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SUMMARY

In many situations in survival analysis, it may happen that a fraction of individuals will never
experience the event of interest: they are considered to be cured. The promotion time cure model
takes this into account. We consider the case where one or more explanatory variables in the
model are subject to measurement error, which should be taken into account to avoid biased
estimators. A general approach is the simulation-extrapolation algorithm, a method based on
simulations which allows one to estimate the effect of measurement error on the bias of the
estimators and to reduce this bias. We extend this approach to the promotion time cure model.
We explain how the algorithm works, and we show that the proposed estimator is approximately
consistent and asymptotically normally distributed, and that it performs well in finite samples.
Finally, we analyse a database in cardiology: among the explanatory variables of interest is the
ejection fraction, which is known to be measured with error.

Some key words: Bias correction; Cure fraction; Measurement error; Promotion time cure model; Semiparametric
method.
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1. INTRODUCTION

When analysing time-to-event data, it often happens that a certain proportion of subjects will
never experience the event of interest. For example, in medical studies where one is interested in
the time until recurrence of a certain disease, it is known that, for some diseases, some patients will
never suffer a relapse. In studies in econometrics on duration of unemployment, some unemployed
people will never find a new job, and in sociological studies on the age at which a person marries,
some people will stay unmarried for their whole life. Other examples can be found in finance,
marketing, demography, and education, where each time there is a certain proportion of subjects
whose time to event is infinite; they are said to be cured. Since classical survival models implicitly
assume that all individuals will eventually experience the event of interest, they cannot be used
in such contexts, as they would lead to incorrect results such as overestimation of the survival of
the non-cured subjects. This is why specific models, called cure models, have been developed.

In order to model the impact of a set of covariates on the time-to-event variable, two main
streams of cure models, as well as proposals that overarch both, can be found in the literature. The
first is the so-called mixture cure model, which supposes that the conditional survival function
is S(t | x1, x2) = pr(T > t | X1 = x1, X2 = x2) = p(x2)+ {1 − p(x2)} Su(t | x1), where p(x2) is
the probability of being cured for a given vector of covariates x2, and Su(t | x1) is the conditional
survival function of the non-cured subjects, where x1 is another set of covariates, possibly with
common components. This model has been studied by, among others, Boag (1949), Berkson &
Gage (1952), Farewell (1982), Kuk & Chen (1992), Taylor (1995), Peng & Dear (2000), Sy &
Taylor (2000), Peng (2003) and Lu (2008). A second class of models is based on an adaptation
of the Cox (1972) model to allow for a cure fraction. It is called the class of promotion time cure
models and supposes that

S(t | x) = exp {−θ(x)F(t)} , (1)

where F(·) is a proper baseline cumulative distribution function and θ(·) captures the effect of the
covariates on the conditional survival function. Unlike the mixture cure model, this formulation
has a proportional hazards structure. One often chooses θ(x) = exp(xTβ), where the first compo-
nent of the D-dimensional covariate x is supposed to be 1, in order to include an intercept in the
model. The Cox model without cure fraction does not include an intercept, since it supposes that
F(t) tends to infinity when t tends to infinity, and an intercept would therefore not be identifiable.
References on the promotion time cure model include Yakovlev & Tsodikov (1996), Tsodikov
(1998a,b, 2001), Chen et al. (1999), Ibrahim et al. (2001), Tsodikov et al. (2003), Zeng et al.
(2006) and Carvalho Lopes & Bolfarine (2012).

In this paper we consider the promotion time cure model (1) in which we leave F unspecified.
We suppose that the survival time T is subject to random right censoring, i.e., instead of observing
T we observe Y = min(T , C) and δ = I (T � C), where the censoring time C is independent of
T given X . An immediate consequence is that for the censored observations, we do not observe
whether they are cured or not cured, the latter observations being called susceptible.

In addition to being exposed to censoring, the data can also be subject to another type of incom-
pleteness. As is often the case in practice, some continuous covariates are subject to measurement
error. For instance, in medical studies the error can be caused by imprecise medical instruments,
and in econometric studies variables like welfare or income often cannot be measured precisely.
Although measurement error is rarely taken into account, ignoring it can lead to incorrect con-
clusions (Carroll et al., 2006). In order to deal with this measurement error, some assumptions
about its form are necessary. We consider a classical additive measurement error model for the
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continuous covariates, so that we have, for the whole vector of covariates,

W = X + U , (2)

where W is the vector of observed covariates and U is the vector of measurement errors. We
further assume that U is independent of X and follows a continuous distribution with mean zero
and known covariance matrix V , where the elements of V corresponding to covariates with no
measurement error, including the noncontinuous covariates and possibly some continuous ones,
are set to 0. It is also assumed that (T , C) and W are independent given X . When U is assumed
to be normally distributed, (2) is the measurement error model studied, for example, by Cook &
Stefanski (1994) and Ma & Yin (2008).

Methods designed to deal with measurement error in the covariates can be classified into
structural modelling and functional modelling approaches (Carroll et al., 2006). In structural
modelling, the distribution of the unobservable covariates X must be modelled, usually para-
metrically, while in functional modelling, no assumptions are made regarding the distribution
of X . When the distributional assumptions are met, the approaches of the first type yield higher
efficiency. However, an obvious advantage of methods of the second type is their robustness with
respect to possible misspecification of the distribution of X .

In this paper we use the so-called simulation-extrapolation, or simex, approach to correct for
the measurement error. The basic idea of simex has two steps. In the first we consider increasing
levels of measurement error, and simulate a large number of datasets for each level. At each
level we estimate the vector β of regression coefficients ignoring the measurement error. In the
second step we extrapolate the estimators corresponding to the different levels of error to the
situation where the covariates are observed without error. This algorithm, proposed by Cook
& Stefanski (1994), has a number of advantages; see § 6. The method has been considered in
many different contexts. In survival analysis, it has been used in the Cox model (Carroll et al.,
2006), the Cox model with nonlinear effect of mismeasured covariates in a 2006 Johns Hopkins
University working paper by Crainiceanu et al., the multivariate Cox model (Greene & Cai, 2004)
and the frailty model (Li & Lin, 2003), but, as far as we know, not in cure models. It has also
been applied to nonparametric regression (Carroll et al., 1999) and to general semiparametric
problems (Apanasovich et al., 2009) where if X is mismeasured and Z is measured exactly,
then the loglikelihood is of the form L{Y , m(X ), Z ,β} or L{Y , X , m(Z),β}, with an unknown
function m(·).

To the best of our knowledge, the problem considered in this paper has previously been
addressed only by Ma & Yin (2008), who also studied a promotion time cure model with right-
censored responses and mismeasured covariates. But instead of using the simex approach, they
introduced a corrected score approach to deal with the measurement error in the covariates. Their
approach yields consistent and asymptotically normal estimators when the measurement error
variance is known and the error is normally distributed. However, their method only works for
the specification θ(x) = exp(xTβ), while the simex algorithm can be used for any parametric
version of θ(x). Moreover, they do not study non-Gaussian measurement error in detail.

2. METHODOLOGY

Suppose that we have n independent and identically distributed right-censored observations
(Yi, δi, Xi). We denote by Y(1), . . . , Y(m) the m distinct ordered event times, so that Y(1) < · · · <
Y(m). We use model (1), where we consider θ(x) = η(xTβ) for some given function η. Two
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examples are η(·) = exp(·) and η(·) = log [exp(·)/ {1 + exp(·)}]. We present the simex algorithm
for the case where the error U is normally distributed. However, as mentioned in § 1, this is
not essential, as the algorithm below remains valid without any modification, as long as the
extrapolation function is correctly specified.

The general idea of the simex algorithm consists in adding successively increasing amounts
of artificial noise to the covariates subject to measurement error, estimating the model without
taking the measurement error into account, and extrapolating back to the case of no measurement
error. Two types of parameters have to be chosen: the levels of added noise λ = λ1, . . . , λK and
the number B of simulations for each value of λ. Some common values are K = 5 and B = 50
(Cook & Stefanski, 1994; Carroll et al., 1996).

The simex algorithm for the promotion time cure model is as follows.
For λ = λ1, . . . , λK , λ � 0, and for b = 1, . . . , B, we generate independent and identically

distributed Zb,i ∼ ND(0, ID) independently of the observed data and construct Wi,λ,b = Wi +
(λV )1/2Zb,i for each individual i = 1, . . . , n, where V is the known covariance matrix of the error
term, as defined in § 1. The covariance matrix of the contaminated Wi,λ,b is

var
(
Wi,λ,b | Xi

) = var (Wi | Xi)+ λV = V + λV = (1 + λ)V ,

which converges to the zero matrix as λ converges to −1. We replace Xi by Wi,λ,b in the promotion
time cure model, giving

S
(
t | Wi,λ,b

) = exp
{
−F(t)η(W T

i,λ,bβλ)
}

.

When the Wi,λ,b are known, this model is the standard promotion time cure model. We obtain
the estimates β̂λ,b of βλ, by using a naive estimation method that does not take the measurement
error into account.

For λ = λ1, . . . , λK , λ � 0, we obtain β̂λ = B−1 ∑B
b=1 β̂λ,b.

We then choose an extrapolant, e.g., linear, quadratic or fractional, for each parame-
ter, i.e., for each element β̂λ,p of the vector β̂λ, as a function of the λs: gβ(γβ , λ) =
{gβ1(γβ1 , λ), . . . , gβD(γβD , λ)}T depending on a vector of parameters γβ = (γ T

β1
, . . . , γ T

βD
)T. In

the case of the quadratic extrapolant, one obtains

β̂λk ,d = gβd (γβd , λk)+ πd,k = γβd ,1 + γβd ,2λk + γβd ,3λ
2
k + πd,k

(d = 1, . . . , D; k = 1, . . . , K),

where πp,k are the error terms in the extrapolant model, assumed to be independent and to
have mean zero. We fit these parametric models for each d = 1, . . . , D in order to obtain
γ̂β = (γ̂ T

β1
, . . . , γ̂ T

βD
)T. In practice, this function is often an approximation of the true extrapola-

tion function, which will then yield an estimator that converges in probability to some constant
approximately equal to the true parameter (Cook & Stefanski, 1994). There are some cases
in semiparametric models where the exact extrapolant is known: Cox regression, with X and
W normally distributed and homoscedastic (Prentice, 1982), and the partially linear model
Y = m(Z)+ X Tβ + ε, W = X + U , with (X , U ) independent (Liang et al., 1999).

Finally, we obtain the simex estimated values

β̂SIMEX = lim
λ→−1

gβ(γ̂β , λ).
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We use the results of Zeng et al. (2006) and Ma &Yin (2008) to estimate the model parameters
β and F when there is no measurement error in the covariates. They show that the loglikelihood
of the promotion time cure model without measurement error is


 =
n∑

i=1

[
δiI (Yi < ∞)

{−F(Yi)η(X
T
i β)+ log pi + log η(X T

i β)
}

+(1 − δi)I (Yi < ∞)
{−F(Yi)η(X

T
i β)

} − I (Yi = ∞)η(X T
i β)

]
, (3)

where pi is the jump size of F at Yi. We use η(X Tβ) instead of the particular case exp(X Tβ)

considered by the authors. As Zeng et al. (2006) explain, it can be shown that the nonparametric
maximum likelihood estimator for F is a function with point masses at the distinct observed failure
times Y(1), . . . , Y(m) only. If p(j) denotes the jump size of F at Y(j), then F(Yi) = ∑

Y(j)�Yi
p(j).

Moreover, the authors also explain that, in order for this semiparametric model to be identifiable
in (β, F), we need a threshold τ , called the cure threshold, such that all censored individuals with
a censoring time greater than this threshold are treated as if they were known to be cured, i.e.,
Ti = Ci = Yi = ∞. In practice, the estimated baseline cumulative distribution function is forced
to be 1 beyond the largest observed failure time,

∑m
j=1 p(j) = 1. This implies that no event can

occur after this time: the cure threshold is then determined to be τ = Y(m).
The parameters can then be estimated by solving the score equations related to the likelihood

in which the baseline cumulative distribution function is replaced by a step function.
If interest also lies in estimating the baseline cumulative distribution function F , exactly the

same simex procedure can be applied to the p̂i, yielding the p̂SIMEX,i. In order to ensure that
their sum is equal to 1, each of them is divided by their sum: p̂∗

SIMEX,i = p̂SIMEX,i/
∑

j p̂SIMEX,j.
Finally, we obtain F̂SIMEX(t) = ∑

Y(j)�t p̂∗
SIMEX,(j).

3. ASYMPTOTIC PROPERTIES

We present some theorems regarding consistency and asymptotic normality of the simex
estimators of the regression parameters β and the baseline cumulative distribution function F .
Theorem 1 states their consistency; its proof can be found in the Supplementary Material. Theo-
rem 2 establishes their asymptotic normality and is proved in the Appendix. Both results rely on
the assumption that the true extrapolation function is known, which is rarely the case in practice.
As explained by Cook & Stefanski (1994) and mentioned in § 2, since the extrapolation function
used in the algorithm is often an approximation to the true one, we will obtain an estimator which
converges in probability to some constant that is approximately equal to the true parameter. This
is sometimes called approximate consistency. In this case, in all the results that follow, βTRUE
and FTRUE are replaced in the results by β∗ and F∗, the limiting values with this extrapolant. In
the parametric case, when X is scalar, with σ 2

u being the measurement error variance, the bias of
a polynomial extrapolant of order p is O(σ 2+2p

u ), see Cook & Stefanski (1994, p. 1317), although
they only consider p = 2.

Here, we assume that the Zb,i that are generated in the simulation step follow a truncated
Gaussian distribution with large truncation limits, which will always be the case in practice. We
also assume that the expectation of the loglikelihood has a unique maximizer, whether or not
there is measurement error in the covariates.
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THEOREM 1. Under the regularity conditions (C1)–(C4) of Zeng et al. (2006), by replacing X
that appears there by Wλ,b (b = 1, . . . , B) for each λ, if the measurement error variance and the
true extrapolant function are known, then, with probability 1,

‖β̂SIMEX − βTRUE‖ → 0, sup
t∈R+

|F̂SIMEX(t)− FTRUE(t)| → 0, n → ∞.

THEOREM 2. Under the regularity conditions (C1)–(C4) of Zeng et al. (2006), by replacing
X that appears there by Wλ,b (b = 1, . . . , B) for each λ, if the measurement error variance and
the true extrapolant function are known, then n1/2(β̂SIMEX −βTRUE) converges in distribution to
N (0,
), where
 is given by (A1) in the Appendix. Moreover, n1/2(F̂SIMEX − FTRUE) converges
weakly to a zero-mean Gaussian process G whose covariance function is given by (A2) in the
Appendix.

The regularity conditions (C1)–(C4) of Zeng et al. (2006) are the usual constraints pertaining to the
independence of the right-censoring variable, the boundedness of the covariate, the compactness
of the set of possible values for β, the differentiability of the baseline cumulative distribution
function and the monotonicity and differentiability of the link function η(·).

The variance of the simex estimator can be estimated using the method introduced by Stefanski
& Cook (1995) and summarized, for example, in Carroll et al. (2006). The variance estimator can
be computed as 
̂ = limλ→−1(
̄λ− 
̂λ), where 
̄λ is the extrapolation function corresponding
to B−1∑B

b=1varest(β̂λ,b), where varest(β̂λ,b) is the estimated covariance matrix of β̂λ,b when using
the variance estimator corresponding to the naive estimation method, and 
̂λ is the extrapolation
function corresponding to B−1∑B

b=1(β̂λ,b − β̂λ)(β̂λ,b − β̂λ)T, i.e., the empirical covariance matrix
of {β̂λ,b}B

b=1.

4. SIMULATION STUDIES

4·1. Settings

The objective of our first three simulation studies is to investigate the properties of the proposed
estimator in finite samples and to compare it with the naive method based on (3), which does not
take measurement error into account, and the corrected score method of Ma & Yin (2008).

In the next three subsections, we focus on our proposed estimator. In § 4·5 and in the Sup-
plementary Material, we present the results of simulation studies for examining the effect of
the choice of the extrapolation function and of the grid of values of λ on the simex estimator.
Subsections 4·6 and 4·7 contain results pertaining to the robustness of the simex estimator with
respect to misspecification of the error distribution and variance.

An extensive simulation study investigating the robustness of both the simex algorithm and
the corrected score approach of Ma & Yin (2008) with respect to the assumptions of normal
distribution and known variance of the error can be found in a 2016 article by A. Bertrand et al.,
available at http://hdl.handle.net/2078.1/171508.

In the following, for the simex algorithm, we used B = 50 and λ ∈ {0, 0·5, 1, 1·5, 2} except in
the simulations regarding the choice of this grid, and a quadratic extrapolant except in § 4·5. The
variables Z appearing in the simulation step of the algorithm are always taken to be Gaussian.
For each setting, 500 simulated datasets were analysed.
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4·2. One mismeasured covariate

The first set of simulation studies that we conduct is the first in Ma &Yin (2008). They assume
that the follow-up is infinite, and that the censoring distribution and the failure distribution have
infinite support, so that each individual is known to be either cured, dead or censored, when
Ti = Ci = ∞, Ti < Ci � ∞ or Ci < Ti � ∞, respectively. The censored individuals for whom
Ci < Ti = ∞ are actually cured. In such a case, a cure threshold is not needed for estimation.
Each subject has a probability of 60% of having an infinite censoring time. Because of the infinite
follow-up, this does not correspond to a realistic case, but is useful for assessing the proposed
method in an ideal situation.

The model under study is

S(t | X1, X2) = exp {− exp (β0 + β1X1 + β2X2)F(t)}
for t > 0 and we generate the data from this model with β0 = 0·5, β1 = 1, β2 = −0·5,
F(t) = 1 − exp(−t) and X1 ∼ Un[0, 1], X2 ∼ Ber(0·5); X1 is subject to measurement error so
that W = X1 + U1 is observed, where U1 ∼ N (0, v2), with v2 the only nonzero element of V .
Moreover, the censoring time C is independent of X and of T given X , and the finite censoring
times follow an exponential distribution with mean μ.

Eight different settings are obtained by considering two possible values for sample size,
n = 200 or n = 300, variance of the measurement error, v2 = 0·12 or v2 = 0·22, and mean of the
finite censoring times, μ = 0·1 or μ = 1·0. The average cure rate, i.e., the rate of observations
for which T = ∞, is 14%, the average proportion of subjects with T = C = ∞, considered
cured for the estimation, is 8%; and the average censoring rate is 17% when μ = 1·0 and 33%
when μ = 0·1.

The results for the four settings with μ = 0·1 are summarized in Table 1, while those
corresponding to μ = 1·0 can be found in the Supplementary Material.

The empirical and estimated variances are always quite close to each other, while both the
corrected score and the simex approaches yield coverage probabilities close to the nominal 95%.
Compared to the naive estimation method, both correction methods decrease the bias in the
intercept and the parameter corresponding to the mismeasured covariate, but at the cost of a
larger variance. Although the simex algorithm and the method of Ma & Yin (2008) cannot really
be distinguished on the basis of the bias, the former leads to a smaller variance for β0 and β1
when v = 0·2, and to similar variances when v = 0·1. This results in a mean squared error which
is, when v = 0·2, the smallest for simex, compared to the naive and corrected score methods.
When the measurement error variance is smaller, the naive method yields a smaller mean squared
error than both correction methods. This is to be expected since bias correction methods have a
larger variance than the naive method.

4·3. Two mismeasured covariates

We now introduce, in the previous setting, an additional covariate with measurement error. In
this case, S(t | X1, X2, X3) = exp {− exp (β0 + β1X1 + β2X2 + β3X3)F(t)}, t > 0. We generate
the data with β0 = 0·5, β1 = 1, β2 = 1, β3 = −0·5, F(t) = 1 − exp(−t) and X1 ∼ Un[0, 1],
X2 ∼ N (0, 1), X3 ∼ Ber(0·5); X1 and X2 are subject to measurement error so that W1 = X1 + U1
and W2 = X2 + U2 are observed, where U1 ∼ N (0, v2

1), U2 ∼ N (0, v2
2) and U1 and U2 are

uncorrelated.
The average censoring rate is 17% when μ = 1·0 and 32% when μ = 0·1. The average

proportion of subjects considered cured for the estimation is 13%, while the average cure rate is
21%.
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Table 1. Empirical bias, empirical and estimated variances, coverages and mean squared errors
for the settings with one mismeasured covariate, when μ = 0·1

Ma & Yin method Naive method Simex method

n v Estimate β0 β1 β2 β0 β1 β2 β0 β1 β2

200 0·1 Bias −1·0 3·2 −0·2 4·3 −9·2 0·2 −0·4 1·5 −0·1
Emp. var. 5·3 13·2 4·1 4·7 9·9 4·0 5·2 12·8 4·1

Est. var. 5·3 13·0 3·6 4·6 9·8 3·6 5·2 12·4 3·6
95% cv 94·6 94·8 93·6 93·6 93·4 93·8 94·2 94·2 93·8

MSE 5·3 13·3 4·1 4·8 10·8 4·0 5·2 12·8 4·1
200 0·2 Bias −3·0 8·5 −0·5 14·2 −31·5 ·7 3·6 −7·6 0·1

Emp. var. 6·9 22·6 4·4 4·1 7·5 4·0 5·4 14·3 4·2
Est. var. 7·4 22·7 3·9 4·0 7·4 3·6 5·2 12·7 3·7
95% cv 96·0 96·8 93·2 88·4 78·8 93·4 93·8 92·4 93·0

MSE 7·0 23·4 4·4 6·1 17·5 4·0 5·5 14·8 4·2
300 0·1 Bias −1·1 3·7 −1·4 4·2 −8·4 −1·1 −0·5 2·3 −1·4

Emp. var. 3·9 9·4 2·6 3·4 7·1 2·5 3·8 9·0 2·6
Est. var. 3·5 8·7 2·4 3·1 6·5 2·4 3·4 8·3 2·4
95% cv 95·6 94·4 96·6 93·4 93·2 96·6 95·4 94·2 96·6

MSE 3·9 9·5 2·6 3·6 7·8 2·5 3·8 9·1 2·6
300 0·2 Bias −2·1 6·8 −1·8 14·2 −31·0 −0·6 3·6 −6·9 −1·3

Emp. var. 4·9 14·5 2·7 3·0 5·1 2·5 3·9 9·7 2·6
Est. var. 4·6 13·9 2·6 2·7 4·9 2·4 3·4 8·4 2·5
95% cv 96·6 95·8 95·8 85·2 71·6 95·4 93·8 93·4 95·8

MSE 5·0 14·9 2·7 5·0 14·7 2·5 4·1 10·2 2·6
Emp. var., empirical variance; Est. var., estimated variance; 95% cv, coverage probabilities of 95% confidence intervals
computed based on the asymptotic normal distribution; MSE, mean squared error. All numbers were multiplied by 100.

The results for the four settings with μ = 0·1 are summarized in Table 2, while those
corresponding to μ = 1·0 can be found in the Supplementary Material.

The three methods perform similarly as far as β3 is concerned. None clearly has lowest bias
overall. For larger values of the measurement error variances, the method of Ma & Yin (2008) is
the best for β0 and β1, while simex is preferred for β2. However, when also taking the variance of
the estimators into account, the mean squared error indicates that the naive method is preferable
for small values of v1 and v2, while simex outperforms the corrected score approach and the naive
method for larger values of v1 and v2.

4·4. A more realistic case

In practice, neither the failure times nor the censoring times can be infinite. Consequently,
none of the cured subjects are observed to be cured. The cure threshold, i.e., the largest observed
event time, as mentioned in § 2, is thus needed for the estimation of the model parameters.
Moreover, depending on the context, the censoring and cure rates can be much larger than the
values considered in the two previous settings. We therefore consider the model

S(t | X1, X2) = exp {− exp(−0·3 + X1 − 0·5X2)F(t)} , t > 0,

where X1 ∼ Un[0, 1], X2 ∼ Ber(0·5); X1 is subject to measurement error so that W = X1 + U1
is observed, where U1 ∼ N (0, v2).

For the baseline cumulative distribution function F(t), we use an exponential distribution with
mean 6 which is truncated at t = 20. Consequently, the maximum event time is 20. The censoring
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Table 2. Empirical bias, empirical and estimated variances, coverages and mean squared errors
for the settings with two mismeasured covariates, when μ = 0·1
Ma & Yin method Naive method Simex method

Estimate β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

n = 200, v1 = 0·1, v2 = 0·1
Bias 0·1 2·0 1·6 −1·2 4·9 −10·7 −0·7 −0·6 0·7 0·1 1·2 −1·1

Emp. var. 7·0 15·4 1·7 4·0 6·1 11·5 1·6 3·9 6·8 14·8 1·7 4·0
Est. var. 6·1 13·8 1·5 3·9 5·2 10·2 1·4 3·8 5·9 13·1 1·5 3·9
95% cv 93·2 93·8 95·0 94·8 92·2 93·4 93·0 95·0 93·0 94·6 95·0 95·0

MSE 7·0 15·4 1·7 4·0 6·4 12·6 1·6 3·9 6·8 14·8 1·7 4·0
n = 200, v1 = 0·2, v2 = 0·2

Bias −1·9 8·1 3·0 −1·8 13·3 −33·4 −5·6 0·3 4·7 −9·4 0·7 −0·9
Emp. var. 9·8 27·9 2·2 4·6 5·6 8·8 1·5 3·9 7·6 17·3 1·9 4·3

Est. var. 8·6 25·2 1·9 4·3 4·6 7·7 1·3 3·8 6·0 13·6 1·6 4·1
95% cv 94·2 96·2 95·8 94·2 88·8 75·8 90·2 94·0 91·8 92·4 94·8 94·2

MSE 9·8 28·6 2·3 4·6 7·4 20·0 1·8 3·9 7·9 18·2 1·9 4·3
n = 300, v1 = 0·1, v2 = 0·1

Bias 2·0 0·8 1·2 −1·3 6·6 −11·5 −1·0 −0·8 2·4 −0·7 0·9 −1·2
Emp. var. 4·1 9·9 0·9 2·4 3·6 7·5 0·9 2·3 4·0 9·6 0·9 2·4

Est. var. 3·9 9·0 1·0 2·6 3·4 6·8 0·9 2·5 3·8 8·6 1·0 2·6
95% cv 94·4 94·2 96·4 95·2 92·4 93·6 95·8 95·6 93·8 94·2 96·4 95·2

MSE 4·1 9·9 1·0 2·4 4·0 8·9 0·9 2·3 4·1 9·6 0·9 2·4
n = 300, v1 = 0·2, v2 = 0·2

Bias 0·8 4·7 2·2 −1·6 14·9 −34·0 −5·9 0·2 6·6 −10·1 0·5 −1·0
Emp. var. 5·3 16·3 1·2 2·6 3·2 5·9 0·8 2·4 4·4 11·2 1·1 2·5

Est. var. 5·2 14·9 1·2 2·8 3·0 5·1 0·9 2·5 3·9 8·9 1·1 2·7
95% cv 95·0 95·6 96·2 95·4 86·8 66·2 90·6 94·8 90·6 91·2 95·8 95·0

MSE 5·3 16·6 1·3 2·7 5·4 17·4 1·2 2·4 4·8 12·2 1·1 2·5
Emp. var., empirical variance; Est. var., estimated variance; 95% cv, coverage probabilities of 95% confidence intervals
computed based on the asymptotic normal distribution; MSE, mean squared error. All numbers were multiplied by 100.

times are independent of the covariates and are generated from an exponential distribution with
mean μ = 5, which is truncated at t = 30.

Four different settings are obtained by considering two possible values for sample size, n = 200
or n = 300, and variance of the measurement error, v2 = 0·12 or v2 = 0·252. The average
censoring rate is 60% and the average proportion of cured subjects is 39%, while the average
observed cure rate is 5%. The results are summarized in Table 3.

As might be expected, differences between the methods appear only for β1 and, in some cases,
forβ0. In terms of the bias, both correction methods are preferable to the naive one. When v = 0·1,
simex is the best for β1, while the method of Ma &Yin (2008) is the best for this parameter when
v = 0·25. When v = 0·1 the mean squared error of the naive estimator is the smallest. When
v = 0·25, the mean squared error of the simex estimator is the smallest, while the method of
Ma & Yin (2008) yields the largest mean squared error.

4·5. Impact of the choice of the extrapolation function

In order to compare the performance of simex with different choices of extrapolant, we consider
the setting in the previous subsection, and we estimate the model parameters using, in addition
to the quadratic extrapolant, a linear and a cubic extrapolant. Table 4 reports the results.
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Table 3. Empirical bias, empirical and estimated variances, coverages and mean squared errors
for the realistic settings with one mismeasured covariate

Ma & Yin method Naive method Simex method
n v Estimate β0 β1 β2 β0 β1 β2 β0 β1 β2

200 0·1 Bias −2·1 1·3 −2·2 3·8 −10·6 −2·1 −1·4 −0·3 −2·2
Emp· 12·6 21·2 6·7 11·2 16·2 6·7 12·4 20·6 6·7

Est· 11·4 22·1 6·3 9·8 16·7 6·2 10·7 19·1 6·3
95% cv 94·4 97·2 94·8 94·2 95·4 95·0 93·4 96·2 94·8

MSE 12·6 21·2 6·8 11·4 17·3 6·7 12·4 20·6 6·8
200 0·25 Bias −5·6 9·3 −2·6 19·9 −42·9 −1·9 7·4 −18·6 −2·0

Emp· 18·5 45·0 7·1 9·4 10·0 6·7 12·1 20·7 6·8
Est· 21·8 57·8 6·9 7·9 10·5 6·2 9·7 14·6 6·3

95% cv 97·2 97·4 96·0 88·6 74·2 95·4 92·7 88·6 95·1
MSE 18·8 45·9 7·2 13·3 28·4 6·7 12·6 24·2 6·8

300 0·1 Bias −3·1 2·5 −1·3 2·5 −9·4 −1·2 −2·5 1·3 −1·3
Emp· 10·0 16·7 4·3 9·2 12·8 4·3 9·8 16·4 4·3

Est· 7·9 14·4 4·1 7·2 11·0 4·1 7·6 12·5 4·1
95% cv 93·2 94·8 95·6 93·0 92·4 95·8 92·8 93·8 95·6

MSE 10·1 16·8 4·4 9·3 13·6 4·3 9·9 16·4 4·4
300 0·25 Bias −6·8 10·5 −1·9 18·7 −41·2 −1·1 6·0 −15·8 −1·4

Emp· 15·3 37·1 4·7 7·4 8·2 4·3 9·9 17·4 4·4
Est· 14·4 37·5 4·6 5·6 6·9 4·1 6·9 9·7 4·2

95% cv 96·0 96·8 95·6 85·0 63·2 95·8 89·7 83·9 95·6
MSE 15·8 38·2 4·7 10·9 25·2 4·3 10·3 19·9 4·4

Emp., empirical variance; Est., estimated variance; 95% cv, coverage probabilities of 95% confidence intervals
computed based on the asymptotic normal distribution; MSE, mean squared error. All numbers were multiplied by 100.

In these simulations, varying the extrapolation function used in the simex algorithm has no
effect on the estimation of β2. This is not the case for the other two parameters. When the
measurement error variance is rather low, the smallest bias for β0 is obtained by the linear
extrapolant, while there is no clear conclusion regarding β1. However, for the largest variance,
the higher the extrapolation order, the smaller the bias. In terms of mean squared error, the lowest
order of extrapolation yields the best results for β0, but the differences among extrapolants are
quite limited. For β1, the mean squared error increases with the order of the extrapolation when
the measurement error variance is low, while the quadratic extrapolant outperforms the other
ones when the variance is larger.

These findings are consistent with the general behaviour of the simex estimator: the lower
the order of the extrapolant, the more conservative the correction (Cook & Stefanski, 1994).
Consequently, the extrapolation function has to be chosen in the context of the bias-variance
trade-off; the quadratic extrapolant has seemed to be a good compromise in many cases (Cook
& Stefanski, 1994; Carroll et al., 2006) and is widely used (He et al., 2007; Li & Lin, 2003).

4·6. Robustness with respect to misspecification of the error distribution

In this subsection, the effect of a misspecification of the measurement error distribution is
investigated through another simulation study, again using the settings of § 4·4 with n = 200 and
the quadratic extrapolant. The measurement error is now generated using two distributions which
are very different from the Gaussian: a uniform and a chi-squared distribution, with standard
deviation v = 0·1 and v = 0·25, assumed to be known. When v = 0·1, we see in Table 5 that, for
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Table 4. Empirical bias, empirical and estimated variances, coverages and mean squared errors
for the realistic settings, for simex with three different extrapolation functions

Simex (linear) Simex (quadratic) Simex (cubic)
n v Estimate β0 β1 β2 β0 β1 β2 β0 β1 β2

200 0·1 Bias 0·0 −3·0 −2·2 −1·4 −0·3 −2·2 −1·4 0·0 −2·2
Emp. var. 12·0 19·2 6·7 12·4 20·6 6·7 12·5 21·2 6·7

Est. Var. 10·2 17·9 6·3 10·7 19·1 6·3 11·0 19·4 6·3
95% cv 93·6 95·6 94·8 93·4 96·2 94·8 93·2 95·0 94·4

MSE 12·0 19·3 6·8 12·4 20·6 6·8 12·5 21·2 6·8
200 0·25 Bias 14·5 −32·5 −1·9 7·4 −18·6 −2·0 3·6 −10·6 −1·9

Emp. var. 10·4 14·1 6·7 12·1 20·7 6·8 13·8 26·5 6·8
Est. Var. 8·8 11·2 6·2 9·7 14·6 6·3 16·0 18·2 6·3
95% cv 90·9 80·8 95·4 92·7 88·6 95·1 93·1 89·9 95·7

MSE 12·5 24·7 6·7 12·6 24·2 6·8 14·0 27·6 6·9
300 0·1 Bias −1·1 −1·6 −1·3 −2·5 1·3 −1·3 −2·5 1·9 −1·2

Emp. var. 9·5 15·2 4·3 9·8 16·4 4·3 10·8 17·1 4·3
Est. Var. 8·0 11·8 4·1 7·6 12·5 4·1 7·8 12·8 4·1
95% cv 92·8 93·8 95·6 92·8 93·8 95·6 92·8 93·6 95·4

MSE 9·5 15·2 4·3 9·9 16·4 4·4 10·8 17·1 4·4
300 0·25 Bias 13·1 −30·0 −1·2 6·0 −15·8 −1·4 1·9 −6·8 −1·6

Emp. var. 8·4 11·7 4·4 9·9 17·4 4·4 11·4 22·4 4·5
Est. Var. 8·1 7·4 4·1 6·9 9·7 4·2 8·1 12·1 4·2
95% cv 87·2 72·9 95·6 89·7 83·9 95·6 91·8 85·2 95·2

MSE 10·1 20·7 4·4 10·3 19·9 4·4 11·4 22·9 4·5
Emp. var., empirical variance; Est. var., estimated variance; 95% cv, coverage probabilities of 95% confidence intervals
computed based on the asymptotic normal distribution; MSE, mean squared error. All numbers were multiplied by 100.

this setting, the misspecification has no impact on the mean squared error; the impact on the bias
is very limited except, to some extent, for β1 with the chi-squared distribution. For the largest
value of the measurement error standard deviation, 0·25, the estimation of β2 is not influenced
by the true distribution. The mean squared errors of β0 and β1 increase slightly. With the uniform
distribution, the biases of these two parameters stay nearly constant, while with a chi-squared
error, they increase quite markedly.

4·7. Robustness with respect to misspecification of the error variance

We now investigate the behaviour of our estimator when the measurement error variance is
misspecified. More precisely, we consider the same setting as in § 4·4 with n = 200, where the
error is simulated with standard deviations vS = 0·1 and vS = 0·25. However, in the estimation
process, the variance is misspecified as vE ∈ {0·05, 0·15} for vS = 0·1 and as vE ∈ {0·2, 0·3} for
vS = 0·25. The extrapolation function is quadratic.

The results, reported in Table 6, show that, in these simulations, a misspecification of the
measurement error variance has no impact on the estimation of β2. Both β0 and β1 are influenced,
in terms of both the bias and the mean squared error. The latter increases with the value of
the variance assumed in the estimation procedure, although this increase is less marked when
switching from the underspecified variance to the true one, compared to when switching from
the true variance to the overspecified one. When the true value of the measurement error variance
is low, the lowest bias is obtained when the correct variance is assumed; when the true variance
is higher, the bias decreases when the specified variance increases.



42 A. BERTRAND ET AL.
Table 5. Empirical bias, empirical and estimated variances, coverages and mean
squared errors for the simulations investigating the robustness of simex with

respect to a misspecification of the error distribution
v = 0·1 v = 0·25

True distribution Estimate β0 β1 β2 β0 β1 β2

Gaussian Bias −0·014 −0·3 −2·2 7·2 −18·2 −2·0
Emp. var. 12·4 20·6 6·7 12·1 21·0 6·8

Est. var. 10·8 19·1 6·3 9·7 14·8 6·3
95% cv 93·4 95·8 94·8 92·7 88·8 95·1

MSE 12·4 20·6 6·8 12·7 24·3 6·8
Chi-squared Bias −0·4 −2·0 −2·1 11·6 −25·1 −2·0

Emp. var. 12·8 21·0 6·8 12·4 19·9 7·0
Est. var. 10·8 18·6 6·3 9·2 12·8 6·3
95% cv 93·2 93·8 94·0 90·2 83·3 94·4

MSE 12·8 21·0 6·9 13·8 26·2 7·0
Uniform Bias −1·0 −0·7 −2·0 7·1 −17·7 −1·9

Emp. var. 12·6 20·2 6·9 13·5 21·9 7·1
Est. var. 10·7 19·1 6·3 82·6 15·2 6·3
95% cv 93·1 95·0 94·4 91·3 86·1 94·2

MSE 12·7 20·2 7·0 14·0 25·0 7·1
Emp. var., empirical variance; Est. var., estimated variance; 95% cv, coverage probabilities of 95%
confidence intervals computed based on the asymptotic normal distribution; MSE, mean squared
error. All numbers were multiplied by 100.

Table 6. Empirical bias, empirical and estimated variances, coverages and
mean squared errors for the simulations investigating the robustness of simex

with respect to a misspecification of the error variance
vS = 0·1 vS = 0·25

vE β0 β1 β2 vE β0 β1 β2

0·05 Bias 2·5 −8·1 −2·1 0·20 11·6 −26·2 −2·1
Emp. var. 11·5 17·1 6·7 11·4 17·2 6·7

Est. Var. 11·2 17·3 6·2 9·2 13·8 6·3
95% cv 94·4 95·8 94·8 92·3 86·3 95·4

MSE 11·5 17·8 6·7 12·8 24·0 6·8
0·1 Bias −01·4 −0·3 −2·2 0·25 7·2 −18·2 −2·0

Emp. var. 12·4 20·6 6·7 12·1 21·0 6·8
Est. Var. 10·8 19·1 6·3 9·7 14·8 6·3
95% cv 93·4 95·8 94·8 92·7 88·8 95·1

MSE 12·4 20·6 6·8 12·7 24·3 6·8
0·15 Bias −8·0 13·0 −2·2 0·30 2·9 −9·3 −2·1

Emp. var. 14·1 26·6 6·8 13·3 26·5 7·0
Est. Var. 11·7 21·8 6·3 10·1 15·9 6·3
95% cv 93·2 92·4 94·6 92·9 88·8 94·8

MSE 14·8 28·3 6·8 13·4 27·4 7·0
Emp. var., empirical variance; Est. var., estimated variance; 95% cv, coverage probabilities of
95% confidence intervals computed based on the asymptotic normal distribution; MSE, mean
squared error. All numbers were multiplied by 100.
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5. AORTIC INSUFFICIENCY DATABASE

We illustrate our methodology on data from patients suffering from aortic insufficiency, a
cardiovascular disease. Between 1995 to 2013, 393 patients underwent echocardiography for
severe aortic insufficiency at the Brussels Saint-Luc University Hospital, Belgium. These data
were collected by one of the authors, C. de Meester, and include information from the diagnosis
of the pathology, between 1981 and 2013. Although aortic insufficiency can be lethal, it is known
that a proportion of patients will never die from it. Since the patients considered in this study
have no or limited other known morbidity, those who survive for a sufficiently long period after
the diagnosis can be considered as long-term survivors. The main objective of this study is to
investigate the link between the ejection fraction measured at baseline and the survival of the
patients. The ejection fraction is the ratio of the difference between the end-diastolic and end-
systolic volumes over the end-diastolic volume and therefore measures the fraction of blood which
leaves the heart each time it contracts. It is typically high for healthy individuals and is one of the
main indicators appearing in the guidelines used to decide whether a patient should be operated
on (Bonow et al., 1998; Vahanian et al., 2007). However, the ejection fraction is measured with
error (Otterstad et al., 1997), and this should be taken into account when evaluating its impact
on survival.

After a median follow-up of 7·2 years, only 58 patients had died, and the Kaplan–Meier
estimate of the survival curve for these patients shows a clear plateau after about 17 years, as
can be seen in Fig. 1. As explained in § 2, the cure threshold is the largest observed event time:
all patients surviving up to 17·21 years are considered as not being at risk of dying of their
aortic insufficiency. To take into account the presence of cured patients and the measurement
error in the covariate of interest, we apply the promotion time cure model estimated with the
simex algorithm with the quadratic extrapolant. We compare our results with those obtained by
the method of Ma & Yin (2008), as well as with those from a naive promotion time cure model
ignoring measurement error. In our data the ejection fraction takes values between 0·19 and
0·84, median 0·56, and based on previous work (Otterstad et al., 1997) we consider a standard
deviation of the measurement error v of 0·05 and 0·10. Our model is adjusted for other patient
characteristics, measured without error, namely: gender, with 79% male; age at diagnosis, with
median 52 and range 17–88, standardized for the analysis; and surgery strategy chosen by the
cardiologist for this patient, with 15% of the patients having no surgery, 39% surgery within the
first three months and 46% surgery after the first three months. See Table 7.

We also estimated the model with the logarithm of the ejection fraction instead of this variable in
its natural scale, which allows one to take into account the potential case in which the measurement
error would be multiplicative rather than additive. The qualitative conclusions are identical: both
correction methods yield a larger negative estimated effect of the ejection fraction, compared to
the naive method. The estimated coefficients of the covariates without measurement error hardly
change.

The parameter most affected by taking the measurement error into account is the coefficient of
the ejection fraction. Both methods correct in the same direction. However, the simex approach
with a quadratic extrapolant yields a more conservative correction, as reported by Carroll et al.
(2006). This smaller correction is associated with a smaller estimated standard deviation, which
is consistent with what was observed in the simulation study, and hence a narrower confidence
interval. Correcting for the measurement error increases the size of the estimated effect of the
ejection fraction. In the promotion time cure model, a negative coefficient implies an increase in
the cure probability and in survival at all times, when the value of the covariate increases. The
results hence indicate that, all other things being equal, the higher the ejection fraction, the higher
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Fig. 1. Kaplan–Meier estimate (solid) and 95% pointwise confidence limits (dashed) of the survival curve for the
patients from the aortic insufficiency database.

Table 7. Regression coefficient estimates, estimated standard deviations and confidence intervals
based on the asymptotic normal distribution for the aortic insufficiency data

Estimate EF Gender Age Surgery Surgery
(standardized) < 3 months > 3 months

Naive −1·22 0·63 1·23 0·14 −0·73
(Estimated SD) (1·38) (0·28) (0·20) (0·37) (0·40)
95% C.I. (lower bound) −3·92 0·08 0·85 −0·60 −1·51
95% C.I. (upper bound) 1·48 1·19 1·62 0·87 0·05
Ma & Yin method (v = 0·05) −1·50 0·63 1·23 0·12 −0·73
(Estimated SD) (1·69) (0·29) (0·20) (0·38) (0·40)
95% C.I. (lower bound) −4·80 0·07 0·85 −0·62 −1·51
95% C.I. (upper bound) 1·81 1·19 1·61 0·86 0·04
Ma & Yin method (v = 0·10) −3·94 0·63 1·17 −0·03 −0·77
(Estimated SD) (4·21) (0·31) (0·21) (0·43) (0·40)
95% C.I. (lower bound) −12·19 0·02 0·76 −0·89 −1·55
95% C.I. (upper bound) 4·31 1·24 1·58 0·82 0·01
Simex (v = 0·05) −1·45 0·63 1·23 0·12 −0·73
(Estimated SD) (1·48) (0·29) (0·20) (0·38) (0·40)
95% C.I. (lower bound) −4·35 0·07 0·85 −0·62 −1·50
95% C.I. (upper bound) 1·45 1·19 1·61 0·86 0·05
Simex (v = 0·10) −2·09 0·62 1·22 0·10 −0·73
(Estimated SD) (1·71) (0·29) (0·20) (0·38) (0·39)
95% C.I. (lower bound) −5·44 0·06 0·84 −0·64 −1·50
95% C.I. (upper bound) 1·26 1·19 1·61 0·85 0·04

SD, standard deviation; C.I., confidence interval; EF, ejection fraction.

the cure probability and the better the survival for the susceptible subjects. This is consistent with
expectations and with existing guidelines, which advise performing surgery when the ejection
fraction is below a given threshold (Bonow et al., 1998; Vahanian et al., 2007). As far as the
surgery strategy is concerned, our results indicate better survival for patients having undergone
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Table 8. Regression coefficient estimates, estimated standard deviations and confidence intervals
based on the asymptotic normal distribution when interaction terms are included in the model

for the aortic insufficiency data
Estimate EF Gender Age Surgery Surgery EF × Surgery EF × Surgery

(stand.) < 3 months > 3 months < 3 months > 3 months

Naive −6·73 0·71 1·27 −4·33 −2·36 8·56 3·17
(Estimated SD) (2·16) (0·27) (0·19) (1·43) (1·38) (2·74) (2·72)
95% C.I. (lower bound) −11·04 0·17 0·88 −7·19 −5·11 3·08 −2·28
95% C.I. (upper bound) −2·41 1·26 1·65 −1·48 0·40 14·05 8·62
Simex (v = 0·05) −7·59 0·72 1·27 −5·10 −2·63 9·96 3·68
Simex (v = 0·10) −10·56 0·77 1·27 −7·01 −3·10 13·62 4·65

SD, standard deviation; C.I., confidence interval; EF, ejection fraction.

surgery more than three months after the discovery of the disease, and the worst for those with
surgery within the first three months, although the effect is reduced when measurement error
is taken into account. These results should, however, be interpreted carefully. First, the patients
having undergone surgery more than three months after the discovery of the disease have, by
definition, lived at least three months after the discovery of their disease. Second, and probably
more importantly, the two groups are not comparable at baseline, as the decision of whether to
operate immediately was taken according to existing guidelines, based on the prognosis of the
patients. Therefore, the worse survival for patients having surgery within the first three months
can be explained by the fact that 80% of these patients met at least one of the guideline criteria
for surgery, including the presence of symptoms in 62% of them. The survival of severe aortic
insufficiency patients with symptoms is worse than for those without (Dujardin et al., 1999), as
also observed in post-operative survival (Klodas et al., 1997).

We also considered introducing an interaction between the ejection fraction level and the
surgery strategy. However, an interaction term between a mismeasured covariate and a correctly
measured one is actually a mismeasured covariate whose variance depends on the latter covariate.
The simex algorithm can easily be tuned to accommodate such a case and yield parameter
estimates; however, our asymptotic results do not then hold. Nevertheless, the bootstrap could be
used to perform inference on the estimated parameters. It is unclear how to modify the method
of Ma & Yin (2008) to allow a dependence between an error term and a covariate. In Table 8,
we report the results for this model. When the measurement error is not taken into account,
one of the interaction terms is significant, and its introduction modifies the significance of other
parameters. The estimated parameters obtained with simex are also reported: as before, the
correction leads to estimated effects of higher size for the mismeasured covariates, but also for
the covariates included in the interaction terms. We observe a negative estimated effect of the
ejection fraction on the survival for patients with surgery after more than three months, as well
as for those without surgery: this means, as in the previous model, that a higher value of the
ejection fraction is associated with better survival. This effect is less impressive for patients
without surgery. According to the naive estimates, there is no significant effect of the ejection
fraction in the patients having undergone surgery within the first three months, probably because
these patients are operated on due to the presence of symptoms, as explained in the previous
paragraph, independently of their ejection fraction.
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6. DISCUSSION

The simex algorithm has several advantages that make it very appealing, especially in applied
problems. First, since it allows one to graphically represent the effect of the measurement error
and of the correction on the bias, it helps justify the need for a correction. Secondly, its intuitive
nature makes it appealing in applied problems, particularly to users not familiar with the issue
of measurement error. Finally, the scope of the correction can be tuned, making a conservative
correction possible. Compared to the alternative approach introduced by Ma &Yin (2008), simex
can be applied to a broader class of models, since θ(x) can take any parametric form, including
non-penalized fixed-knot B-splines. Also, when using the simex approach, the additive error can
have any distribution, whereas Ma & Yin (2008) only study the normal case in detail. Moreover,
the practical implementation of the simex method is easier, since it only requires software to
estimate the parameters of the model without measurement error.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proof of Theorem 1 and
further simulation results.

APPENDIX

Proof of Theorem 2

For showing the asymptotics under this model, we follow the approach proposed by Zeng et al. (2006),
using G(·) = exp(−·). In the case of no measurement error, the loglikelihood function is


̃(β, F) = I (Y < ∞)
(
δ log f + δ log

[−G′ {η(X Tβ)F(Y )
}
η(X Tβ)

]
+(1 − δ) log G

{
η(X Tβ)F(Y )

}) + I (Y = ∞) log G
{
η(X Tβ)

}
,

where f is the density function corresponding to F . Then, the true (βTRUE, FTRUE) maximizes the expected
loglikelihood E{
̃(β, F)} over the class H = {(β, F) : β ∈ B, F a cumulative distribution function }, for
some compact set B.

With measurement error, we define


λ(β, F) = I (Y < ∞)
(
δ log f + δ log

[−G′ {η(W T
λ β)F(Y )

}
η(W T

λ β)
]

+(1 − δ) log G
{
η(W T

λ β)F(Y )
}) + I (Y = ∞) log G

{
η(W T

λ β)
}

,

where Wλ = W + λ1/2U ∗ with U ∗ ∼ N (0, V ), and we suppose that E {
λ(β, F)} has a unique maximizer
(βλ, Fλ). Therefore, we can follow exactly the same reasoning as in Zeng et al. (2006), replacing X by Wλ

in all their calculations.



Survival cure model with mismeasured covariates 47

For a fixed λ and a fixed b, it follows from equation (A.7) in Zeng et al. (2006) that

(β̂λ,b − βλ)
Th1 +

∫ ∞

0
h2 d(F̂λ,b − Fλ)

= −(Pn − P)

[

λ,β(βλ, Fλ)

T�−1
λ,β(h1, h2)+ 
λ,F(βλ, Fλ)

{∫
�−1
λ,F(h1, h2) dFλ

}]
+ op(n

−1/2)

= n−1
n∑

i=1

ψλ(Ti, Wi,λ,b, h1, h2)+ op(n
−1/2),

uniformly over all (h1, h2) ∈ S0. Here, Pn {g(δ, Y , X )} = n−1
∑n

i=1 g(δi, Yi, Xi) is the empirical measure of
n independent and identically distributed observations, P {g(δ, Y , X )} = E {g(δi, Yi, Xi)} is the expectation,

λ,β(β, F) is the derivative of 
λ(β, F) with respect to β, 
λ,F(β, F)[∫ h2 dFλ] is the derivative of 
λ(β, F)
along the path (β, Fε,λ(t) = Fλ(t)+ε

∫ t
0 h2(u) dFλ(u)), ε ∈ (−ε0, ε0) for a small constant ε0, and (�−1

λ,β ,�−1
λ,F)

is the inverse of the linear operator {�λ,β(h1, h2),�λ,F(h1, h2)} defined inAppendixA.2 in Zeng et al. (2006).
Finally,

S0 = {
h1 ∈ R

D : ‖h1‖ � 1
} ×

{
h2 : R

+ → R : ‖h2‖V � 1,
∫ ∞

0
h2(y) dFλ(y) = 0

}
,

with the total variation of h2 defined as the supremum over all finite partitions 0 = t1 < · · · < tm+1 = ∞,

‖h2‖V = sup
0=t1<t2<···<tm+1=∞

m∑
i=1

|h2(ti+1)− h2(ti)|.

Of course, Eλ {ψλ(T , Wλ, h1, h2)} = 0 for all (h1, h2) ∈ S0.
Next, for fixed λ, the class {(t, w) → ψλ(t, w, h1, h2) : (h1, h2) ∈ S0} is Donsker (Zeng et al., 2006), and

hence the class {
(t, w1, . . . , wB) → B−1∑B

b=1ψλ(t, wb, h1, h2) : (h1, h2) ∈ S0

}
is also Donsker, since sums of Donsker classes are Donsker; see van der Vaart & Wellner (1996), Lemma
2.10.6. It now follows that the process

n1/2
{
(β̂λ − βλ)

Th1 +
∫ ∞

0
h2 d(F̂λ − Fλ)

}

= n1/2

[
B−1

B∑
b=1

(β̂λ,b − βλ)
Th1 +

∫ ∞

0
h2 d

{
1

B

B∑
b=1

(F̂λ,b − Fλ)

}]

= n−1/2
n∑

i=1

B−1
B∑

b=1

ψλ(Ti, Wi,λ,b, h1, h2)+ op(1)

converges weakly to a zero-mean Gaussian process GP indexed by (h1, h2) ∈ S0; see Zeng et al. (2006)
after equation (A.7).

The covariance between GP(h1, h2) and GP(h∗
1, h∗

2) is

E

{(

λ,β(βλ, Fλ)

T�−1
λ,β(h1, h2)+ 
λ,F(βλ, Fλ)

[∫
�−1
λ,F

{
h1, QFλ(h2)

}
dFλ

])

×
(

λ,β(βλ, Fλ)

T�−1
λ,β(h

∗
1, h∗

2)+ 
λ,F(βλ, Fλ)

[∫
�−1
λ,F

{
h∗

1, QFλ(h
∗
2)

}
dFλ

])}
.
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However, since for any h2 in the class

S = {
h1 ∈ R

D : ‖h1‖ � 1
} × {

h2 : R
+ → R : ‖h2‖V � 1

}
we have

∫ ∞
0 h2 d(F̂λ − Fλ) = ∫ ∞

0 g2 d(F̂λ − Fλ), where g2 = h2 − ∫ ∞
0 h2 dFλ, we can also consider this

process as a process indexed by (h1, h2) ∈ S.
Finally, we take a finite grid � = (λ1, . . . , λK)

T. The foregoing reasoning based on a single value of λ
can be redone in exactly the same way for the vector (λ1, . . . , λK). At the end we have that

n1/2

⎧⎪⎪⎨
⎪⎪⎩

(β̂λ1 − βλ1)
Th1 + ∫ ∞

0 h2 d(F̂λ1 − Fλ1)

···
(β̂λK − βλK )

Th1 + ∫ ∞
0 h2 d(F̂λK − FλK )

⎫⎪⎪⎬
⎪⎪⎭

converges to a K-dimensional Gaussian process of mean zero. The covariance function between the ith
and jth components (i, j = 1, . . . , K) is

E

{(

λi ,β(βλi , Fλi )

T�−1
λi ,β
(h1, h2)+ 
λi ,F(βλi , Fλi )

[∫
�−1
λi ,F

{
h1, QFλi

(h2)
}

dFλi

])

×
(

λj ,β(βλj , Fλj )

T�−1
λj ,β
(h∗

1, h∗
2)+ 
λj ,F(βλj , Fλj )

[∫
�−1
λj ,F

{
h∗

1, QFλj
(h∗

2)
}

dFλj

])}
.

We consider two particular cases. First, consider the class

{(h1, h2) ∈ S : h1 = (0, . . . , 0, 1, 0, . . . , 0) and h2 ≡ 0}

where h1 is a vector containing 1 at the jth position (j = 1, . . . , D) and 0 elsewhere. Then, we get weak
convergence of the vector n1/2{β̂(�)− β(�)} to a multivariate normal random variable of dimension DK ,
N (0,
β), where β(�) = (βT

λ1
, . . . ,βT

λK
)T. The second class that we consider is

{
(h1, h2) ∈ S : h1 = 0 and h2(·) = I (· � t), t ∈ R

+}
.

Then, we get weak convergence of n1/2
{

F̂(�, t)− F(�, t)
}

to a Gaussian process G indexed by t ∈ R
+,

where F(�, t) = {Fλ1(t), . . . , FλK (t)}T.
We will now prove the asymptotic normality of β̂SIMEX. Suppose that βλ can be specified using a

parametric model gβ(γβ , λ) depending on a vector of parameters γβ . Assuming that gβ(γβ , λ) is the true
extrapolation function, we have that βTRUE = gβ(γβ , −1) and β̂SIMEX = gβ(γ̂β , −1), where γ̂β solves, by
the least-squares estimation method,

ġβ(γβ ,�)T
{

gβ(γβ ,�)− β̂(�)
}

= 0

and ġβ(γβ ,�) is the DK × dim(γβ) matrix of partial derivatives of the elements of gβ(γβ ,�) with respect
to the elements of γβ . We then have that

n1/2(γ̂β − γβ) = {
ġβ(γβ ,�)Tġβ(γβ ,�)

}−1
ġβ(γβ ,�)Tn1/2

{
β̂(�)− β(�)

}
+ op(1)

converges to
{
ġβ(γβ ,�)Tġβ(γβ ,�)

}−1
ġβ(γβ ,�)TN (0,
β). Because β̂SIMEX = gβ(γ̂β , −1) and β−1 =

gβ(γβ , −1) = βTRUE, using the delta method we have that

n1/2(β̂SIMEX − βTRUE) −→ ġβ(γβ , −1)
{
ġβ(γβ ,�)Tġβ(γβ ,�)

}−1
ġβ(γβ ,�)TN (0,
β),
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with variance


 = ġβ(γβ , −1)
{
ġβ(γβ ,�)Tġβ(γβ ,�)

}−1
ġβ(γβ ,�)T
β

×ġβ(γβ ,�)
{
ġβ(γβ ,�)Tġβ(γβ ,�)

}−1
ġβ(γβ , −1)T. (A1)

Finally, we show that n1/2(F̂SIMEX − FTRUE) converges weakly to a Gaussian process. For a fixed t,
suppose that Fλ(t) is determined by a parametric model gt(γt , λ) depending on a parameter vector γt .
Under the assumption that this is the true extrapolation function, we have that FTRUE(t) = gt(γt , −1) and
F̂SIMEX(t) = gt(γ̂t , −1), where γ̂t is a solution of

ġt(γt ,�)T
{

gt(γt ,�)− F̂(�, t)
}

= 0

and ġt(γt ,�) = ∂gt(γt ,�)/∂γ T
t . It now follows that

n1/2(γ̂t − γt) = {
ġt(γt ,�)Tġt(γt ,�)

}−1
ġt(γt ,�)Tn1/2

{
F̂(�, t)− F(�, t)

}
+ op(1)

for all t, and hence the process n1/2(γ̂t − γt) indexed by t ∈ R
+ converges to the Gaussian process

{
ġt(γt ,�)Tġt(γt ,�)

}−1
ġt(γt ,�)TG.

Since by definition F̂SIMEX = gt(γ̂t , −1) and F−1 = gt(γt , −1) = FTRUE, using the delta method we obtain
that as n → ∞,

n1/2(F̂SIMEX − FTRUE) −→ ġt(γt , −1)T
{
ġt(γt ,�)Tġt(γt ,�)

}−1
ġt(γt ,�)TG. (A2)
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