and zi as covariates, where θ is a vector of unknown (finite-dimensional or 

non-parametric) parameters. For instance, when qy = 1, a popular prediction model is the 

generalized linear model given by

(2)
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where ϕ is a dispersion parameter and b(·) and s(·, ·) are known functions. Moreover, it is 

assumed that ḃ(ηi) = db(ηi)/dηi = E(yi|uC,i, zi) satisfies , where βz 

and βu are coefficient vectors associated with zi and uC,i, respectively, and h(·) is a link 

function. In this case, we have θ = (ϕ, βz, βu). Our prediction model can be various 

parametric and nonparametric regression models for continuous and discrete responses and 

multivariate and univariate responses, such as survival data and classification problems 

(Hastie et al., 2009; Clarke et al., 2009).

The key novelty of MWPCR is the use of MWPCA to extract important low-dimensional 

features of x that are predictive of y. Our MWPCA can be regarded as a novel extension of 

various supervised and unsupervised dimension reduction models for matrix decomposition 

(Allen et al., 2014; Skocaj et al., 2007; Huang et al., 2009). Specifically, the three key 

features of MWPCA include the integration of importance score weights and spatial 

weights, a multiscale strategy for feature extraction, and its computational efficiency. In 

contrast, although a general duality diagram method (Dray and Jombart, 2011; Skocaj et al., 

2007) explicitly incorporates two weight matrices, it only accounts for structural 

dependencies (e.g., smoothness) in x.

2.3 Estimation Procedure

We introduce a three-stage algorithm for MWPCR as follows.

• Stage 1. Build an importance score vector (or function) WI = (wI,g):  → R+ and 

a spatial weight matrix WE = (wE,gg′):  ×  → R.

• Stage 2. At the ℓ–th scale, use WE and WI to build a spatial weight matrix Q(ℓ) 

and then compute the first K principal components in U(ℓ) according to model 

(1). Repeat it for ℓ = 1, …, L.

• Stage 3. Build the prediction model R(y; uC, z, θ).

We slightly elaborate on these stages. In Stage 1, the importance scores wI,g play an 

important feature screening role in MWPCR and they can be learnt directly either from {x, 
y} or other sources. Examples of wI,g in the literature are primarily based on some statistics 

(e.g., Pearson correlation or distance correlation) between xg and y at each location g used in 

the sure independence screening (Bair et al., 2006; Li et al., 2012). However, most 

importance scores wI,g are independently calculated at each location, so they largely ignore 

complex spatial structures at different locations.

In Stage 1, WE = (wE,gkgj) ∈ Rp×p can be either symmetric or asymmetric. The elements 

wE,gkgj are usually calculated by using various similarity criteria, such as Gaussian similarity 

from Euclidean distance, local neighborhood relationship, correlation, and prior information 

obtained from other data (Yan et al., 2007). Then, we can threshold WE to create an 

adjacency matrix with elements of either 1 or 0, which leads to , depending on whether the 

corresponding correlation value exceeds a prefixed threshold or not. By choosing different 

thresholds, we can obtain different edge sets . In Section 2.4, we will discuss how to 

determine WE and WI, while explicitly accounting for the complex spatial structure among 

different locations.
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In Stage 2, we construct the weight matrix Q(ℓ) at the ℓ–th scale as follows. To extract 

important features from x, we construct a matrix 

, where 1{·} is an indicator function and 

sI,1 ≤ … ≤ sI,L are pre-specified thresholds. The use of  is similar to various marginal 

screening methods (Fan and Lv, 2008; Fan and Fan, 2008; Bair et al., 2006). By tuning the 

value of sI,ℓ, we can screen out ‘uninformative’ features at different scales.

To capture the spatial features of x, we may construct a spatial similarity matrix 

, where sE,ℓ = (sE,ℓ;1, sE,ℓ;2)T and 

D(gk, gj) is a specific distance (e.g., Euclidean) between gk and gj. The value of sE,ℓ;2 

controls the number of locations in {gj ∈ : D(gk, gj) ≤ sE,ℓ;2}, which is a patch set at gk 

(Taylor and Meyer, 2012), whereas sE,ℓ;1 is used to shrink small |wE,gkgj | to zero.

Given  and , we may set Q(ℓ) as either  or . Specifically, 

 corresponds to selecting important features from x first and then smoothing 

those selected features. In contrast,  corresponds to smoothing x first and then 

extracting important features from the smoothed x. According to our experiences, 

outperforms  in terms of prediction accuracy in many scenarios, even though the use 

of  can be computationally demanding when p is extremely large.

Given Q(ℓ), we can ‘prewhiten’ (X − 1nμT) and calculate X̃(ℓ) and its singular value 

decomposition (SVD) (U(ℓ), D(ℓ), V(ℓ)) in (1). In practice, a simple criterion for determining K 
is to include all components up to a prefixed proportion of the total variance, say 85%. For 

high dimensional data, we consider a regularized PCA by iteratively solving a single-factor 

two-way regularized matrix factorization. Specifically, for a given K, we minimize with 

respect to (U(ℓ), D(ℓ), V(ℓ)) the following objective function given by

(3)

subject to  and  for all k, where λv and λu are two tuning 

parameters and P1(·) and P2(·) are two penalty functions. We use adaptive Lasso penalties for 

P1(·) and P2(·) and then iteratively solve (3) (Aharon et al., 2006). For each k0, we use the 

sparse method in Lee et al. (2010) to estimate ( ). In this way, we can 

sequentially compute ( ) for k = 1, …, K.

In Stage 3, based on {(yi, uC,i, zi)}i≥1, we use an estimation method to estimate θ as follows:
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(4)

where ρ(…) is a loss function, λ is a tuning parameter and P3(·) is a penalty function. Given 

test vectors x* and z*, we can do prediction as follows:

•
Calculate  by setting u(ℓ)* = (x* − μ)TQ(ℓ)V(ℓ){D(ℓ)}−1, in 

which μ, Q(ℓ), V(ℓ), and D(ℓ) are learnt from the training data.

• Optimize an objective function based on  to calculate an estimate 

of y.

2.4 Importance Score Weights and Spatial Weights

There are two sets of weights in MWPCR, including (i) importance score weights enabling a 

selective treatment for individual features and (ii) spatial weights accommodating the 

underlying spatial dependence among features across neighboring locations. As shown in 

simulation studies, the use of the two sets of weights can dramatically improve prediction 

accuracy. Below, we propose several specific strategies to determine them.

2.4.1 Importance Score Weights—As discussed in Section 2.3, at each location g, wI,g 

is calculated based on a statistical model between (xg, z) and y in order to perform feature 

selection according to each feature’s discriminative importance. Statistically, most existing 

methods (Bair et al., 2006; Li et al., 2012) use a marginal model by assuming

(5)

where β = (β(g): g ∈ ) and β(g) is introduced to quantify the association between yi and 

xi,g at each location g ∈ . At the g–th location, wI,g is a statistic based on the marginal 

model . A simple example is to use the Pearson correlation between 

each feature and class label as the importance score weight. Noninformative features (e.g., 

correlation less than a given threshold) can be simply discarded by setting wI,g = 0. 

However, those wI,g’s largely ignore complex spatial structure, such as homogenous patches 

defined below, across all locations (Bair et al., 2006; Li et al., 2012).

It is common to assume that β(g) across all locations are naturally clustered into G 
homogeneous patches, denoted by { j: j = 1, …, G}, such that

(6)
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Note that a patch j consists of a set of locations that are spatially connected through edges 

in . It has been shown that algorithms based on patch information have led to state-of-the 

art techniques for classification and denoising (Taylor and Meyer, 2012; Li et al., 2011; 

Polzehl and Spokoiny, 2006; Arias-Castro et al., 2012).

We propose two strategies to learn the homogenous patches j in (6) by jointly modelling 

(xi, zi) and yi. The first strategy is to model the conditional distribution of xi given yi and zi, 

denoted by f(xi|yi, zi, β). The second strategy is to model the conditional distribution of yi 

given xi and zi, denoted by f (yi|xi, zi, β). Finally, we can learn patches j from the estimated 

β and then construct importance score weights.

The first strategy is to model f(xi|yi, zi, β). Let g(h) be an edge set at scale h at each 

location g. We consider a sequence of nested edge sets across multiscales hs such that h0 = 0 

≤ h1 ≤ … ≤ hS and g(h0) = {g} ⊂ … ⊂ g(hS). To learn the homogeneous patches, a 

general framework of Multiscale Adaptive Regression Model (MARM) developed in Li et 

al. (2011) is to maximize a sequence of weighted functions as follows:

(7)

where ω(g, g′; h) characterizes the similarity between the observations at g′ and those at g 
with ω(g, g; h) = 1. If ω(g, g′; h) ≈ 0, then the observations at g′ do not provide information 

on β(g). Therefore, ω(g, g′; h) can prevent incorporation of locations, whose observations 

do not contain information on β(g) and preserve the edges of homogeneous regions.

Let D1(g, g′) and D2(β̂(g; hs−1), β̂(g′; hs−1)) be, respectively, the spatial distance between 

locations g and g′ and a similarity measure between β̂ (g; hs−1) and β̂(g′; hs−1). The ω(g, g′; 

hs) can be defined as

(8)

where K1(·) and K2(·) are two nonnegative kernel functions and γn is a bandwidth parameter 

that may depend on n. The weights K1 (D1(g, g′)/hS) give less weight to location g′ ∈ 

g(hS), which is far from the location g. The weights K2(u) downweight location g′ with 

large D2(β̂(g; hS), β̂ (g′; hS)), which indicates a large difference between β̂(g′; hS) and β̂(g; 

hS). Moreover, by following Li et al. (2011) and Polzehl and Spokoiny (2006), we set K1(x) 

= (1−x)+ and K2(x) = exp(−x). See the detailed algorithm of MARM in Li et al. (2011).

The second strategy is to model f(yi|xi, zi, β) and the prior distribution of β, given by f (β). 

Since xi is often high dimensional, it is much difficult to carry out statistical inference based 
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on f(yi|xi, zi, β) compared with f (xi|yi, zi, β). Moreover, our primary goal is to perform 

feature selection in order to eventually use a small subset of xi to predict yi, while correcting 

for zi. Similar to the first strategy, we also take the marginal method and then incorporate a 

specific structure to estimate β as follows:

(9)

where g is a set of the neighboring locations of location g.

Similar to the first strategy, we propose an adaptive smoothing algorithm to estimate β as 

follows. Consider a sequence of nested edge sets g(h0) = {g} ⊂ … ⊂ g(hS) for h0 = 0 ≤ 

h1 ≤ … ≤ hS.

• [Step (i)] Calculate β̂(g; h0) and Cov(β̂(g; h0)) according to 

 across all locations g.

• [Step (ii)] Smooth {β̂(g; h0): g ∈ } to sequentially estimate β̂(g; hs) for s = 1, 
…, S across all g ∈ . Candidate methods include local polynomial, nonlocal 

mean, and propagation-separation, among others (Polzehl and Spokoiny, 2006; 

Arias-Castro et al., 2012).

For both strategies, after the iteration hS, we can obtain β̂(g; hS) and its covariance matrix, 

denoted by Cov(β̂(g; hS)), across all g ∈ . Finally, we calculate wI,g as a function of β̂(g; 

hS) and Cov(β̂(g; hS)), such as the Wald test and its p-value. Then, we use a clustering 

algorithm, such as the K-mean algorithm, to group {β̂(g; hS): g ∈ } into several 

homogeneous clusters (Hastie et al., 2009), in which β̂(g; hS) varies very smoothly in each 

cluster.

2.4.2 Spatial Weights—As discussed in Section 2.3, wE,gg′ often characterizes the degree 

of certain ‘similarity’ between locations g and g′. We consider three spatial weight matrices, 

including (i) the precision matrix, (ii) a locally spatial weight matrix, and (iii) a cluster-based 

spatial weight matrix as follows.

For the precision matrix, let Σ be the covariance matrix of xi, we can set  ; thus, 

 is the precision matrix of xi. When Σ−1 has certain sparsity structures (e.g., 

factor model), various estimation methods have been developed even for extremely large p.

The locally spatial weight matrix consists of non-negative weights assigned to the spatial 

neighboring locations of each location. Specifically, we set wE,gg′ as

(10)
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in which ω(g, g′; hS) is defined in (8). Thus, we have wE,gg′ = 0 for all g′ ∉ g(hS) and 

Σg′∈  wE,gg′ = 1.

The cluster-based spatial weight matrix consists of non-negative weights assigned to 

locations in the same homogeneous cluster. Specifically, we use the Laplace-Beltrami 

operator to construct WE (Luxburg, 2007). It is assumed that each edge between two 

locations g and g′ carries a non-negative weight wgg′. Thus, matrix W = (wgg′) is a 

weighted adjacency matrix of . The degree of a location g ∈  is defined as dg = Σg′∈
wgg′ and the degree matrix WD is given by WD = diag(dg1, …, dgp).The unnormalized 

Laplacian matrix L of the graph  is defined as WL = WD − W, which can be regarded as a 

discrete representation of the Laplace-Beltrami operator. Finally, we set WE = exp(−0.5WL/
γ), where exp(·) denotes the matrix exponential. In practice, when p is extremely large, it is 

computationally infeasible to directly use the huge p × p matrix WE. In this case, based on 

the clustering results in (6), we only consider locations in each cluster and each cluster 

forms a connected subgraph, which leads to dramatically computational savings (Cuingnet et 

al., 2012).

2.4.3 Weights Selection—A critical question is how to select spatial weights and/or 

importance score weights for constructing Q(ℓ) in different applications. Ideally, we may 

either use one of them or combine some of them together to construct Q(ℓ). Theoretically, we 

have investigated the effects of applying importance score weights and different spatial 

weights in MWPCR on classification accuracy for high dimensional binary classification 

and put them in the supplementary document. We have three key theoretical results as 

follows.

• The use of feature selection can substantially improve classification accuracy for 

high dimensional binary classification.

• The use of spatial kernel weights and importance score weights in MWPCR can 

substantially improve classification accuracy even when signals are weak.

• The use of the true Σ−1/2 can improve classification accuracy, where Σ is the 

covariance matrix of x.

Based on these results, we suggest to first apply the locally spatial weight matrix (or the 

cluster-based spatial weight matrix) and then use the importance score weights based on β̂(g; 

hS). Although the use of Σ−1/2 can improve classification accuracy, estimating Σ−1/2 can be 

very challenging when p is even moderate. Thus, we avoid estimating Σ−1/2 in all 

simulations and real data analysis.

3 Simulation Studies: Binary Outcome

We use two sets of simulation studies, including binary and continuous outcomes, to 

examine the finite sample performance of MWPCR under different scenarios. We 

demonstrate that MWPCR outperforms or at least is compatible with many state-of-the-art 

methods. For the sake of space, we include all simulation results for continuous outcome in 

the supplementary document.
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We applied MWPCR to a high-dimensional binary classification problem as follows. We 

simulated 20 × 20 × 10 3D-images from a linear model given by

(11)

where li is the class label coded as either 0 or 1 and εi(g) are random variables with zero 

mean. Figure 2 presents the true mean images of class li = 0 and class li = 1, in which a red 

cuboid 3 × 3 × 4 region characterizes the maximum difference 1 between classes 0 and 1. In 

this case, we have p = 4, 000. Then, we set n = 100 with 60 images from Class 0 and the rest 

from Class 1.

We consider three types of noise εi(g) in (11). First,  were independently generated 

from a N(0, 22) generator across all voxels. Second,  were 

generated from  by introducing the short range spatial correlation, where || · ||1 is the 

L1 norm of a vector and mg is the number of locations in the set {|| g′−g ||1≤ 1}. Third, to 

introduce the long range spatial correlation,  were generated according to 

, where g = (g1, g2, 
g3)T and ξi,k for k = 1, 2, 3 were independently generated from a N(0, 1) generator. 

Moreover, the noise variances in all voxels of the red cuboid region equal 4, 4/6, and 

4{sin(πg1/10)2 + cos(πg2/10)2 + sin(πg3/5)2} + 4 for Type I, II, and III noises, respectively. 

Therefore, among the three types of noise, Type III noise has the smallest signal-to-noise 

ratio and Type II noise has the largest one.

We ran the three stages of MWPCR as follows. In Stage 1, let {hs = 1.2s, s = 0, 1, …, S = 5}, 

and for each g ∈ , we set wI,g = −p log(p(g))/{−Σg∈  log(p(g))}, where p(g) is the p-value 

of Wald test β1(g) = 0 in (11) at voxel g. The spatial weight WE is given by (10). We set the 

spatial weight WE according to (10) and (8). Specifically, we considered three types of 

spatial weights WE, including MWPCR1: only the location kernel function K1(.) in (8); 

MWPCR2: only the similarity kernel function K2(.) in (8); and MWPCR3: the combination 

of kernel functions K1(.) and K2(.) in (8). Then, we selected the bandwidth {hs = 1.2s, s = 0, 
…, S = 5} in these kernel functions in order to determine WI and WE. In Stage 2, we used 

different numbers of principal components in MWPCA to reconstruct the low dimensional 

representation of simulated images. In Stage 3, we tried different classification methods, 

including linear regression, k-nearest neighbor (k-NN) and support vector machine (SVM), 

on these low dimensional representations. Since their performances are similar to each other, 

we only report the results based on the linear regression throughout the paper. The linear 

regression uses class label li as dependent variable and principal components as explanatory 

variables. An image is classified as Class 0, if its predictive value is less than 0, and as Class 

1, otherwise.

We first used the leave-one-out cross validation to calculate the misclassification rates for 

MWPCR1, MWPCR2, MWPCR3, and a standard principal component analysis (PCA). 
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Table 1 presents the classification results based on 5, 7 and 10 principal components. The 

misclassification errors for all MWPCR methods are quite stable for different numbers of 

principal components under different types of noise. All MWPCR methods perform 

relatively well for Type II noise compared with Type I and III noises, since Type II noise has 

the largest signal-to-noise ratio. Moreover, MWPCR3 is slightly better than MWPCR1 and 

MWPCR2, which may be due to the fact that MWPCR3 combines both the local smooth and 

similarity kernels. Moreover, it seems that MWPCR3 is very robust to the long-range 

correlation structure of Type III noise. Compared with all MWPCR methods, PCA performs 

very poor, since it does not incorporate the class label information.

Second, we used the same variance thresholding to compare the three MWPCR methods 

with PCA. Figure 3 shows that the classification error (magenta curve) for PCA is much 

larger than that for all other methods. For each fixed variance threshold, the number of 

extracted principal components from PCA is less than that of MWPCR1, MWPCR2 and 

MWPCR3. Overall, MWPCR3 outperforms all other methods for all three types of noises. 

The variance threshold in the middle panel of Figure 3 starts from 70%, since the first 

principal component of PCA almost accounts for 70% of the total variance for Type II noise.

Third, we compared MWPCR3, in which 5 principal components were used, with eight 

other state-of-the-art classification methods. These eight classification methods include 

sparse discriminant analysis (sLDA) (Clemmensen et al., 2011), sparse partial least squares 

(SPLS) analysis (Chun and Keles, 2010), sparse logistic regression (SLR) (Yamashita, 

2011), support vector machine (SVM) (Chang and Lin, 2011), regularized optimal affine 

discriminant (ROAD) (Fan et al., 2012), wavelet-based multicscale PCA (WMSPCA)

(Bakshi, 1998), the combination of sure independence screening (SIS) (Fan et al., 2010) and 

principal component analysis (PCA) (SIS+PCA), and graph-constrained elastic-net 

(GraphNet) (Grosenick et al., 2013). We chose these classification methods due to their 

excellent performance in various simulated and real data sets.

Fourth, for all classification methods, we first calculated their misclassification rates by 

using the leave-one-out cross validation and then generated the receiver operating 

characteristics (ROC) curves of all nine methods. For ROC, we used model (11) to 

independently generate a testing set with the same sample size and the same proportion of 

Class 0 to Class 1 as the training set. For each method, we applied 10-fold cross validation 

to the training set in order to select the tuning parameter(s) and build the model based on the 

training set. Then, we applied the fitted model to the testing set in order to generate the ROC 

curves of all nine classification methods in Figure 4. Based on these ROC curves, we 

calculated their area under curve (AUC) values (Fawcett, 2006).

Table 2 presents the classification results, including both misclassification rates and AUC 

values. Table 2 reveals that MWPCR outperforms all other classification methods, especially 

when the signal-to-noise ratio is low for Type I and II noises. Except WMSPCA, SIS+PCA, 

and MWPCR, all other classification methods are also sensitive to the presence of the long-

range correlation structure in Type III noise. However, if high dimensional features do not 

have strong spatial structures, then it is expected that MWPCR may perform worse than 

other competing classification methods.
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4 Real Data Analysis

4.1 ADNI PET Data

Alzheimer’s disease (AD) is the most common form of dementia and results in the loss of 

memory, thinking and language skills. AD is an escalating national epidemic and a 

genetically complex, progressive, and fatal neurodegenetive disease. The incidence of AD 

doubles every five years after the age of 65 and the number of AD patients has dramatically 

increased recently, which has caused a heavy socioeconomic burden. AD is the sixth-leading 

cause of death in the United States, while there is no means to prevent, cure or even slow its 

progression.

The development of MWPCR is motivated by using the baseline FDG-PET data set to 

address questions (Q1) and (Q2). The ADNI PET data set downloaded from the ADNI web 

site (www.loni.usc.edu/ADNI) consists of 196 subjects with 102 NCs and 94 AD subjects. 

There are three subjects, missing the gender and age information. Among all the rest of the 

subjects, there are 117 males whose mean age is 76.20 years with standard deviation 6.06 

years and 76 females whose mean age is 75.29 years with standard deviation 6.29 years. 

FDG-PET images acquired 30–60 minutes post-injection were processed by using a standard 

image processing pipeline. A detailed description of PET protocols and acquisition can be 

found at www.adni-info.org. Such pipeline consists of average, spatially alignment, 

interpolation to a standard voxel size, intensity normalization, and smoothing to a common 

resolution of 8-mm full width at half maximum.

4.2 Binary Classification

The first goal is to use MWPCR to classify subjects from ADNI to either AD or NC group 

based on their FDG-PET images. It is associated with the second primary objective of ADNI 

aiming at developing new diagnostic methods for AD intervention, prevention, and 

treatment. We first applied MWPCR3 to ADNI and used the same setting as simulations in 

Section 3 except that we considered a linear model for f(xi,g|yi, zi, β(g)), in which zi includes 

both age and gender and yi is diagnosis status (AD versus NC). We also compare MWPCR3 

with nine other classification methods, including PCA and the eight state-of-the-art 

classification methods discussed in Section 3. For the PCA method, we applied PCA with 

five principal components, which account for around 90% of the total variance, and then 

used the same linear regression as MWPCR3 to perform classification analysis. Figure 5 

presents three selected slices of the weight matrix WI. The red regions, such as 

supramarginal gyrus right, correspond to the voxels with large importance score weights and 

contain the most important information for classification.

Second, for both PCA and MWPCA, we extracted their corresponding first five principal 

component scores and directions. Figure 6 shows the scatter plot of PC2 and PC3 scores for 

PCA and that for MWPCA, in which blue and red points correspond to NC and AD subjects, 

respectively, where PC2 and PC3 represent the second and third principal components, 

respectively. It seems that compared with PCA, the blue and red points are more separable 

for MWPCA. Furthermore, Figure 7 presents some selected slides of the principal directions 

corresponding to PC2 and PC3 for MWPCA. We are able to identify several key regions of 
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interest, such as “ supramarginal gyrus”, “ superior temporal gyrus”, and “inferior frontal 

gyrus”. For instance, the superior temporal gyrus is in the temporal lobe of the human brain 

and contains several important structures of the brain, including Brodmann areas 41, 42, and 

22p. It is probably involved with language perception and processing (Marcus et al., 2014). 

Moreover, within the brain, the anatomical regions that show the greatest decrease in FDG 

uptake with aging are the bilateral superior medial frontal, motor, anterior, and middle 

cingulate and bilateral parietal cortices. Among them, the superior temporal pole was found 

to be particularly affected.

Third, similar to Section 3, we calculated the misclassification rates of all classification 

methods by using the leave-one-out cross validation and then generated their receiver 

operating characteristics (ROC) curves. For the ROC analysis, we randomly and 

proportionally split the data set into 2 parts, a training set and a testing set. For each part, the 

sample sizes are same (98/98). Within each part, the proportion of AD to NC remains the 

same. For each classification method, we used 10-fold cross validation on the training set to 

select the tuning parameter(s) and build the model, and then we applied the fitted model to 

the testing set in order to calculate the relative scores. Subsequently, we generated all ROC 

curves and their AUC values.

Table 3 presents the classification results based on classification error and AUC, while 

Figure 8 presents the ROC curves of all ten classification methods. sLDA and SIS+PCA 

perform much worse than all other methods. In general, SPLS, SVM and WMSPCA are 

comparable with each other, but they outperform SLR and ROAD. In terms of 

misclassification rate, MWPCR outperforms all nine other classification methods. In 

contrast, in terms of AUC, MWPCR, SPLS, and SVM are compatible with each other. It 

may indicate that the classification accuracy can be significantly improved by incorporating 

spatial smoothness and correlation.

4.3 ADAS-Cog Score Prediction

The second goal is to use MWPCR to identify FDG-PET imaging biomarkers observed at 

baseline to accurately predict the change in the ADAS-Cog test score (or TOTAL11) at least 

two years later after initial assessment. The TOTAL11, which measures the cognitive 

performance of each subject, was calculated from the 11-item ADAS-Cog, such as Word 

Recall, whose details can be found in http://adni.loni.usc.edu/data-samples/data-faq/. Since 

three subjects are missing gender and age information and ten other subjects only have the 

baseline TOTAL11, we only use 183 subjects in this analysis.

We ran MWPCR as follows. We first fitted a linear model with the TOTAL11 score at the 

latest time point as response and the baseline TOTAL11 score, age, gender, time since 

baseline, and years of education, and then we used the residual obtained from the linear 

model as the response y and the FDG-PET image as x. In Stage 1, we fitted a linear model 

for f(xi,g|yi, β(g)), in which we dropped off zi. Then, WI is calculated based on the p-value of 

Wald test associated with the correlation between xi,g and yi at each voxel g. In Stage 2, 

following the simulations in Section 3, we chose MWPCR3 with different numbers of 

principal components for MWPCA in order to construct the low-dimensional latent variables 
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{uk,i}. In Stage 3, we fitted a linear latent variable regression given by 

 to do prediction.

Second, we compared MWPCR and three other dimensional reduction methods including 

PCA, weighted PCA (WPCA) (Skocaj et al., 2007), and supervised PCA (SPCA) (Bair et 

al., 2006). We used the leave-one-out cross validation method to compute the prediction 

errors of all methods. Let ŷi be the fitted response value based on the linear latent variable 

regression, we define the prediction error as |ŷi − yi|/|yi|. Subsequently, we calculated the 

prediction error differences between MWPCR and all other three methods and their quantile 

curves across different numbers of principal components and variance thresholds. Figure 9 

presents the comparison results based on the prediction error differences and their quantile 

curves. Both the error differences and the quantile curves are less than 0 (below the dashed 

line), confirming the better performance of MWPCR in predicting changes in ADAS-Cog 

score.

Third, for MWPCA, we extracted their corresponding first five principal component scores 

and directions. Figure 10 presents some selected slides of the principal directions 

corresponding to PC1 and PC5 for MWPCA, where PC1 and PC5 represent the first and 

fifth principal components, respectively. We are able to identify several key regions of 

interest, such as “right lateral ventricle”, “right middle temporal gyrus”, “right fornix”, and 

“ right middle frontal gyrus”. For instance, the fornix is on the medial aspects of the cerebral 

hemispheres connecting the medial temporal lobes to the hypothalamus. Since the fornix 

serves a vital role in memory functions, it has become the subject of recent research 

emphasis in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) (Nowrangi and 

Rosenberg, 2015).

Finally, we compare MWPCR with four other high-dimensional regression methods 

including penalized regression (PR) (Tibshirani, 1996), sure independence screening (SIS) 

regression (Fan and Lv, 2008), support vector regression (SVR) (Basak et al., 2007), and 

SPLS (Chun and Keles, 2010). Figure 11 shows the boxplots of the prediction error 

differences between MWPCR and all the other regression methods, indicating that MWPCR 

outperforms all other regression methods.

5 Discussion

We have developed a general MWPCR framework for the use of high-dimensional data on 

graph to predict a low-dimensional response. MWPCR enables an efficient and selective 

treatment of individual features, accommodates the complex dependence among features, 

and has the ability of utilizing the underlying spatial pattern possessed by image data. 

MWPCR integrates feature selection, smoothing, and feature extraction in a single 

framework. In the simulation studies and real data analyses, MWPCR shows substantial 

improvement over many state-of-the-art methods for high-dimensional problems. Moreover, 

both theoretically and numerically, we have demonstrated the importance of using both 

importance score weights and spatial weights in prediction problems.
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Figure 1. 
ADNI PET Data. Each row consists of pre-selected 2-dimensional (2D) slides obtained from 

a randomly selected subject. The first three rows come from 3 randomly selected AD 

subjects and the last three rows come from 3 randomly selected NC subjects.
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Figure 2. 
True mean images for the first set of simulations: Class 0 in the left panel and Class 1 in the 

right panel. The white, green, and red colors, respectively, correspond to 0, 1, and 2.
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Figure 3. 
Classification results for the first set of simulations: classification rate curves for MW- 

PCR1, MWPCR2, MWPCR3, and PCA based on the variance thresholding method for the 

three types of noise. Overall classification errors for MWPCR3 (red curve) are smaller than 

those of others, confirming the good performance of MWPCR3. Also MWPCR3 is quite 

robust to different variance thresholds. The performance of PCA is very poor and its 

classification error (magenta curve) is much larger than all MWPCR methods for the three 

types of noises.
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Figure 4. 
ROC curves of different classification methods for the three types of noise in the first set of 

simulations. The blue curves correspond to MWPCR and have the highest AUC value.
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Figure 5. 
The images of the importance score weight matrix for the ADNI binary classification 

analysis. The red regions have large weight score values and contain the important 

classification information.
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Figure 6. 
ADNI binary classification results: scatter plots of PC2 and PC3 scores for MWPCR (left 

panel) and PCA (right panel). Blue and red points in both panels correspond to NC and AD 

subjects, respectively.
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Figure 7. 
ADNI PET binary classification results: the selected slides of the PC2 direction image 

(positive elements in Panel (A) and negative elements in Panel (B)) and those of the PC3 

direction image (positive elements in Panel (C) and negative elements in Panel (D)) obtained 

from MWPCR.
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Figure 8. 
ADNI PET binary classification results: ROC curves of the ten different classification 

methods. The blue line corresponds to MWPCR.
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Figure 9. 
ADAS-Cog Score Prediction for ADNI PET Data: comparison between MWPCR with PCA, 

WPCA, and SPCA. The panels in the first row show the boxplots of error differences 

between MWPCR and PCA (WPCA and SPCA) for different numbers of principal 

components. The panels in the second row show the first, second and third quantile curves of 

error differences between MWPCR and PCA (WPCA and SPCA) for different variance 

thresholds.
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Figure 10. 
ADAS-Cog Score Prediction for ADNI PET Data: the selected slides of the PC1 direction 

image (positive elements in Panel (A) and negative elements in Panel (B)) and those of the 

PC5 direction image (positive elements in Panel (C) and negative elements in Panel (D)) 

obtained from MWPCR.
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Figure 11. 
ADAS-Cog score prediction for ADNI PET Data: comparison of MWPCR with the four 

other regression methods, including PR, SIS, SVR and SPLS.
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