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SUMMARY

Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic 

diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas 

representing 6 major types. Along with novel insights into the biology of individual sarcoma 

types, we report three overarching findings: 1) unlike most epithelial malignancies, these sarcomas 

(excepting synovial sarcoma) are characterized predominantly by copy number changes, with low 

mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across 

sarcoma types, 2) within sarcoma types, genomic and regulomic diversity of driver pathways 

defines molecular subtypes associated with patient outcome, and 3) the immune 

microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome 

and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis 

reveals previously unappreciated sarcoma type-specific changes in copy number, methylation, 

RNA, and protein, providing insights into refining sarcoma therapy and relationships to other 

cancer types.
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Genetic analysis of soft tissue sarcomas shows that they are characterized predominantly by copy 

number changes and offers insights into the immune microenviroment to inform clinical trials of 

checkpoint inhibitors.

INTRODUCTION

Adult soft tissue sarcomas (henceforth referred to collectively as sarcomas) are diverse 

mesenchymal malignancies that account for about 1% of adult solid tumors. Many are 

highly aggressive, accounting for a disproportionate share of cancer mortality among young 

adults (ages 20–39, in SEER data, seer.cancer.gov). Sarcomas are typically classified 

according to the normal mesenchymal tissue they most resemble. They comprise more than 

70 types that differ in pathologic and clinical features. Sarcomas fall into two broad genetic 

groups: those with simple karyotypes harboring specific genetic alterations (translocations, 

activating mutations), and those with complex karyotypes (Taylor et al., 2011a). For The 

Cancer Genome Atlas (TCGA) sarcoma analysis, we focused on 6 major adult soft tissue 

sarcomas, including 5 with complex karyotypes: 1) dedifferentiated liposarcoma (DDLPS), 

an undifferentiated sarcoma usually arising in association with well-differentiated 

liposarcoma and characterized by 12q13~15 amplification; 2) leiomyosarcoma (LMS), 

showing smooth muscle differentiation, arising in both gynecologic (ULMS) and soft tissue 

(STLMS) sites; 3) undifferentiated pleomorphic sarcoma (UPS), lacking any defined line of 

differentiation; 4) myxofibrosarcoma (MFS), showing fibroblastic differentiation with 

myxoid stroma; 5) malignant peripheral nerve sheath tumor (MPNST), which arises in 

peripheral nerves. The sixth type was a simple-karyotype sarcoma, synovial sarcoma (SS), 

defined by the translocation t(X;18)(p11;q11). We integrated genome-scale analyses of 

mRNA, microRNA (miRNA), protein, and alterations of DNA sequence, methylation, and 

copy number to understand the genomic diversity of oncogenic drivers, to refine clinical risk 

stratification, and to identify potential therapeutic targets.
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RESULTS AND DISCUSSION

Samples and Clinicopathologic Data

We studied 206 sarcomas with diagnoses confirmed by expert pathology review: 80 LMS 

(53 STLMS and 27 ULMS), 50 DDLPS, 44 UPS, 17 MFS, 10 SS, and 5 MPNST (Figure 

1A, S1A). Clinical and pathologic data are summarized in Figure 1A and Table S1. The 

median age at diagnosis was 60 years (range 20–90). Sarcomas were mostly intermediate to 

high grade (93%), and 84% arose in deep soft tissue (or uterine and visceral sites).

Pan-Sarcoma Molecular Analysis

Adult soft tissue sarcomas harbor frequent copy number alterations—
Mutational profiles and genomic alterations in the 6 sarcoma types are summarized in Figure 

1A and Table S1. Unsupervised cluster analysis of somatic copy number alterations 

(SCNAs) divided cases into 6 major clusters; C2 with relatively few unbalanced segments, 

consisting mostly of DDLPS and SS; C3, consisting mostly of DDLPS with complex copy 

number alterations; C4 and C5, dominated by LMS; and C1 and C6 consisting mostly of 

UPS and MFS (Figure S1B).

SCNAs frequently affected the MDM2-p53 and the p16-CDK4-RB1 pathways. MDM2 
amplification was present in all DDLPS by definition, and deep deletions (as defined in 

Methods) of TP53 were found in 9% of LMS, 16% of UPS, and 12% of MFS. In the RB 

pathway, deep deletions of RB1 were detected in 14% of LMS, 16% of UPS, and 24% of 

MFS; deep deletions of CDKN2A (p16) were found in 8% of LMS, 20% of UPS, and 18% 

of MFS. RB pathway alterations in DDLPS included CDK4 amplification in 86% and 

CDKN2A deep deletion in 2%. Overall, the complex karyotype sarcomas were characterized 

by frequent SCNAs compared to most other TCGA tumor types (Figures 1B, S1C & D). 

DDLPS showed the highest frequency of SCNAs of any tumor type, due to its highly 

recurrent focal amplifications at 12q13~15. In contrast, SS displayed very few SCNAs or 

mutations.

Analyses for fusion transcripts identified either SS18-SSX1 or SS18-SSX2 fusions in all SS 

cases. We also found recurrent fusions of TRIO to TERT (n=3) or to other genes (n=2) 

(Figure 1A), as recently reported (Delespaul et al., 2017). Cases with TRIO-TERT fusions 

had the highest TERT expression across all sarcomas (Figure S1E).

Adult soft tissue sarcomas have low somatic mutation burdens—The overall 

somatic mutation burden in these 206 sarcomas was low (average 1.06 per Mb; Figures 

1A&B; S1D&S2A). We applied MuSiC analysis (Dees et al., 2012) to whole-exome 

sequencing (WES) data to identify significantly mutated genes (SMGs), i.e. genes with a 

statistically higher-than-expected mutation prevalence across the entire cohort (FDR<0.05). 

This identified only 3 SMGs: TP53, ATRX, and RB1 (Figure 1A). TP53 mutations were 

most prevalent in LMS (40 of 80). RB1 mutations were seen in LMS, UPS, and MFS.

We surveyed known cancer genes for potential driver mutations and found that 138 sarcomas 

(67%) contained at least one variant in a gene known to be involved in cancer progression, 

though few of these were known cancer hotspots (Figure 2A). Potentially functional 
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mutations included truncating mutations in NF1 (n=3), NF2 (1), and PRKDC (4), a gene 

involved in telomere stabilization and critical for double-strand break repair (Figure 2B). As 

ATRX, TP53, and PRKDC mutations may disrupt telomere maintenance, we inferred 

telomere lengths from WES data using TelSeq (Ding et al., 2014). Outlier analysis identified 

telomere lengthening in 24 cases, mostly LMS and UPS/MFS (Table S2), with no 

association with TP53 or PRKCD mutation. In UPS/MFS, long telomeres were associated 

with ATRX deletion or mutation (p=0.013), as recently reported (Liau et al., 2015).

Assessment of mutational processes in samples with low mutation burden is a significant 

challenge. To alleviate this limitation, we used a two-step procedure. First we used de novo 

signature discovery in 205 WES and 37 whole-genome sequencing (WGS) samples to 

identify the mutational processes in the cohort (Figure S2B). This process identified 

predominant signatures similar to COSMIC 1, 3, 5, and 13 (http://cancer.sanger.ac.uk/

cosmic/signatures), with the exception of the two tumors with the highest mutational burden, 

in which the COSMIC6 mismatch repair signature predominated (Figure S2B), and which 

respectively showed frameshift mutation in MSH6 and low MSH2 expression (Figure S2C). 

The second step used established COSMIC signature profiles 1, 3, 5, and 13 to quantify the 

mutational signatures in the WES data (Figure 3A). Of the mutations, 90% were attributable 

to COSMIC5 (53%) and COSMIC1 (37%). COSMIC2 and 13 (evidence of APOBEC 

mutagenesis) were modestly elevated in DDLPS and MPNST compared to other types 

(p<10−6 by Kruskal- Wallis; Figure 3B). COSMIC1 and COSMIC5 are clock-like 

mutational processes, occurring continuously over a patient’s lifetime (Alexandrov et al., 

2015), and we found their contributions to the mutational profiles to be correlated with age 

at diagnosis in DDLPS (Pearson correlation 0.38, p=0.006), MFS (Pearson correlation 0.52, 

p=0.04), and STLMS (Pearson correlation 0.43, p=0.001; Figure S2D). Thus, sarcomas have 

a low mutation burden, and the mutations present in some sarcomas predominately reflect 

age-related C>T mutations at CpG dinucleotides, and thus likely represent passenger 

mutations.

Genomic correlates of computational morphometrics—To determine if genomic 

complexity is reflected in nuclear pleomorphism (i.e. highly variable nuclear area), a 

common feature of complex karyotype sarcomas, we used automated computational analysis 

of whole-slide digital pathology images, to calculate a nuclear pleomorphism score as the 

variance of nuclear area for each patient (Figure S2E). Increased nuclear pleomorphism 

correlated significantly with multiple measures of genomic complexity: number of whole 

genome doublings (p=0.003, ANOVA; Figure 3C, D), subclonal genome fraction (p=4e–6), 

and aneuploidy score based on the number of arms with gains or losses (p=5e–6, Pearson 

correlation) (Figure S2F). Our findings provide a genomic basis for this common 

observation in cancer histopathology, and support the further development of computational 

approaches to digital pathology to understand additional aspects of tumor morphology.

Integrated clustering analyses of sarcomas—Unsupervised analysis using the cross-

platform iCluster analysis (Figure 3E) demonstrated that SS was the most distinct sarcoma 

across all platforms. iCluster placed all SS cases into cluster C4, whose discriminatory 

features included partial or complete loss of chromosome 3p in 5 cases (45%), high 
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expression of FGFR3 (p=7e–20) and miR-183 (p=2e–25), and methylation of the PDE4A 
promoter (p=1e–06) (Table S3). While SS lacked recurrent mutations, it had relatively 

uniform and unique patterns of DNA methylation, miRNA expression, and gene expression 

(Figures S3A–C, S4A), consistent with the proposed central role of t(X;18)(p11;q11), which 

results in an SS18- SSX fusion protein that disrupts epigenetic regulation (Kadoch and 

Crabtree, 2013). The distinct patterns of SS mRNA expression are illustrated in a schematic 

2-D tumor “map” visualization of high-dimensional mRNA expression data (Figure S4B), 

where distances in the map approximate the similarities between the samples in the original 

high-dimensional space. The map shows both SS and LMS as spatially distinct clusters from 

other sarcomas.

iCluster C1 was dominated by LMS, 64 of 65 cases (98%), and was distinguished from other 

sarcomas largely by genes linked to myogenic differentiation, including high expression of 

MYLK, MYH11, ACTG2, miR-143, and miR-145 (all p<5e–39) (Figures S3B&C, S4A). 

An association with grade was also noted, with iCluster C1 and C2 containing 11 of the 14 

low-grade sarcomas (FNCLCC grade 1) compared to 3 in C3 and none in C4–5 (p=0.011). 

However, this effect may be driven by iCluster separation by histologic type, as 12 of the 14 

low-grade sarcomas were LMS, which was enriched in C1.

Additional differences between LMS and other sarcomas were found in protein expression, 

as shown by the LMS-enriched RPPA cluster C1 (in which 48 of 53 samples were LMS; 

Figure S4C) that showed significantly lower inferred activity of the apoptosis pathway 

(p=1.03e–9), and higher hormone receptor (ER/PR) levels and inferred PI3K/AKT pathway 

activity (p=1.5e–8 and p=1.02e–9, respectively) (Figure S4D).

Genomic and Molecular Landscapes of Specific Sarcomas

Five sarcoma types had sufficient numbers of samples for detailed analyses of molecular and 

prognostic subsets, as summarized below. These analyses of prognostic subsets should be 

regarded as hypothesis-generating.

DDLPS: Integrated analyses suggest novel prognostic subsets—We first 

analyzed SCNAs in DDLPS. Then, given the lack of good biomarkers for aggressive 

DDLPS, we sought prognostic subsets based on SCNA and DNA methylation data.

Our 50 DDLPS were defined by 12q13~15 amplifications, including highly recurrent copy 

number gains or amplification of MDM2 (100% of our samples), CDK4 (92%), and 

HMGA2 (76%), as previously reported (Barretina et al., 2010) as well as FRS2 (96%) and 

NAV3 (60%). Other frequent SCNAs involved genes reported to inhibit adipocyte 

differentiation: JUN (42%) (Mariani et al., 2007), DDIT3 (32%) (Fawcett et al., 1996), 

PTPRQ (46%) (Jung et al., 2009), YAP1 (16%) (Seo et al., 2013), and CEBPA (24%) 

(Taylor et al., 2011b) (Figure 4A, B, Table S4). All 5 genes showed correlations between 

copy number and mRNA level (p≤0.001; Table S4B). PTPRQ amplification tended to be 

mutually exclusive with JUN amplification (p=0.026), with only 1 tumor (2%) having 

amplification of both genes (Figure 4B). Recurrent deletions (Figure 4A) included ATRX 
(10% deep; 20% shallow), NF1 (6% deep; 22% shallow), and CDKN2A (2% deep; 42% 

shallow). Given that ATRX may be required for response to CDK4 inhibitors (Kovatcheva et 
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al., 2015) and 30% of DDLPS have ATRX deletions, ATRX alterations may represent an 

important correlative biomarker in future clinical trials of CDK4 inhibitors in DDLPS.

To define potentially prognostic subsets of DDLPS, we performed unsupervised clustering 

of SCNA and DNA methylation data. The SCNA data yielded 3 distinct clusters; clusters K1 

(JUN amplified) and K2 (TERT amplified and chromosomally unstable) had worse disease-

specific survival (DSS) than K3 (6q25.1-amplified, with fewer unbalanced segments than K2 

[mean 384 vs 531; p=0.02]) (Figure S5A). The JUN amplification in K1 could contribute to 

the group's poor prognosis, given that JUN overexpression in DDLPS increases migration 

and invasion (Sioletic et al., 2014) and that JUN inhibits adipocyte differentiation via 

repression of CEBPβ (Mariani et al., 2007). Thus, JUN could be an attractive therapeutic 

target as agents for its inhibition become available.

Unsupervised consensus clustering of DNA methylation data defined two clusters: 

hypomethylated (Meth1) and hypermethylated (Meth2) (Figure 4C). Meth2 had more 

genome doublings (p=0.002) and lower leukocyte fraction (p=0.0007), and correlated with 

worse DSS (HR=4.4; p=0.002). Meth2 also had higher inferred content of Th2 cells (Figure 

S5B), a finding linked to poor outcomes in other cancers (De Monte et al., 2011).

Integrating the SCNA and methylation clusters, we partitioned the DDLPS samples into the 

favorable K3 vs the unfavorable K1+K2 SCNA clusters, and subdivided the latter into 

hypermethylated vs hypomethylated cases. The 3 groups differed significantly in DSS 

(p=0.001; Figure 4D); DSS was longest in the K3 group and shortest in the hypermethylated 

K1+K2 group, which showed the lowest inferred fraction of immature dendritic cells (iDC: 

p=0.004) (Bindea et al., 2013) (Figure S5C). While they require validation, these findings 

may: reflect the impact of genomic alterations and immune microenvironment on behavior 

of DDLPS, suggest consideration of different treatments for the groups, and provide a 

rationale for developing SCNAs and methylation as biomarkers in DDLPS.

LMS: ULMS and STLMS are molecularly distinct—Here, we first examined 

similarities and differences between LMS and other sarcomas, then between ULMS and 

STLMS. We then defined iCluster subtypes and pathway activities, and explored how the 

findings could influence treatment approaches.

As described above, in integrated and individual platform analyses, ULMS and LMS were 

generally more similar to each other than to other sarcomas. Pathway-level alterations 

included elevated PI3K/AKT signaling (p=4e–06), a known feature of LMS (Gibault et al., 

2012), and low apoptosis score (p=1e–05) (Figure S6A). We found deletions of the tumor 

suppressors TP53 (9% deep and 60% shallow deletions), RB1 (14% deep, 78% shallow), 

and PTEN (13% deep, 68% shallow) (Figure 5A) and mutations of TP53 in 50%, RB1 in 

15%, and PTEN in 5% of samples (Figure 5B). Other shared features of LMS were elevated 

miR-143 and miR-145 expression, low mRNA expression of inflammatory response genes, 

and low leukocyte fraction by methylation analysis.

In LMS, 12 miRNAs were associated with recurrence-free survival (RFS) (adjusted p<0.05; 

Table S5). The miRNA most highly associated with RFS was miR-181b-5p (univariate HR 
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8.03; adjusted p<0.0001; Figure S6B). Although high miR-181b (>571 RPM) was more 

common in ULMS than in STLMS (26% vs 6%; p=0.027), it emerged as an independent 

predictor of RFS (HR 7.4, 95% confidence interval 3.1–17.8, p=9e-6) in a multivariate 

model including LMS subtype and tumor size. miR-181b expression has been reported to 

promote proliferation and migration of vascular smooth muscle via the PI3K pathway (Li et 

al., 2015); however, we found that high miR-181b-5p was associated with low expression of 

its predicted PI3K pathway targets AKT3 and MTOR (p<0.006, Wilcoxon test), suggesting 

that a different mechanism may account for the predicted contribution of miR-181b-5p to 

aggressive behavior in LMS.

Despite their overall similarity and lack of discriminatory SCNAs, ULMS and STLMS had 

significantly different methylation and mRNA expression signatures, with ULMS showing a 

higher DNA damage response score (p=0.005), and hypomethylation of ESR1 target genes, 

while STLMS had a more prominent HIF1α signaling signature (p=6e-05) (Figure S6A, C).

iCluster analysis of all LMS defined two distinct clusters, one highly associated with ULMS 

and the other with STLMS (Figure 5B; tumors that were exceptions to clustering by site are 

listed in Table S6). Considering STLMS alone, iCluster analysis defined two subgroups, C1 

and C2 (Figure 5C). C1 had worse recurrence-free survival (RFS; p=0.0002) and DSS 

(p=0.008; Figure 5D). Thus, our findings are consistent with prior reports of LMS having 3 

mRNA expression subtypes, i.e. a mostly uterine type and two mostly soft tissue types with 

very different prognoses (Beck et al., 2010; Guo et al., 2015).

The STLMS iCluster groups had molecular features that could contribute to prognostic 

differences. Compared with C2, C1 was hypermethylated and showed higher expression of 

IGF1R and factors involved in cell cycle control (CCNE2), DNA replication (MCM2), and 

DNA repair (FANCI) (all with adjusted p≤0.03) (Table S6). C1 also showed more frequent 

mutations of RB1 (p=0.04) and amplification of 17p11.2-p12 (q=0.022; Figure S6D), a 

known alteration in LMS (Perot et al., 2009) that notably includes MYOCD, encoding 

myocardin, a transcription factor involved in smooth muscle differentiation. MYOCD was 

highly amplified in 10 iCluster C1 cases (40%), independent of LMS type, tumor site, size, 

or grade. Both the STLMS C1 cluster and ULMS were enriched for PTEN deletion, 

mutation, or downregulation and for amplification or overexpression of AKT pathway 

members. Taken together, 46/55 (84%) of ULMS and STLMS iCluster C1 tumors contained 

alterations in the AKT pathway compared to 11/25 (44%) of STLMS iCluster C2 (p=1e–04; 

Figure 5E). The hypomethylated C2 STLMS displayed prominent signatures of 

inflammatory cells, including NK cells (p=0.004) and mast cells (p=0.044).

The predicted differences between ULMS and STLMS in hormonal responsiveness and 

stress response, e.g. through HIF1α and DNA damage pathways, support the use of different 

management approaches for the two, consistent with current treatment guidelines (Koh et al., 

2015). In LMS as a whole, aberrant PI3K-AKT-MTOR signaling may be crucial, given 

recurrent deletion/mutation of PTEN along with frequent amplification and upregulation of 

IGF1R, AKT, RICTOR, and MTOR (Figure 5E) and high AKT pathway scores by RPPA. 

Indeed, MTOR inhibitors such as everolimus and temsirolimus have shown some clinical 

efficacy in LMS (Italiano et al., 2011) (Schwartz et al., 2013), albeit diminished by their 
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indirect upregulation of AKT. Newer TORC1/TORC2 inhibitors and dual PI3K/MTOR 

inhibitors may overcome this limitation and offer more effective therapy for LMS patients.

UPS and MFS: Molecular Data Support a Single Entity with a Phenotypic 
Spectrum—Historically, MFS was considered a subset of UPS (“myxoid malignant fibrous 

histiocytoma”), but more recently MFS and UPS have been classified as distinct clinical 

entities based on their different clinicopathologic features (Fletcher et al., 2013). MFS has 

prominent myxoid stroma and is often lower grade and prone to local relapse, while UPS is 

generally higher grade, more cellular, and prone to distant metastasis and shorter survival.

We found MFS and UPS to be largely indistinguishable across multiple platforms (Figure 

6A), the only exception being a small cluster within UPS with distinct mRNA, methylation, 

and PARADIGM profiles. However, this lack of clear distinction between MFS and UPS 

could be explained if our MFS tissues had underrepresentation of “classic” low-grade MFS 

areas and overrepresentation of the high-grade, UPS-like areas that can evolve within an 

MFS (Figure S6E). On reviewing the frozen tissue submitted for TCGA analysis, we found 

substantial numbers of nonclassic MFS samples (11; 65%) including high-grade epithelioid 

MFS (5; 29%), and these high-grade samples may have contributed to molecular similarity 

between MFS and UPS.

Because the principal morphological distinction between MFS and UPS is the amount of 

myxoid stroma, we asked whether genes associated with myxoid stroma could better 

discriminate MFS and UPS. We identified genes that were differentially expressed based on 

the proportion of histologic myxoid component (0, <50%, and ≥50%). Unsupervised 

clustering of UPS/MFS based on this gene set (Figure 6B) segregated MFS from UPS, 

whether or not they had classic morphology, with matrix-associated genes being more highly 

expressed in MFS. Overall, our molecular data indicate that these two sarcomas are not 

distinct entities, but rather fall along a single spectrum, as in the original nomenclature for 

these tumors. Thus, cases will be encountered across a continuum in terms of myxoid 

component, expression of matrix-related genes, grade, and clinical behavior. Given the 

molecular similarities, common systemic treatment approaches may be appropriate.

Taking UPS/MFS as a single spectrum of disease, we then evaluated SCNAs across the 

combined set of samples (Figure 6C), finding high-level amplification of CCNE1 in 10%, 

VGLL3 in 11%, and YAP1 in 3%, as previously reported (Helias-Rodzewicz et al., 2010). 

VGLL3 and YAP1 are TEAD cofactors in the Hippo signaling pathway that induce 

proliferation. Copy number gains of VGLL3 and YAP1 correlated with gene expression (not 

shown), and a YAP1/VGLL3 target gene signature (Helias-Rodzewicz et al., 2010) was 

strongly expressed in UPS/MFS (p=1e–24; Figure 6D). Thus, a subset of UPS/MFS may be 

driven by the Hippo pathway, for which inhibitors are becoming available.

Multivariable analysis of miRNAs and tumor size in UPS/MFS identified 7 miRNAs that 

together with tumor size were associated with metastasis-free survival (p=2e–08; Figure 

S6F), and 7 that together with tumor size were associated with DSS (p=3e–6; Figure 6E); 

both sets of miRNAs included miR-100-5p and miR-194-5p. Notably, among the miRNAs, 

downregulation of miR-22, which has also been reported as a poor prognostic factor in 
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another complex karyotype sarcoma, osteosarcoma (Wang et al., 2015), had the strongest 

association with poor DSS.

Immune Microenvironment Signatures

Among the variable genes in the pan-sarcoma unsupervised clustering of the mRNA data 

were 203 genes involved in immune response and inflammation (Figure 7A). To better 

define the immune cell infiltrates, we assigned each sarcoma type an immune infiltration 

score for various immune cells based on their gene expression signatures (Bindea et al., 

2013) (Figure 7B). Cases with high or low immune infiltration scores typically showed 

coordinate increases or decreases in multiple inflammatory cell types, rather than changes in 

a single cell type.

UPS/MFS and DDPLS had the highest median macrophage scores among sarcoma types; 

DDLPS had highest CD8 score, and STLMS had highest PD-L1 score (Figure S7A), which 

was significantly higher than in ULMS (p=4e–5). Across different tumors, PD-L1 mRNA 

level correlated with the copy number of its gene (CD274) (r=0.42, adjusted p=4e–10), but 

not with PD-1 score. Immune signatures in each sarcoma type were validated using 

publically available RNA-seq data from 113 sarcomas (Lesluyes et al., 2016). Median 

immune signatures in LMS, MFS, and SS were strongly correlated between the two studies 

(Spearman coefficients 0.908, p=8e–09; 0.819, p=9e-06; and 0.858, p=4e-08, respectively) 

(Figure S7B). This approach was not well suited to validation in DDLPS and UPS (as the 

immune subtypes all had median scores around zero in both series), but the distribution of 

scores was similar between cohorts (Figure S7C).

We compared DSS of patients with tumors in the top versus bottom third of immune 

infiltrate scores (Figure 7C & D). NK cells were the only immune cell type to correlate 

significantly with DSS in multiple sarcoma types. For UPS/MFS, DCs and iDCs correlated 

with improved DSS, suggesting a role for antigen presentation in the immunologic response 

to these tumors. The impact of immune infiltration scores on DSS differed in STLMS and 

ULMS (Figure 7D). In DDLPS, an elevated Th2 signature was associated with shorter DSS 

(Figure 7D).

Expression of known druggable immune microenvironment markers was then assessed. We 

found differential expression based on sarcoma type of B7-H3, TGFB1, and TIM3 (p=1.6e–

15, p=9.8e–11, and p=2.9e–14, respectively by Kruskal-Wallis test; Figure S7D), among 

other markers, with median expression highest in DDLPS, UPS, and MFS.

Taken together, these data suggest that the immune microenvironment differentially affects 

outcome in different sarcoma types, and can contribute positively or negatively to DSS. 

Moreover, expression of immune microenvironment markers differs by sarcoma type and 

may affect response to immune checkpoint inhibitors. Such findings are of particular interest 

given the promising results of the SARC028 trial of a PD-1 inhibitor, in which 40% of UPS 

cases showed responses (Burgess et al., 2017). Our study suggests that these immunotherapy 

agents should be specifically explored in MFS as well.
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CONCLUSIONS

This multi-platform genome-wide dataset provides the most comprehensive database of 

DDLPS, MFS, UPS, and LMS genomic and epigenomic alterations to date. The depth and 

breadth of alterations reveals the decidedly heterogeneous nature of adult soft tissue 

sarcomas and highlights their presumed dependence on SCNAs, rather than targetable 

activating point mutations. In both integrated and platform-specific analyses, the one fusion-

associated sarcoma type in the study (SS) was the most dissimilar to other sarcomas, but the 

analyses also revealed distinct differences among LMS and the other complex karyotype 

sarcomas. Salient differences include MDM2, CDK4, JUN, and TERT amplifications in 

DDLPS; MYOCD amplification, PTEN mutations/deletions, and AKT, IGF1R, and MTOR 

pathway activation in LMS; and VGLL3 amplification and Hippo pathway activation in 

UPS/MFS. Across the sarcoma types (though less so in DDLPS), deletions were more 

prominent than amplifications, and relevant mutations in tumor suppressors substantially 

more frequent than those in oncogenes. Moreover, genomic analyses defined prognostically 

distinct subsets of cases among DDLPS and STLMS that could both improve risk 

stratification and guide new therapeutic strategies. Immune cell infiltration in the tumor 

microenvironment was commonly detected in genomically complex DDLPS, LMS, UPS, 

and MFS and was highly associated with clinical outcome. Given the abovementioned 

efficacy of PD-1 blockade in some UPS, the nature of the immune cell types recruited may 

serve as an important determinant of response to PD-1 blockade. This study provides a 

detailed genomic landscape of multiple sarcoma types now available for further mining by 

the sarcoma research community to improve our understanding of sarcomagenesis, and 

hopefully leading to new therapeutic approaches for these deadly diseases.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Alexander Lazar (alazar@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—TCGA Project Management has collected necessary human subjects 

documentation to ensure the project complies with 45-CFR-46 (the “Common Rule”). The 

program has obtained documentation from every contributing clinical site to verify that 

Institutional Review Board (IRB) approval has been obtained to participate in TCGA. Such 

documented approval may include one or more of the following:

• An IRB-approved protocol with Informed Consent specific to TCGA or a 

substantially similar program. In the latter case, if the protocol was not TCGA-

specific, the clinical site PI provided a further finding from the IRB that the 

already-approved protocol is sufficient to participate in TCGA.

• A TCGA-specific IRB waiver has been granted.

• A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR- 

46 applicable. The two most common exemptions cited were are that the research 
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fall under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed 

consent because the received data and material do not contain directly 

identifiable private information.

• A TCGA-specific letter that the IRB does not consider the use of these data and 

materials to be human subjects research. The was most common for collections 

in which the donors were deceased.

Specimens were collected retrospectively. Selection of adult sarcoma types for the TCGA 

SARC study was predicated on the ability to accrue sufficient numbers of cases, and select 

tumors for which it would be possible to extract high-quality nucleic acids for analysis. 

Thus, the study was designed to focus on common adult sarcoma types, including samples 

from patients diagnosed with one of the following sarcoma types: dedifferentiated 

liposarcoma (DDLPS); leiomyosarcoma (LMS) of gynecologic (ULMS) or soft tissue 

(STLMS) origin; undifferentiated pleomorphic sarcoma (UPS), also known as malignant 

fibrous histiocytoma (MFH) (pleomorphic MFH, giant cell MFH, inflammatory MFH, and 

UPS not otherwise specified); malignant peripheral nerve sheath tumor (MPNST); desmoid-

type fibromatosis; myxofibrosarcoma (MFS); and synovial sarcoma (SS) (monophasic, 

biphasic, or poorly differentiated). Patients were ineligible if they had a history of systemic 

chemotherapy for sarcoma or if their tumor had undergone prior radiotherapy, thus adult 

sarcomas commonly treated with neoadjuvant therapy were not considered for this study. 

Due to the difficulty in extracting sufficient DNA and RNA yields, well-differentiated 

liposarcoma was not considered for inclusion. All tumors were primary, with the exception 

of DDLPS, for which recurrent liposarcomas (n=4) were allowed if the tumor represented 

the first instance of DDLPS in that patient.

In total, samples for 437 cases were received at the TCGA Biospecimen Core Resource 

(BCR), and 206 of them remained in the study set after QC and Pathology review (see 

METHOD DETAILS below).

The clinical data collected included patient age, sex, race, ethnicity, height, weight, tumor 

anatomic location, tumor clinical dimensions, tumor pathology dimensions, clinical and 

pathologic AJCC staging (7th edition), history of prior cancers, synchronous cancers, and 

subsequent cancers (including distant metastasis, local recurrence, or second primary 

cancers), genetic testing if done, date of treatments, vital status, date of death, disease-

specific survival, recurrence-free survival, and date of last contact. Descriptive clinical and 

pathologic data are summarized in Table S1.

Because the selected cases were not consecutive, analyses of association with clinical 

outcome are considered hypothesis-generating and require confirmation.

Samples were submitted to the BCR from 32 centers (Analytical Biological Services, Inc.; 

Asterand, Inc.; Baylor College of Medicine (two contributing sites); Brigham and Women's 

Hospital; Cedars-Sinai Medical Center; Cleveland Clinic; Cureline, Inc.; Emory University; 

Fox Chase Cancer Center; Hartford Hospital; International Genomics Consortium; ILSbio, 

LLC; Maine Medical Center; MD Anderson Cancer Center; Memorial Sloan Kettering 

Cancer Center; Moffitt Cancer Center; Montefiore Medical Center; Mount Sinai School of 
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Medicine; Ontario Institute for Cancer Research (Ottawa); St. Joseph's Hospital and Medical 

Center (Phoenix, AZ); University of California, Davis; University of Iowa; University of 

Kansas Medical Center; University of Minnesota; University of New Mexico; University of 

North Carolina; University of Pittsburgh; University of Washington; Vanderbilt University; 

and Washington University) under IRB-approved protocols as described above. Primary 

tumor samples and matched germline control DNA (blood or blood components, including 

DNA extracted at the submitting site; non-neoplastic solid tissue) were obtained from 

patients who had received no prior treatment for their disease (chemotherapy or 

radiotherapy). Specimens were shipped overnight to the Biospecimen Core Resource using a 

cryoport that maintained an average temperature of less than −180°C.

High-resolution digital slide images (200x or 400x magnification) were prepared at the 

BCR, and were taken from both the frozen section slides created at the BCR from tissue 

submitted for analysis and representative H&E-stained slides submitted from the tissue 

source sites from diagnostic formalin-fixed, paraffin-embedded (FFPE) tumor tissue. In 

total, one to 6 digital slides were generated from each case.

METHOD DETAILS

Biospecimens and Quality Control

Frozen section quality control: Frozen sections were assessed for quality, using tumor and 

normal specimens from a frozen section slide prepared by the BCR. The percent tumor 

nuclei, percent necrosis, and other pathology annotations were assessed (see Pathology 

Review section, below), and normal samples were confirmed to be free of tumor. Tumor 

samples with ≥60% tumor nuclei and ≤20% necrosis were submitted for nucleic acid 

extraction.

Sample processing: DNA and RNA were extracted and quality was assessed at the central 

BCR. RNA and DNA were extracted from tumor using a modification of the DNA/RNA 

AllPrep kit (Qiagen). The flow-through from the Qiagen DNA column was processed using 

a mirVana miRNA Isolation Kit (Ambion). This latter step generated RNA preparations that 

included RNA <200 nt suitable for miRNA analysis. DNA was extracted from blood using 

the QiaAmp DNA Blood Midi kit (Qiagen).

RNA samples were quantified by measuring Abs260 with a UV spectrophotometer and DNA 

quantified by PicoGreen assay. DNA specimens were resolved by 1% agarose gel 

electrophoresis to confirm high molecular weight fragments. A custom Sequenom SNP 

panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify, for each 

case, that tumor DNA and germline DNA were derived from the same patient. Five hundred 

nanograms of each tumor and germline DNA were sent to Qiagen (Hilden, Germany) for 

REPLI-g whole-genome amplification using a 100 µg reaction scale. RNA was analyzed via 

the RNA6000 Nano assay (Agilent) for determination of an RNA Integrity Number (RIN), 

and only analytes with a RIN ≥7.0 were included in this study. Only cases yielding a 

minimum of 6.9 µg of tumor DNA, 5.15 µg RNA, and 4.9 µg of germline DNA were 

included in this study.
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For cases that had sufficient residual tumor tissue following extraction of nucleic acids, a 10- 

to 20-mg portion of snap-frozen tumor was submitted to MD Anderson for reverse phase 

protein array (RPPA) analysis. This portion was adjacent to the tissue used for molecular 

sequencing and characterization.

Sample qualification: The BCR received tumor samples with germline controls from a total 

of 437 cases, of which 176 were disqualified at the BCR. Twenty-two were disqualified 

during prescreening at the BCR for not meeting study entry requirements or could not 

otherwise be processed. The other 154 disqualified cases did not pass quality control checks 

at the BCR, including 7 cases for insufficient tumor nuclei (<60%), 1 for excessive necrosis 

(>20%), 1 for unacceptable diagnosis, 93 for RNA integrity scores of <7.0, 48 for 

insufficient nucleic acid yields, and 4 for not having genotypically matched tumor and 

germline samples. The 261 cases that qualified were sent for further genomic analysis. Of 

these 261 cases, an additional 24 failed further QC during annotation or processing and were 

removed from the final cohort, including 4 that failed SNP QC, 5 that failed genotype 

concordance, 5 that had thousands of putative artifacts, 2 for which mRNA libraries could 

not be generated, 1 for which miRNA could not be characterized, 4 for history of 

unacceptable prior treatment, 2 not meeting study protocol after further annotation, and 1 for 

which no primary tumor was available. The final set of 237 cases was subjected to further 

expert pathology review (see below).

Pathology review: A consensus panel of 6 pathologists reviewed and scored the images for 

237 sarcomas utilized for molecular analysis after all QC exclusions. The number of slides 

available for review from each case ranged from 1–6. Pathology reports were reviewed for 

tumor site, depth, reported immunohistochemical studies and/or molecular diagnostics. All 

cases diagnosed as DDLPS were required to have evidence of increased chromosome 12q15 

copy number, confirmed by copy number analysis. LMS were required to have unequivocal 

histologic or immunophenotypic evidence of smooth muscle differentiation.

Consensus review in real-time via screen sharing and conference calls was required for all 

cases in which expert review was discrepant from the submitting diagnosis, cases where 

diagnosis was challenging based on available materials, and for all MFS. The initial round of 

consensus reviewed 52 cases. A second round of consensus pathology review occurred to re-

evaluate 28 cases with outlier molecular signatures and confirm consistency of diagnosis of 

UPS and MFS.

Subsequently all cases of MFS and UPS were re-evaluated by one pathologist and scored for 

percent myxoid stroma and presence of classic histologic features on the frozen tissue 

submitted for molecular analyses. Classic low-grade MFS histology was defined as having 

the following features: prominent myxoid stroma with curvilinear vessels, low cellularity, 

variable nuclear atypia, and multinodular architecture. Classic UPS was defined as having 

enlarged, markedly pleomorphic nuclei, a fascicular to storiform to solid growth pattern, and 

scant stroma. Cases which had foci of myxoid stroma without characteristic architecture or 

cellular features were not considered to be classic MFS, but were still scored for percent of 

frozen tumor with myxoid background.
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After review, 31 of the 237 cases were excluded from further analysis (Figures S1A, S4B), 

including 2 desmoid tumors (excluded for insufficient number of cases), and 6 tumors of 

types not included in the study criteria (giant cell tumor of bone, pleomorphic liposarcoma, 

myxoid liposarcoma, PEComa, atypical intradermal smooth muscle tumor, and pleomorphic 

dermal sarcoma). Five cases were excluded as not being sarcoma, including 3 probable 

melanomas (Figure S1A). Seventeen cases were excluded as being of uncertain classification 

based on available images and reports, and one DDLPS was excluded for being infiltrated by 

chronic lymphocytic lymphoma (CLL). Of the 206 cases considered to represent an 

acceptable type for study, 20 were reclassified from the initial diagnosis to a different type, 

based on histologic appearance, presence or absence of focal chromosome 12q~15 

amplification, and expression of muscle markers (Figure S1A).

Sarcoma grade was calculated using the system of the Fédération Nationale des Centres de 

Lutte Contre le Cancer (FNCLCC). Mitotic counts and percent tumor necrosis were 

extracted from pathology reports, where available, or estimated on digital images otherwise. 

Cases were staged according to the American Joint Committee on Cancer (AJCC) 7th 

edition staging system.

Copy Number Analysis

SNP-based copy number analysis: Affymetrix SNP 6.0 arrays were used to hybridize 

genomic DNA from each tumor and normal sample using standard protocols at the Genome 

Analysis Platform of the Broad Institute (McCarroll et al., 2008). Briefly, from raw CEL 

files, Birdseed was used to infer preliminary copy number at each probe locus (Korn et al., 

2008). For each tumor, tangent normalization was applied to estimate genome-wide copy 

number. Tangent normalization is based on the observation that the linear combination of all 

normal samples that are most similar to the tumor tends to match the noise profile of the 

tumor better than any set of individual normal samples; this linear combination is therefore 

used to divide the tumor signals (Cancer Genome Atlas Research Network, 2011) (http://

www.broadinstitute.org/cancer/cga/copynumber_pipeline). Individual copynumber estimates 

then underwent segmentation using Circular Binary Segmentation (Olshen et al., 2004), 

during which regions corresponding to germline copy number alterations were removed. 

Ziggurat Deconstruction was then applied to assign a length and amplitude to each identified 

copy number change, in a way that accounts for different copy number values inferred 

across the locus from the heterogeneous cell population (Mermel et al., 2011). Allelic copy 

number, whole genome doubling, subclonality, purity, and ploidy estimates were calculated 

using the ABSOLUTE algorithm (Carter et al., 2012). For samples with ABSOLUTE-

corrected copy number, CBS-derived segmented copy number values were re-centered using 

the In Silico Admixture Removal (ISAR) procedure (Zack et al., 2013). Significant focal 

copy number alterations across all sarcomas and within each sarcoma type were identified 

from ISAR-corrected segmented data using GISTIC 2.0.22 (Mermel et al., 2011). Allelic 

copy number derived from ABSOLUTE was used along with relative copy number to 

determine regions of loss of heterozygosity and homozygous deletions.

Focal amplification & shallow & deep deletion: For each tumor the median copy-ratio for 

each chromosome arm is calculated. A +2 is calculated as a value that is higher than the 
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maximum of these arm values. A −2 is a value less than the minimum of these values. A +1 

or −1 (shallow amplifications and deletions respectively) corresponds to alterations between 

0.1 relative copy number and the thresholds for deep alterations (Mermel et al., 2011). 

Values of −2 (deep deletion) track with deletions to less than one half the baseline ploidy or 

homozygous deletions. Values of +2 represent amplification above chromosome arm–level 

gains and track with focal amplifications. To validate these definitions, we compared 

GISTIC 2.0 calls of shallow or deep deletion or other copy number status for CDKN2A and 

NF1 with manually curated ABSOLUTE calls for homozygous or heterozygous deletion or 

other copy number status. For each gene, there was significant correlation between deep 

deletion and homozygous deletion, shallow deletion and heterozygous deletion, and “other” 

categories, chi-squared p<0.0001.

Copy number–based cluster analysis: Tumors were clustered based on thresholded copy 

number at recurring alteration peaks from GISTIC analysis (all_lesions.conf_99.txt file). 

Clustering was done in R based on Manhattan distance using Ward's method.

Assessment of ATRX copy number alterations: The copy number alteration (more 

specifically deletion) of ATRX was assessed independently using two methods, SNP6.0 

arrays (see SNP-based copy number analysis, above) and VarScan 2 (Koboldt et al., 2012). 

In VarScan 2, the tumor and its matching normal whole-exome BAM files were assessed 

simultaneously using a heuristic approach to detect sequence variants. Copy number changes 

were assigned after normalization of read depths of the two BAM files. The copy number 

alteration was validated by comparing the outputs of both methods while taking into 

consideration the purity of the samples. A sample was considered to have copy number 

deletion in ATRX when the outputs from both methods gave <1.79 in the locus or part of the 

locus and when GISTIC2.0 indicated a deletion status.

DNA Sequencing and Analysis

Whole exome and whole genome sequencing: Whole exome sequencing and, in a subset 

of cases, whole genome sequencing were performed at Washington University. Dual-indexed 

Illumina libraries were constructed according to standard protocols. Unique, 6bp molecular 

barcodes were used to identify individual samples. Exome capture enrichment was 

performed with pooled libraries using Nimblegen SeqCap EZ Human Exome v3.0. Samples 

were subsequently sequenced on Illumina HiSeq 2000 instruments. The pool size varied, but 

was generally 8–10. Each pool was sequenced across 2 lanes. A total of 518 tumor and 

normal aliquots from 255 cases were sequenced to a minimum average target depth of 20x 

across 80% of target regions. The 206 cases in the final cohort were utilized for downstream 

analysis. 40 exome-sequenced cases were selected for additional whole genome sequencing 

(WGS) and 37 were retained for downstream analysis (18 DDLPS, 8 STLMS, 10 ULMS, 

and one UPS). WGS was performed using Illumina HiSeq 2000 for the initial 70 aliquots 

and HiSeq X Ten instrument for the final 13 aliquots.

Validation of somatic mutations: A second set of dual-indexed Illumina libraries was 

constructed according to standard protocols using the original DNA aliquots when sufficient 

genomic DNA was available (n=197 samples). These were pooled, then enriched by 
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performing hybrid capture using 120-mer custom capture oligos (Integrated DNA 

Technologies [IDT]). The target regions for somatic indels and point mutations were defined 

as a 100-bp region surrounding the mutation site. For probes designed in repetitive regions, 

those having >5 mismatches to similar sequences in the human genome were discarded. 

Sequence data were generated on Illumina HiSeq 2500 instruments. Among the 197 samples 

with custom capture validation data from the second library, 90.8% (9557/10522) of 

reported mutations were confirmed.

In order to identify TERT promoter mutations and presence of cancer –related viruses, 

original source material from the second set of libraries was also pooled and hybridized to 

120-mer IDT probes targeting the TERT promoter mutation hotspots and cancer-related 

viruses. Sequence data for the TERT promoter and cancer-related viruses were generated 

using Illumina MiSeq instruments.

Target and probe bed files for all capture sets were submitted to CGHub and are available at 

http://genome.wustl.edu/pub/custom_capture/.

Read alignment: Each lane or sub-lane of data for whole genome, exome and custom 

capture validation sequencing was aligned with bwa v0.5.9 (Li and Durbin, 2009) to 

GRCh37-lite. Defaults were used in both bwa aln and bwa sampe (or bwa samse if 

appropriate) with the exception that for bwa aln we used four threads (-t 4) and bwa's built in 

quality-based read trimming (-q 5). ReadGroup entries were added to resulting SAM files 

using Samtools add-read-group-tag. This SAM file was then converted to a BAM file using 

Samtools v0.1.16, name sorted (samtools sort -n), mate pairings assigned (samtoolsfixmate), 

resorted by position (samtools sort), and indexed using Samtools index-bam.

Read duplication marking and merging: Reads from multiple lanes, but the same 

sequencing library, were merged, if necessary, using Picard v1.46 MergeSamFiles and 

duplicates were then marked per library using Picard MarkDuplicates v1.46. Lastly, each 

per-library BAM with duplicates marked was merged together to generate a single BAM file 

for the sample. MergeSamFiles was run with SORT_ORDER=coordinate and 

MERGE_SEQUENCE_DICTIONARIES=true parameters. For both tools, 

ASSUME_SORTED=true and VALIDATION_STRINGENCY=SILENT were specified. All 

other parameters were set to defaults. Samtoolsflagstat was run on each BAM file generated 

(per-lane, per-library, and final merged).

Multicenter mutation calling: Mutations were called by four production or analysis centers 

within the TCGA network; Washington University, Broad Institute, UC Santa Cruz (UCSC), 

and Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency (BCGSC). 

Filtered calls from the 4 callers utilized by Washington University (described below) were 

merged using joinx v1.9 (joinx sort --unique --stable). Germline dbSNP sites reported by the 

1000 Genomes Projects were filtered if the minor allele fraction was greater than zero. In 

addition, for the normal BAM, we removed putative variants with fewer than 8x coverage of 

the reference allele or greater than 1 somatic variant supporting read or 1% variant allele 

frequency. For the tumor exome BAM, we required a minimum of 2 supporting read and a 

somatic variant allele frequency of 5%. Additional novel somatic mutation calls submitted 
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by the Broad Institute, BCGSC, and UCSC to the TCGA Data Coordinating Center were 

downloaded and filtered to remove known, common germline dbSNP sites. Remaining 

variants were annotated using Gencode 19 transcripts from Ensembl release 74, and non-

coding sites were removed. Read counts were generated for all remaining novel putative 

variants, and said variants were incorporated into the final mutation annotation format 

(MAF) if they met the same minimum coverage, maximum coverage, and variant allele 

frequency requirements described below. A separate MAF was delivered for the somatic 

mutations called in whole-genome sequence data; it used the same alignment and detection 

parameters described for exome analysis with no restriction for coverage or protein 

translational effect.

Single-nucleotide variant and indel callers: Single-nucleotide variant (SNV) calling and 

analytic pipelines were performed as follows in an institution-specific manner:

Washington University: Single-nucleotide variant (SNV) callers included: Samtools v0.1.16 

(Li et al., 2009) (samtools pileup --cv -A -B), SomaticSniper v1.0.4 (Larson et al., 2012) 

(bam-somaticsniper -F vcf -G -L -q 1 -Q 15), Strelka v0.4.6.2 (Saunders et al., 2012) (with 

default parameters except for setting is SkipDepthFilters = 1), and VarScan v2.2.6 (Koboldt 

et al., 2012) (--min-coverage 3 --min-var-freq 0.08 --p-value 0.10 -- somatic-p-value 0.05 --

strand-filter 1).

The Washington University analytic strategy was as follows: First, Samtools calls were 

retained if they met all of the following rules, inspired by the mapping short DNA 

sequencing reads and calling variants using the mapping quality scores (MAQ) software 

algorithm (Li et al., 2008):

• Site is greater than 10 bp from a predicted indel of quality 50 or greater

• The maximum mapping quality at the site is ≥ 40

• Fewer than 3 SNV calls in a 10 bp window around the site

• Site is covered by at least 3 reads and fewer than 1,000,000,000 reads

• Consensus quality ≥ 20

• SNP quality ≥ 20

After these filters were applied, Samtools and SomaticSniper calls were unioned using joinx 

v1.9 (https://github.com/genome/joinx; joinx sort --stable --unique). The resulting merged 

set of variants were additionally filtered to remove likely false positives (Larson et al., 2012; 

Li et al., 2009). Bam-readcount v0.4 (https://github.com/genome/bam-readcount) with a 

minimum base quality of 15 (-b 15) was used to generate metrics, and sites were retained 

based on the following requirements:

• Minimum variant base frequency at the site of 5%

• Percent of reads supporting the variant on the plus strand ≥ 1% and ≤99% 

(variants failing these criteria are filtered only if the reads supporting the 

reference do not show a similar bias)
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• Minimum variant base count of 4

• Variant falls within the middle 90% of the aligned portion of the read

• Maximum difference between the quality sum of mismatching bases in reads 

supporting the variant and reads supporting the reference of 50

• Maximum mapping quality difference between reads supporting the variant and 

reads supporting the reference of 30

• Maximum difference in aligned read length between reads supporting the variant 

base and reads supporting the reference base of 25

• Minimum average distance to the effective 3’ end of the read for variant 

supporting reads of 20% of the sequenced read length

• Maximum length of a flanking homopolymer run of the variant base of 5

After this filtering, the SomaticSniper/Samtools calls were additionally filtered to high 

confidence variants by retaining only those sites where:

• The average mapping quality of reads supporting the variant allele was ≥ 40

• The SomaticScore of the call was ≥ 40.

VarScan calls were retained if they met the following criteria:

• VarScan reported a somatic p-value ≤ 0.07

• VarScan reported a normal frequency ≤ 5%

• VarScan reported a tumor frequency ≥ 10%

• VarScan reported ≥ 2 reads supporting the variant.

VarScan variants passing these criteria were then filtered for likely false positives using bam-

readcount v0.4 and identical criteria as described above for SomaticSniper. Fully filtered 

calls as described above for SomaticSniper and VarScan were then merged with calls from 

Strelka using joinx v1.9 (joinx sort --stable --unique) to generate the final callset.

Indels were detected using four methods: Genome Analysis Toolkit (GATK) 1.0.5336 

(McKenna et al., 2010) (-T IndelGenotyperV2 --somatic --window_size 300 -et NO_ET), 

retaining only those which were called as somatic; Pindel v0.2.2 (Ye et al., 2009) (-w 10; 

with a config file generated to pass both tumor and normal BAM files set to an insert size of 

400); Strelka v0.4.6.2 (with default parameters except for setting isSkipDepthFilters = 1); 

and VarScan v2.2.6 (--min-coverage 3 --min-var-freq 0.08 --pvalue 0.10 --somatic-p-value 

0.05 --strand-filter 1).

Pindel calls were retained if:

• They had no support in the normal data

• More reads were reported by Pindel than reported by Samtools at the indel 

position or if the number of supporting reads from Pindel was ≥ 8% of the total 

depth at the position reported by Samtools
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• Samtools reported a depth less than 10 at the region and Pindel reported more 

indel supporting reads than reads mapped with gaps at the site of the call

• A Fisher's exact test p-value ≤ 0.15 was returned when comparing the normal to 

the tumor in number of reads with gapped alignments versus reads without.

VarScan indel calls were retained if VarScan reported all of the following:

• A somatic p-value ≤ 0.07

• A normal frequency ≤ 5%

• A tumor frequency ≥ 10%

• ≥ 2 reads supporting the variant.

Broad Institute: To avoid mix-ups between tumor and normal samples, as well as cross-

contamination between tumor samples, alignments were first subjected to quality control 

using ContEst (Cibulskis et al., 2011). The MuTect algorithm version 1.1.6 (Cibulskis et al., 

2013) was used to generate somatic mutation calls, which were subsequently filtered as 

previously described (Costello et al., 2013) to remove any spurious calls due to shearing-

induced generation of 8-oxoguanine. Indels were identified using the indelocator algorithm. 

Details and tools are available at www.broadinstitute.org/cancer/cga. Functional annotation 

of mutations was performed with Oncotator (Ramos et al., 2015) using Gencode V18.

UCSC: Single-nucleotide somatic mutations were identified by RADIA (RNA AND DNA 

Integrated Analysis), a method that combines the patient-matched normal and tumor DNA 

whole exome sequencing (WES) with the tumor RNA sequencing (RNA-Seq) for somatic 

mutation detection (Radenbaugh et al., 2014), software available at: https://github.com/

aradenbaugh/radia/. The inclusion of the RNA-Seq data in RADIA increases the power to 

detect somatic mutations, especially at low DNA allelic frequencies. By integrating the DNA 

and RNA, we can rescue some mutations that would be missed by traditional mutation 

calling algorithms that examine only the DNA. RADIA classifies somatic mutations into 3 

categories depending on the read support from the DNA and RNA: 1) DNA calls – 

mutations that had high support in the DNA, 2) RNA Confirmation calls – mutations that 

had high support in both the DNA and RNA, 3) RNA Rescue calls – mutations that had high 

support in the RNA and weak support in the DNA. Here RADIA identified 32,573 DNA 

mutations, 5,785 RNA Confirmation mutations, and 843 RNA Rescue mutations.

BCGSC: Strelka (Saunders et al., 2012) (v1.0.6) was used to identify somatic single-

nucleotide variants and short insertions and deletions from the TCGA SARC exome dataset. 

All parameters were set to defaults, with the exception of "isSkipDepthFilters", which was 

set to 1 in order to skip depth filtration, given the higher coverage in exome datasets. We 

analyzed 259 pairs of libraries. When a blood sample was available, it served as the matched 

normal specimen; otherwise, the matched normal tissue was used. The variants were 

subsequently annotated using SnpEff (Cingolani et al., 2012), and the COSMIC (v61) 

(Forbes et al., 2010) and dbSNP (v137) (Smigielski et al., 2000) databases.
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Identification of significantly mutated genes: The entire set of 206 sarcomas and those 

sarcoma types with greater than 15 samples (LMS, DDLPS, UPS, and MFS) were separately 

analyzed for significantly mutated gene (SMG) detection. Variants from the MAF (described 

previously) were used to define the region of interest (ROI) file. Coverage for each sample 

over an ROI was collected using the corresponding tumor/normal bam file. MAF files for 

each cancer type and a MAF combining all available samples were created. Mitochondrial 

and RNA genes were removed from this analysis. We performed MuSiC2 (https://

github.com/ding-lab/MuSiC2) frequency-based SMG identification (Dees et al., 2012). 

SMGs were defined as genes significantly mutated with FDR < 0.05 using a convolutions 

test.

Identification of driver mutations: Due to the smaller sample sizes per cohort and the 

lower mutation frequency of somatic point mutations and indels in sarcoma, we expanded 

our analysis to identify additional mutations in putative cancer genes. A collection of 624 

cancer genes (Niu et al., 2016) was used to identify possible driver mutations in individual 

cases.

Assessment of telomere length—Sequencing reads containing (TTAGGG)7 repeats 

were classified as telomeric based on previously reported results (Ding et al., 2014), and 

TelSeq was used to estimate the telomere length (Ding et al., 2014). The telomeric reads 

were quantified, and the telomere lengths of tumor and its matching normal were estimated 

separately as a function of sequencing depth. Reliability of telomeric content estimated from 

WES was confirmed by high concordance with telomeric length inferred from 31 cases with 

available and compatible whole-genome sequencing (WGS) files (Pearson correlation: 0.79). 

To validate TelSeq results, we also assessed telomere length from exome data by an 

independent method (written in-house). The outputs from both TelSeq and the inhouse 

method were log2 transformed and subsequently compared. The results were in high 

concordance with each other (Pearson correlation = 0.98).

To assess telomere length in the sarcomas, we performed a Gaussian Mixture Clustering 

guided by optimal Bayesian information criterion value on the log2 ratio of tumor telomere 

length using mclust package in R (Yeung et al., 2001). Based on the clustering result, we 

identified three groups: 1) samples with gain in telomere length, 2) samples with loss in 

telomere length, and 3) samples with no change in telomere length.

The association of ATRX and TP53 mutations/deletions with telomere length of different 

sarcoma subtypes was assessed with Student’s T-tests. Multiple regression analysis was also 

performed to look for association of several differentially expressed genes with changes in 

telomere length. Variables included in the multiple regression analysis were: ATRX 

mutation/deletion status, TP53 mutation status, and expression levels of ATRX, TP53, 

HNRNPC, APEX1, NPM1, RPS17, and SEC11C.

Mutation Signature Analysis

De-novo signature discovery in WES samples: To systematically explore mutational 

processes operating in 205 SARC WES samples (excluding one sample with ultraviolet 
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signature), we first performed a de-novo signature extraction using a Bayesian variant of the 

non-negative matrix factorization (Bayesian NMF) (Kasar et al., 2015).

De-novo signature discovery in WGS samples: The lack of power due to a low mutation 

rate in WES samples (~57 mutation per tumor) was a significant challenge in the de-novo 

signature discovery. Therefore, we performed a separate signature discovery in 37 WGS 

samples (~5010 mutations per tumor) to examine additional processes that had only a minor 

contribution in WES. The resulting WGS signatures were then projected onto coding regions 

to distinguish mutational signatures similar to those observed in WES samples and from 

novel signatures.

Inference of signature activity: De-novo signature discovery in both WES and WGS 

samples identified four major mutational processes: COSMIC1, spontaneous cytosine 

deamination; COSMIC5, unknown etiology; COSMIC6, microsatellite instability (MSI); 

and COSMIC2/13, APOBEC. Based on this de-novo signature analysis we performed a 

projection approach to infer sample-specific activities of those mutational processes. We first 

removed two putative MSI samples to minimize possible contamination and interference 

among signatures, and we utilized a variant of NMF to enable a forced de-convolution of 

mutational processes in 203 WES samples. More specifically, the projection was done by 

minimizing the Kulbeck-Leibler divergence while we froze the signature-loading matrix, W 
(96 × 4), comprised of the column vectors corresponding to normalized signature profiles of 

COSMIC1, COSMIC5, and COSMIC2 and 13, and while we iteratively updated the activity-

loading matrix H (4 × 203) to best approximate the mutation count matrix, X (96 × 203). 

The resulting row vectors in H represents a deconvoluted signature activity across samples 

(Figure 3A). We validated the accuracy of the projection approach by examining the 

correlation between (1) the inferred activity of COSMIC2 and 13 (APOBEC) in WES 

samples determined from the projection approach and (2) the combined activity of 

SIG.WGS.2 and SIG.WGS.4 determined from the denovo signature discovery for 37 WGS 

samples (Pearson correlation = 0.7 and P < 10−6).

mRNA Analysis

mRNA library construction and processing: One µg of total RNA was converted to 

mRNA libraries using the Illumina mRNA TruSeq kit (RS-122-2001 or RS-122-2002) 

following the manufacturer’s directions. Libraries were sequenced 48×7×48 bp on the 

Illumina HiSeq 2000 as previously described (Cancer Genome Atlas Research Network, 

2012). FASTQ files were generated by CASAVA. RNA reads were aligned to the hg19 

genome assembly using MapSplice 0.7.5 (Wang et al., 2010). Gene expression was 

quantified for the transcript models corresponding to the TCGA GAF2.1 (https://gdc-

api.nci.nih.gov/v0/data/a0bb9765-3f03-485b-839d-7dce4a9bcfeb) using RSEM (Li and 

Dewey, 2011), and gene expression was normalized within-sample to a fixed upper quartile.

Fusion gene alignments were determined using MapSplice (Wang et al., 2010). For further 

details on this procedure, refer to Description file at the Data Coordinating Center data 

portal under the V2_MapSpliceRSEM workflow (https://gdcapi.nci.nih.gov/legacy/data/

e34a93ee-d3c4-44c7-8bfa-0c19c6df0866). Putative TRIO fusions were selected from 
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discordant paired end reads in which the non-TRIO end mapped to an identified gene. BAM 

files and expression data can be found at the Genomic Data Commons (https://gdc-

portal.nci.nih.gov/legacy-archive/).

mRNA expression–based cluster analysis: To understand the mRNA abundance 

relationships between tumors, we performed hierarchical clustering on variable genes. Genes 

were first filtered by removing all genes that had < 90% expression data greater than zero 

across all tumors. Expression values were log2-transformed, followed by median centering 

for each gene across all tumors and for all genes within each tumor, respectively. Genes 

were further filtered to 2,038 by selecting genes with a standard deviation across all tumors 

≥ 2. These genes were used for clustering using ConsensusClusterPlus on R (v2.12.2) with 

1,000 permutations (Wilkerson and Hayes, 2010). Options included maxK=10, pItem=1, 

pFeature=0.9, clusterAlg=”hc”, distance=”pearson”, and a seed value of 123.456. Clusters 

were selected based on the change in area under the cumulative distribution function curve, 

with the number of clusters selected being the minimum value that would capture most of 

the information. Gene ontologies were generated using DAVID (Huang da et al., 2009).

Calculation of immune infiltration score: Immune infiltration scores were based on the 

gene groups previously identified (Bindea et al., 2013) . To determine an immune infiltration 

score for each tumor, the mRNA abundances scored for genes that comprised each group 

were first individually median-centered across all tumors. Secondly, for each tumor, the 

median-centered values of every gene within an immune class were averaged together to 

yield the reported scores. Survival curves were generated by taking cases representing the 

top and bottom 33% of scores in each immune class for each histology and plotting disease-

specific survival using in-house scripts.

Validation of immune infiltration scores: In order to validate the sarcoma-specific immune 

infiltration scores identified in our cohort, we repeated our analysis using RNA-seq data 

from a publically available dataset including 42 UPS, 36 LMS, 18 DDLPS, 15 MFS, and 2 

SS (Lesluyes et al., 2016). Only fresh frozen tissue samples were included in the analysis. 

As with our cohort, median immune infiltration scores were calculated for each of the 24 

immune signatures across all sarcoma histologies. For each sarcoma type, a scatterplot was 

generated where the median immune infiltration score for each immune signature served as 

the x- or y- axis for our data and the Lesluyes et al. data, respectively, and the Spearman 

correlation coefficient was calculated.

Correlation of UPS/MFS morphology with mRNA: Percent myxoid component 

(described above in Pathology Review) was used to group UPS and MFS samples into three 

classes: no myxoid stroma (class 0), 1–49% myxoid stroma (class 1), or 50–100% myxoid 

stroma (class 2). A multiclass analysis (Tusher et al., 2001) was performed to identify 

differentially expressed genes between the classes; this identified 589 genes with a q value < 

0.05. These differentially expressed genes were then used to perform unsupervised cluster 

analysis of all of the UPS/MFS tumors.

HIF1α target gene expression signature: HIF1α a target gene expression signature in 

LMS was calculated as the negative mean expression of genes down-regulated by HIF1A 
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knockdown minus the mean expression of genes up-regulated by HIF1A knockdown 

(Elvidge et al., 2006).

Yap1/ VGLL3 target gene expression signature: Yap1/VGLL3 target gene signature in 

UPS/MFS was calculated as the difference in median expression of up- and down- regulated 

genes (Helias-Rodzewicz et al., 2010).

Sarcoma tumor map: A tumor map was constructed from the mRNA expression results for 

the soft tissue sarcomas. The Tumor Map represents a dimensionality reduction and 

visualization method for high-dimensional data. It allows viewing and browsing 

relationships between high-dimensional heterogeneous samples in a two-dimensional map, 

analogous to exploring geographical maps in the Google Maps web application. Samples 

were arranged in a two-dimensional space and then associated to hexagons in a regular 

hexagonal grid. The relative distances in the map approximated the relative similarities 

between the samples in the original high-dimensional space. Samples found to have similar 

profiles were placed near each other in the map. Samples that were less similar were placed 

farther away from each other. Given that such relations are preserved, clusters of samples 

that appear as “islands” in the map indicate groups of samples that share expression features.

To build the sarcoma map (Figure S4B), we used mRNA expression RNA-Seq data for 259 

samples: the 206 in the final analysis; the 22 cases with mRNA expression data which had 

been sent for genomic analysis but failed QC during annotation; and the 31 cases excluded 

in pathology review (Figure S1A). We computed pair-wise Spearman correlation for each 

pair of mRNA expression profiles in the sarcoma cohort to obtain a pair-wise similarity 

matrix (259 samples by 259 samples). To build the map layout, the closest neighborhood of 

6 samples was selected for each sample from the similarity matrix. We represented the local 

neighborhoods as a sparse graph where the nodes are the samples, and an edge links any two 

samples if one of them is among the top 6 neighbors of the other. The magnitude of the 

similarity was used as the edge weight. An X-Y position in the two-dimensional plane was 

calculated from the graph using a spring-embedded graph layout algorithm implemented in 

the OpenOrd (formerly DrL) toolbox (Martin et al., 2011). The spring-embedded layout 

algorithm treated edges as springs and allowed the springs to oscillate for a fixed amount of 

time with the energy inversely proportional to the edge weights. Under these conditions, 

springs with large weights do not oscillate much, causing those vertices to stay together. 

However, springs with small weights oscillate more and end up farther away from each 

other. This method allowed the construction of a two-dimensional spatial layout of the graph 

with clusters of samples forming clique-like hub sub-structures. Our method then associated 

each of the nodes with a fixed location a two-dimensional hexagonal grid. Each hexagon-

shaped cell in the grid was assigned no more than one vertex, and some were assigned none, 

representing “empty space” in the map. If multiple vertices contested for the same grid cell, 

a random vertex selection was made and placed into the cell; and the other competing 

vertices were assigned to neighboring empty cells using a greedy strategy, snapping around 

the original cell in a spiral-like manner.
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miRNA Analysis

MicroRNA libraries and sequencing: We generated microRNA sequence (miRNA-seq) 

data using methods described previously (Chu et al., 2016). Briefly, reads were aligned to 

the GRCh37/hg19 reference human genome, and read count abundance was annotated with 

miRBase v16 stemloops and mature strands. While the read counts included only exact-

match read alignments, .bam files at CGHub (cghub.ucsc.edu) (Wilks et al., 2014) included 

all sequence reads. We used miRBase v20 to assign 5p and 3p mature strand (miR) names to 

MIMAT accession IDs.

Cluster analysis of miRNA mature strands: To identify subtypes within the various 

sarcoma cohorts, we used unsupervised hierarchical clustering with pheatmap v1.0.2 in R. 

The input was a reads-per-million (RPM) data matrix for the 303 (top 25%) miRBase v16 5p 

or 3p mature strands that had the largest variances across the cohort. We transformed each 

row of the matrix by log10(RPM + 1), then used pheatmap to scale the rows. We used 

Ward.D2 for the clustering method with Pearson correlation and Euclidean as the distance 

measures for clustering the columns and rows, respectively.

We first conducted this analysis on the full pan-sarcoma set and found that the LMS samples 

drove the top most variable miRNAs and in turn, the clustering solution (Figure S3C). In 

order to better identify subtypes within the nonLMS samples, we chose the top 25% most 

variable miRs within the nonLMS set and reclustered using only these nonLMS samples.

Differentially abundant microRNAs: We identified miRs that were differentially abundant 

using unpaired two-class SAM analyses (samr v2.0) (Li and Tibshirani, 2013) with an RPM 

input matrix and a false discovery rate (FDR) threshold of 0.05.

miR targeting: We assessed potential miRNA-gene targeting for all tumor samples by 

calculating miRmRNA Spearman correlations with MatrixEQTL v2.1.1 (Shabalin, 2012), 

using genelevel normalized abundance RNA-seq (RSEM) data. We calculated correlations 

with a P-value threshold of 0.05, then filtered the anticorrelations at FDR<0.05. We 

extracted miR-gene pairs that corresponded to functional validation publications (luciferase 

reporter, qPCR, Western blot) reported by miRTarBase V6.0 (Hsu et al., 2014).

Prognostic miRNAs: We identified miRs that were associated with relapse-free survival 

(RFS), metastasisfree (MFS) and disease-specific survival (DSS) in UPS/MFS, DDLPS, and 

LMS sample sets. To do this, we used Cutoff Finder to determine, for each miR with mean > 

50 RPM, the optimal expression value that would stratify samples into the two groups with 

the smallest Kaplan-Meier log-rank p-value (Budczies et al., 2012). We adjusted the p-

values for maximal selection based on formula 1 (Faraggi and Simon, 1996; Gaujoux and 

Seoighe, 2010), and then adjusted those p-values using Benjamini-Hochberg multiple testing 

correction.

As a complementary analysis we created multivariable models which incorporated several 

miRNAs, as well as tumor size, to further refine prognostication. Specifically, we used a 

LASSO penalized regression approach (R package: glmnet; family=cox; alpha=1) to 

identify sets of miRs and coefficients that together would best predict RFS and DSS in each 
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of the histology types. Once each sample was assigned a score based on the linear model, we 

ran cutoff finder to determine the optimal segregation of groups and applied the same 

maximal selection correction to the minimum log-rank p-value as above.

Within LMS, miRNA-181b, tumor size, and site (ULMS vs STLMS) were analyzed as 

predictors of RFS in a multivariable Cox regression model using the coxph function from 

the survival package in R. miR-181b expression was dichotomized at the cutoff defined by 

Cutoff Finder as described above. Tumor size was dichotomized at the median.

DNA Methylation Analysis

Sample preparation and hybridization: The Illumina Infinium HM450 array (Bibikova et 

al., 2011) was used to assay the 206 TCGA sarcoma samples using standard protocols. 

Briefly, genomic DNA (1 µg) for each sample was treated with sodium bisulfite, recovered 

using the Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA) according to the 

manufacturer’s specifications, and eluted in 18 µl volume. After passing quality control, 

bisulfite-converted DNA samples were whole-genome amplified, fragmented enzymatically, 

hybridized overnight to BeadChips, then subjected to locus-specific base extension with 

labeled nucleotides (Cy3 and Cy5). BeadArrays were scanned and the raw data imported 

into custom programs in R computing language for pre-processing and calculation of DNA 

methylation beta value for each probe and sample. Quality control and probe exclusions 

were done using standard protocols as previously described (Cancer Genome Atlas Research 

Network, 2014).

DNA methylation based cluster analysis: We carried out an unsupervised consensus 

clustering as implemented in the Bioconductor package ConsensusClusterPlus, with 

Euclidean distance and partitioning around medoids (PAM). Consensus clustering was 

applied to the DNA methylation data from the entire cohort, using the most variable 1% of 

CpG probes. DNA methylation–based subtypes were identified using a robust 5-group 

partition of the samples obtained using the most variable CpG loci on the Illumina Infinium 

HM450 array (Figure S3B). Fisher’s exact test was used to test for associations of 

methylation clusters with mRNA expression clusters and significantly mutated genes.

Estimation of leukocyte fraction: We estimated leukocyte fraction in each tumor by 

calculating the leukocyte signature from methylation results as described (Carter et al., 

2012). As a source of leukocyte methylation level, we used DNA methylation data of 

peripheral blood mononuclear cells (PBMC) from six healthy donors (Reinius et al., 2012) 

(GSE35069).

RPPA analysis

RPPA experiments and data processing: Protein was extracted from frozen tumor tissue 

using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 mmol/L NaCl, 

1.5 mmol/L MgCl2, 1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 

mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and 10 µg/mL aprotinin) and 

Precellys homogenization. RPPA was performed as described previously (Hu et al., 2007; 

Tibes et al., 2006). Tumor lysates were adjusted to 1 µg/µL concentration as assessed by 
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bicinchoninic acid assay and boiled with 1% SDS. Tumor lysates were manually serially 

diluted five times, each a two-fold dilution in lysis buffer. An Aushon Biosystems 2470 

arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-coated slides (Grace Bio- 

Labs). Slides were probed with 192 validated primary antibodies (Table S7) followed by 

corresponding secondary antibodies (goat anti-rabbit IgG, goat anti-mouse IgG, or rabbit 

anti-goat IgG). Signal was captured using a Dako Cytomation-catalyzed system and DAB 

colorimetric reaction. Slides were scanned in a CanoScan 9000F. Spot intensities were 

analyzed and quantified using Array-Pro Analyzer (Media Cybernetics Washington DC) to 

generate spot signal intensities (Level 1 data). The software SuperCurveGUI (Hu et al., 

2007), available at http://bioinformatics.mdanderson.org/Software/supercurve/, was used to 

estimate the EC50 values of the proteins in each dilution series (in log2 scale). Briefly, a 

fitted curve ("supercurve") was plotted with the signal intensities on the Y-axis and the 

relative log2 concentration of each protein on the X-axis using the non-parametric, 

monotone increasing B-spline model (Tibes et al., 2006). During the process, the raw spot 

intensity data were adjusted to correct spatial bias before model fitting. A QC metric was 

returned for each slide to help determine the quality of the slide: if the score was less than 

0.8 on a 0–1 scale, the slide was dropped. In most cases, the staining was repeated to obtain 

a high-quality score. If more than one slide was stained for an antibody, the slide with the 

highest QC score was used for analysis (Level 2 data). Protein measurements were corrected 

for loading as described (Gonzalez-Angulo et al., 2011; Hu et al., 2007) using median 

centering across antibodies (Level 3 data). The analysis included 192 antibodies and 173 

sarcoma samples: 46 DDLPS, 60 LMS, 5 MPNST, 15 MFS, 6 SS, and 41 UPS. Final 

selection of antibodies was also driven by the availability of high-quality antibodies that 

consistently pass a strict validation process as previously described (Hennessy et al., 2010). 

These antibodies were assessed for specificity, quantification, and sensitivity (dynamic 

range) in their application for protein extracts from cultured cells or tumor tissue. Antibodies 

were labeled as validated and used with caution based on the degree of validation by criteria 

previously described (Hennessy et al., 2010).

RPPA arrays were quantitated and processed (including normalization and load controlling) 

as described previously, using MicroVigene (VigeneTech, Inc., Carlisle, MA) and the R 

package SuperCurve (version-1.3), available at http://bioinformatics.mdanderson.org/main/

SuperCurve:Overview (Hu et al., 2007; Tibes et al., 2006). Raw data (level 1), SuperCurve 

nonparametric model fitting on a single array (level 2), and loading-corrected data (level 3) 

were deposited at the Data Coordinating Center.

Data normalization: We performed median centering across all the antibodies for each 

sample to correct for sample loading differences. Those differences arise because protein 

concentrations are not uniformly distributed per unit volume. That may be due to several 

factors, such as differences in protein concentrations of large and small cells, differences in 

the amount of proteins per cell, or heterogeneity of the cells comprising the samples. By 

observing the expression levels across many different proteins in a sample, we can estimate 

differences in the total amount of protein in that sample vs other samples. Subtracting the 

median protein expression level forces the median value to become zero, allowing us to 

compare protein expressions across samples.
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RPPA consensus clustering: 173 samples (Figure S4C) with RPPA data were assessed. 

Pearson correlation was used as distance metric and Ward's method was used as a linkage 

algorithm in the clustering analysis. We identified five robust sample clusters, with most of 

the LMS samples clustering together in Cluster1 and the other histologic types being 

distributed between the rest of the clusters. The clusters and their protein expression patterns 

can be viewed through the next-generation clustered heat map (NGCHM) pipeline 

developed at the University of Texas MD Anderson Cancer Center. To illustrate the role of 

cell signaling networks in sarcoma, we calculated twelve pathway and process scores 

(apoptosis, cell cycle, DNA damage response, EMT, hormone receptor, hormone signaling 

(breast), P13K/AKT, RAS/MAPK, RTK, TSC/MTOR, breast reactive and core reactive) 

based on a previously described method (Akbani et al., 2014) (Figure S4D).

iCluster

Integrative clustering using iCluster: In the investigation of subgroups within sarcoma, we 

integrated various molecular platforms by using iCluster, which formulates the problem of 

subgroup discovery as a joint multivariate regression of multiple data types with reference to 

a set of common latent variables that represent the underlying tumor subtypes (Mo et al., 

2013; Shen et al., 2009). The optimal combination of clusters was determined minimizing a 

Bayesian information criterion.

Data processing: As input to iCluster, we used four molecular platforms: DNA copy 

number, DNA methylation, mRNA expression, and miRNA expression. Data were pre-

processed using the following procedures. Copy number alteration data was derived from 

CBS segmented data from the Affymetrix SNP6.0 array platform, and further reduced to a 

set of ~4000 non-redundant regions as described (Mo et al., 2013). For the methylation data 

(Illumina Infinium 450k arrays), the median absolute deviation was employed to select the 

top 4000 most variable CpG sites after beta-mixture quantile normalization (Pidsley et al., 

2013). We removed methylation probes with >20% or more missing data and those 

corresponding to SNP and autosomal chromosomes. For mRNA and miRNA sequence data, 

we excluded genes with low expression (based on median-normalized counts). Variance 

filtering led to 4000 mRNAs and a variable number of miRNAs for clustering. mRNA and 

miRNA expression features were log2 transformed, normalized, and scaled before inputting 

to iCluster.

iCoMut

Interactive visualization and exploration: Within a single graphic iCoMut 

(firebrowse.org/awg/sarc) was used to create graphics that display the comprehensive 

analysis profile computed by Firehose (see next subsection); this enables readers to quickly 

infer co-occurring or mutually exclusive events for the sarcoma cohort, plotted on a common 

X axis of sample IDs, across a pipeline of approximately 100 individual analysis tasks 

spanning 10 data modalities. iCoMut was used to create interactive figures that allow panels 

to be moved, sorted, searched, and even extended with new data. These interactive figures 

are hosted on FireBrowse (http://firebrowse.org).
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Data aggregation and analysis in Firehose began in the Broad Institute GDAC Firehose, an 

automated, high-throughput analysis pipeline designed to systematize analyses from The 

Cancer Genome Atlas. Firehose first normalized clinical annotations and molecular sample 

data, in the form of one file per sample, into analysis-ready aggregates (a single file with 

many samples) that can be immediately fed into scientific codes with no further processing. 

These data packages were documented in detailed sample reports and released to the public 

(gdac.broadinstitute.org/runs/sampleReports/latest), then fed into the analysis workflow 

(gdac.broadinstitute.org/Analyses-DAG.html). Primary analyses were automatically 

performed for every data type of every cohort, such as: significance assessment of mutations 

with MutSig and copy number alterations with GISTIC; functional analysis with Mutation 

Assessor; analysis of mutagenesis by APOBEC cytidine deaminases; miR, mRNA, and 

protein expression cluster assignments using both consensus hierarchical and consensus 

NMF methods; and pathway analyses with PARADIGM and GSEA. Statistical associations 

were automatically generated between many of these results, and to the entire suite of 

clinical variables (e.g. survival) available for the given cohort. q-values corresponding to 

FDR for individual gene mutations were computed by Mutsig2CV (Lawrence et al., 2013). 

All results were integrated and made publicly available as: (a) online HTML reports citable 

in the literature by DOIs (gdac.broadinstitute.org/runs/analyses__latest/reports), (b) the 

firebrowse.org portal and APIs (firebrowse.org/api-docs) and (c) visual exploration tools 

such as IGV, the UCSC Genome Browser and cBioPortal. In the context of this paper, 

Firehose served as firstpass analysis mechanism for the Sarcoma Analysis Working Group. 

In subsequent passes, custom data were integrated from outside the Firehose automated data 

flow, including the more accurate cluster and pathway analysis results manually curated by 

the Analysis Working Group.

Analysis feature matrix: As an intermediate step to rendering the iCoMut figure in 

FireBrowse, Firehose saved major analysis findings to a feature table (firebrowse.org/

apidocs/#!/Analyses/FeatureTable), which was then processed and converted into JSON to 

populate each of the panels in the interactive display.

Regulome Explorer

Integrated analysis & interactive exploration: To gain greater insight into the 

development and progression of sarcomas, we integrated all of the data types produced by 

TCGA and described in this paper into a single “feature matrix.” From this single 

heterogeneous dataset, significant pairwise associations were inferred using statistical 

analysis and can be visually explored in a genomic context using Regulome Explorer, an 

interactive web application (http://explorer.cancerregulome.org). In addition to associations 

that are inferred directly from the TCGA data, additional sources of information and tools 

were integrated into the visualization for more extensive exploration (e.g., NCBI Gene, 

miRBase, the UCSC Genome Browser, etc.).

Feature matrix construction: A feature matrix was constructed using all available clinical, 

sample, and molecular data for 206 unique patient/tumor samples. The clinical information 

includes features such as age and tumor size; while the sample information includes features 

derived from molecular data such as single-platform cluster assignments. The molecular data 
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includes mRNA and microRNA expression levels (Illumina HiSeq data), protein levels 

(RPPA data), copy number alterations (derived from segmented Affymetrix SNP data as well 

as GISTIC regions of interest and arm-level values), DNA methylation levels (Illumina 

Infinium Methylation 450k array), and somatic mutations. For mRNA expression data, gene-

level RSEM values from RNA-seq were log2 transformed and filtered to remove low-

variability genes (bottom 25% removed, based on interdecile range). For miRNA expression 

data, the summed and normalized microRNA quantification files were log2 transformed and 

filtered to remove low-variability microRNAs (bottom 25% removed, based on interdecile 

range). For methylation data, probes were filtered to remove the bottom 25% based on 

interdecile range. For somatic mutations, several binary mutation features indicating the 

presence or absence of a mutation in each sample were generated. Mutation types 

considered were synonymous, missense, nonsense, and frameshift. Protein domains 

(InterPro) including any of these mutation types were annotated as such, with nonsense and 

frameshift annotations being propagated to all subsequent protein domains.

Pairwise statistical significance: Statistical association among the diverse data types in this 

study was evaluated by comparing pairs of features in the feature matrix. Hypothesis testing 

was performed by testing against null models (i.e. absence of association), yielding a p-

value. P-values for the association between and among clinical and molecular data types 

were computed according to the nature of the data levels for each pair: categorical vs 

categorical (Fisher’s exact test in the case of a 2×2 table, otherwise chi-square test); 

categorical vs continuous (Kruskal-Wallis test) or continuous vs continuous (probability of a 

given Spearman correlation value). Ranked data values were used in each case. To account 

for multiple-testing bias, the p-values were adjusted using the Bonferroni correction.

Regulome Explorer allows the user to interactively explore significant associations between 

various types of features – associations between molecular features (like miRNA expression 

and gene expression), associations between molecular features and derived numeric features 

(like immune infiltration scores), and associations between molecular features and 

categorical features such as clinical features or clusters derived from prior analysis (like 

iCluster).

PARADIGM

Integrated pathway analysis: Integration of copy number, mRNA expression, and pathway 

interaction data was performed on the 206 SARC samples using the PARADIGM software 

(Sedgewick et al., 2013). Briefly, this procedure infers integrated pathway levels for genes, 

complexes, and processes using pathway interactions and genomic and functional genomic 

data from each patient sample. Expression and gene copy number data were obtained from 

Firehose. One was added to all expression values, which were then log2-transformed and 

median-centered across samples for each gene. The log2-transformed, median-centered 

mRNA data were rank-transformed based on the global ranking across all samples and all 

genes, then discretized (+1 for values with ranks in the highest tertile, −1 for values with 

ranks in the lowest tertile, and 0 otherwise) prior to PARADIGM analysis.
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Pathways were obtained in BioPax Level 3 format and included the NCIPID and BioCarta 

databases from http://pid.nci.nih.gov and the Reactome database from http://reactome.org. 

Gene identifiers were unified by UniProt ID then converted to Human Genome 

Nomenclature Committee’s HUGO symbols using mappings provided by the committee 

(http://www.genenames.org/). Altogether, 1524 pathways were obtained. Interactions from 

all of these sources were then combined into a merged Superimposed Pathway 

(SuperPathway). Genes, complexes, and abstract processes (e.g. “cell cycle” and 

“apoptosis”) were retained and henceforth referred to collectively as pathway features. The 

resulting pathway structure contained a total of 19504 features, representing 7369 proteins, 

9354 complexes, 2092 protein families, 82 RNAs, 15 miRNAs, and 592 abstract processes.

The PARADIGM algorithm inferred an integrated pathway level (IPL) for each pathway 

feature; the IPL reflects the log likelihood of the probability that each pathway feature is 

activated (vs inactivated). PARADIGM IPLs of the 19,504 features within the SuperPathway 

are available on the genomic data commons (GDC; (https://portal.gdc.cancer.gov/). An 

initial minimum variation filter (at least 1 sample with absolute activity > 0.05) was applied, 

resulting in 15502 concepts (5898 proteins, 7307 complexes, 1916 families, 12 RNAs, 15 

miRNAs and 354 abstract processes) with relative activities showing distinguishable 

variation across tumors.

Clustering of PARADIGM inferred pathways: Consensus clustering of the 206 SARC 

samples was based on the 3916 most varying features (i.e. IPLs with variance within the 

highest quartile) so as to identify new subgroups on the basis of shared patterns of pathway 

inference. Consensus clustering was implemented with the ConsensusClusterPlus package in 

R (Wilkerson and Hayes, 2010). Specifically, median-centered IPLs were used to compute 

the squared Euclidean distance between samples, and this metric was used as the input to the 

ConsensusClusterPlus algorithm. Hierarchical clustering using the Ward’s minimum 

variance method (i.e. ward inner linkage option) with 80% subsampling was performed over 

1000 iterations, and the final consensus matrix was clustered using average linkage. The 

number of clusters was selected by considering the relative change in the area under the 

empirical cumulative distribution function curve as well as the average pairwise item-

consensus within consensus clusters. We selected a cluster number of 5, as further separation 

provided minimal change and decreased the within-cluster consensus. In addition, consensus 

clusterings within LMS (n=80), DDLPS (n=50), and MFS together with UPS (n=61) were 

similarly performed.

Pathway features distinguishing each PARADIGM clusters (vs all others) were identified 

using the t-test and Wilcoxon Rank sum test with Benjamini-Hochberg FDR correction. 

Only features deemed significant (FDR-corrected p<0.05) by both tests and showing an 

absolute difference in group means > 0.05 were considered. Interconnectivity between these 

pathway biomarkers within the PARADIGM SuperPathway was assessed, and regulatory 

hubs with ≥ 10 differentially activated downstream targets were selected and displayed in a 

heatmap using the heatmap.plus package in R.

Differential pathway features in sarcoma: IPLs differentially activated between 

leiomyosarcoma (n=80) and other sarcomas (n=126) were identified using the t-test and 
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Wilcoxon Rank Sum test with Benjamini-Hochberg FDR correction. Only features deemed 

significant (FDR-corrected p<0.05) by both tests and showing an absolute difference in 

group means > 0.05 were selected. Sub-networks linking differentially activated features 

through regulatory interactions within the PARADIGM SuperPathway structure were 

constructed and visualized using Cytoscape, and regulatory hubs with ≥ 10 differentially 

activated downstream targets were identified.

IPLs differentially activated between STLMS (n=53) and ULMS (n=27) were identified and 

features selected by the same method as above. Differentially activated IPLs were then 

filtered by connectivity within the SuperPathway, such that only interconnected features 

were retained. Pathway constituents of the PARADIGM SuperPathway enriched among 

these selected features were assessed using the EASE score with Benjamini-Hochberg FDR 

correction, and sub-networks linking differentially activated features through regulatory 

interactions were constructed and visualized using Cytoscape.

Quantitation of Nuclear Pleomorphism

Computational histologic analysis: Slide images were reviewed prior to analysis to remove 

those images containing scanning or preparation artifacts, or a significant proportion of 

tumor-infiltrating lymphocytes. A total of 63 images were removed from this portion of the 

analysis for these reasons. Slide images were analyzed at 20X objective resolution. Images 

scanned natively at 40X magnification were resized to 20X using a bicubic interpolation. In 

total, over 500,000,000 cell nuclei were scored. Color was normalized to a standard H&E 

image using Reinhard color normalization that maps the LAB color space statistics of each 

image to the standard to improve the analysis consistency. Normalized color images were 

unmixed using color deconvolution to digitally separate the hematoxylin (nuclear) and eosin 

stains. Nuclear regions were identified by applying morphological reconstruction to the 

hematoxylin image, and a watershed transformation was applied to separate closely packed 

nuclei. The area of each nucleus was then measured in pixels and the area of each nucleus in 

each slide recorded. A histogram of nuclear areas was created for each patient with 100 bins 

of 12 pixels each. Statistical moments of these histograms were calculated to capture the 

mean, variance, negative skew, and kurtosis of nuclear areas for each patient.

Histologic-genomic analysis: Several statistics were calculated for measures of 

pleomorphism against genomic features, using copy number data from SNP array–based 

methods (see SNP-based copy number analysis, above). Specifically, ploidy, subclonal 

genome fraction (which measures the fraction of tumor genome that is not part of the 

"plurality" clone, and therefore is a reflection of increasing genomic complexity), and 

genome doublings were calculated using the ABSOLUTE algorithm (Carter et al., 2012), 

and the number of unbalanced copy number segments was defined as the total number of 

copy number segments with a log2 segment mean ≤ −0.1 or ≥ 0.1 (level 3 seg file after 

ISAR-correction [see section 2.1]).

To determine the alternative aneuploidy score [aneuploidy score’] (number of events) for 

each sample, the ABSOLUTE algorithm was first used to determine the likeliest ploidy and 

absolute total copy number of each segment in the genome. Each segment was designated as 
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amplified, deleted, or neutral based on whether its copy number was greater than, smaller 

than, or equal to the sample’s ploidy (rounded to the nearest integer) respectively. For 

amplifications and deletions separately (collectively “alterations”), segments were joined 

until either the entire chromosome was considered altered, or more than 20% of the genomic 

length between the start and ends were not altered in the same direction; e.g. >20% deleted 

or neutral for joining amplification segments. Alternative aneuploidy score [aneuploidy 

score’](number of events) is calculated as the fewest possible arm- or chromosome-level 

events that could have led from diploidy to the current allelic copy number state, including 

whole genome doubling events.

Statistical significance for correlations with histologic measures was calculated using the 

Pearson’s correlation, and statistical significance for comparisons between tumors with 

different numbers of whole genome doubling was calculated using ANOVA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification details and statistical analysis methods for each of the various data platforms 

and for integrated analyses are described in detail and referenced in their respective Method 

Details subsections.

DATA AND SOFTWARE AVAILABILITY

The raw data for TCGA SARC individual platforms, including DNA exome sequence, RNA 

expression sequence, miRNA expression sequence, DNA methylation beta values, SNP 

array (copy number data), and RPPA proteomics data, as well as clinical data are archived 

and publically available in the Genomic Data Commons (https://gdc.cancer.gov). Digital 

pathology images are also available at the Cancer Digital Slide Archive (http://

cancer.digitalslidearchive.net/).

Software used for the analyses for each of the data platforms and integrated analyses are 

described and referenced in the individual Method Details subsections and are listed in the 

Key Resource Table.

ADDITIONAL RESOURCES

The TCGA SARC resource website is available at https://tcga-data.nci.nih.gov/docs/

publications/sarc_2017/

Interactive tools for exploring the TCGA data have been developed by the Broad Institute 

(http://firebrowse.org, including the iCoMut visualization tool http://firebrowse.org/awg/

sarc/iCoMut/?cohort=SARC), Memorial Sloan Kettering Cancer Center (http://

www.cbioportal.org/), the Institute for Systems Biology (http://

explorer.canccerregulome.org), and The University of Texas MD Anderson Cancer Center 

(http://bioinformatics.mdanderson.org/tcgambatch/)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

* Multiplatform genetic analysis of 206 sarcomas of 6 types shows their 

diversity

* Sarcomas harbor many more copy number alterations than most other cancer 

types

* Inferred immune microenvironment associates with outcome in multiple 

sarcoma types

* Computed histologic nuclear pleomorphism correlates with aneuploidy 

estimates
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Figure 1. Landscape of Genomic Alterations in 206 Sarcomas
(A) Integrated plot of clinical and molecular features for all samples, ordered by sarcoma 

type. From top to bottom panels indicate: frequency of mutations per Mb; mutational 

signatures, indicating type of substitution; patient sex; sarcoma grade; number of whole 

genome doublings; Number of unbalanced genomic segments; tumor site; sarcoma type; 

cluster from iCluster analysis; significantly mutated genes, defined by false discovery rate 

(FDR) of <0.05 as computed by MuSiC2; TRIO or SS18-SSX gene fusions; frequent focal 

somatic copy number alterations including gains (pink), amplification (red), shallow deletion 
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(pale blue) or deep deletion (dark blue). The key to the color coding of sarcomas and 

mutation types is at the bottom. See also Figure S1 and Table S1.

(B) Median numbers of unbalanced copy number segments vs nonsynonymous somatic 

mutations in each TCGA cohort. Sarcoma types are color-coded.
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Figure 2. Mutational Landscape of Sarcomas
(A) Mutations in significantly mutated genes in sarcoma and selected known oncogenes and 

tumor suppressors. Only genes with recurrent or truncating mutations are shown.

(B) Mutation and indel profiles for TP53, ATRX, RB1, NF1, and PRKCD, color-coded by 

sarcoma type. Splice site mutations are indicated as involving the donor site (exon number + 

nucleotide position of mutation, e.g. e3+1) or acceptor site (exon – nucleotide position of 

mutation). See also Figure S2 and Table S2.
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Figure 3. Mutational Signatures, Genomic Complexity, and Integrated Analysis in Sarcoma
(A) Top, signature activities (number of mutations) and bottom, normalized signature 

activities, projected onto 3 mutational processes, COSMIC1, COSMIC5, and APOBEC 

(COSMIC2 and 13). Tumors are ordered by overall mutation frequency; not shown are the 2 

hypermutated samples (AB32 and A9HT).

(B) Left, activities of COSMIC1, COSMIC5, and APOBEC signatures by sarcoma type. 

Right, normalized signature activity.

(C) Variance in nuclear area according to the number of genome doublings in each tumor.
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(D) Representative nuclear area analyses for sarcomas with whole genome doublings of 0, 1, 

and 2. See also Figure S2E, F.

(E) Unsupervised iCluster analysis, which integrated DNA copy number, DNA methylation, 

and expression of mRNA and miRNA. Color coding of tumor characteristics is at the 

bottom. Cluster C1 comprised 64 LMS and 1 UPS, including 10 low-grade LMS, and was 

relatively hypermethylated. Cluster C2 and C3 comprised 49/50 DDLPS and 35 other 

sarcomas. C4 comprised all 10 SS and one MPNST, and C5 comprised a mix of high-grade 

sarcomas, with the majority (34/56) being UPS/MFS. See also Figures S3 and S4 and Table 

S3.
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Figure 4. Dedifferentiated Liposarcoma (DDLPS)
(A) Recurrent focal copy-number alterations in the 50 DDLPS samples by GISTIC 2.0 

analysis. Green line indicates the significance threshold (FDR 0.25) for focally amplified 

and deleted regions. See also Table S5.

(B) Alterations of genes involved in inhibition of adipose differentiation. The frequency of 

copy-number alterations in DDLPS is shown for each of the 3 SCNA clusters, and the 

heatmap shows gene expression.
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(C) Methylation clusters from unsupervised consensus clustering of DNA methylation data 

in DDLPS. Within methylation clusters, samples are ordered by SCNA cluster and genome 

doubling.

(D) DSS in clusters defined by copy number and DNA methylation. See also figure S4.
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Figure 5. Leiomyosarcoma (LMS)
(A) Recurrent focal copy-number alterations in the 80 LMS samples by GISTIC 2.0 

analysis. Green line indicates the significance threshold (FDR 0.25) for focally amplified 

and deleted regions.

(B) Molecular landscape of LMS. ULMS was enriched for tumors in iCluster C1, mRNA 

C2, methylation C3, and SCNA C3 (characterized by genomic instability). STLMS was 

enriched for the other 2 SCNA clusters: C2 (characterized by chromosome 17p11~12 gains) 

and SCNA C1 (genomically quiet). FDR values next to gene mutations were computed by 

MuSiC2. See also Table S6 and Figure S6.
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(C) iCluster analysis of STLMS, demonstrating hypomethylation of C2 relative to C1. Heat 

maps display the most variable distinguishing factors between clusters. See also Table S6.

(D) Kaplan-Meier analysis of STLMS iCluster C1 vs C2. Median DSS was 6.7 years for C1 

and was not reached for C2.

(E) Recurrent AKT pathway alterations in LMS. Top, pathway diagrams and percentage of 

alterations (mutation, SCNA, and/or relative change in mRNA level) in ULMS and STLMS 

iClusterC1 and C2. Bottom: specific alterations for each gene.
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Figure 6. Undifferentiated Pleomorphic Sarcoma (UPS) and Myxofibrosarcoma (MFS)
(A) Integrated molecular profile of MFS and UPS, showing clusters from unsupervised 

analyses and recurrent gene mutations. FDRs next to gene mutations were computed by 

MuSiC2.

(B) Molecular classification of UPS/MFS by myxoid stromal content of frozen tumor 

sample. Unsupervised clustering was performed on genes differentially expressed (q<0.05) 

between groups defined by extent of myxoid stroma (none, 1–49% of the tissue, ≥50% of 

the tissue). “Classic” cases of MFS (n=6) and UPS (n=20) on frozen material are indicated. 

See also Figure S6E.
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(C) SCNAs in MFS and UPS. VGLL3 amplification and RB1 deletion are shown at the top.

(D) Hippo pathway activation. The boxplots show YAP1 and VGLL3 target gene expression 

signature (Helias-Rodzewicz et al., 2010).

(E) Multivariable miRNA prognostic classifier for DSS. We performed a penalized 

regression analysis using all miRNAs and tumor size in the 54 UPS/MFS samples with 

outcome data. The samples were split into high and low groups based on model score, 

minimizing the log-rank p-value. P value shown is corrected for multiple testing. See also 

Figure S6F.
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Figure 7. Specific Types of Immune Infiltration Show Associations with Survival Outcomes
(A) Clusters identified by unsupervised clustering of the 2038 most variably expressed genes 

across 206 samples. Heat map shows expression; the gray wedge marks 203 genes with 

immune-related and inflammatory-related GO terms. The bar graph (right) shows the 

Benjamini-Hochberg adjusted P values for enrichment for the specific ontologies listed, as 

defined by the DAVID algorithm.

(B) Unsupervised cluster analysis of tumors by calculated immune infiltration scores. The 

analysis defines a subset of DDLPS, LMS, MFS and UPS with high immune infiltrates 

(right).
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(C) Selected Kaplan-Meier curves for DSS by histology and immune class. The graphs show 

the patients in the top third vs bottom third for the immune scores indicated.

(D) Significant DSS associations (p<0.05) for high immune score by histology. See also 

Figure S7.
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