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Abstract

Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important

studies of functional brain organization early in human development. However, rs-fMRI in

infants has universally been obtained during sleep to reduce participant motion artifact, rais-

ing the question of whether differences in functional organization between awake adults and

sleeping infants that are commonly attributed to development may instead derive, at least in

part, from sleep. This question is especially important as rs-fMRI differences in adult wake

vs. sleep are well documented. To investigate this question, we compared functional con-

nectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants

with patterns in adult wakefulness and non-REM sleep. We find that important functional

connectivity features seen during infant sleep closely resemble those seen during adult

sleep, including reduced default mode network functional connectivity. However, we also

find differences between infant and adult sleep, especially in thalamic BOLD signal propaga-

tion patterns. These findings highlight the importance of considering sleep state when draw-

ing developmental inferences in infant rs-fMRI.
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Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) in human infants has made it

possible to detect key features of early brain functional organization, including the existence of

resting state networks at early ages [1, 2], developmental changes [3, 4], and even neural corre-

lates of prematurity [5]. However, infant neuroimaging generally requires the subjects to be

asleep in the scanner ([1, 6]; early studies also used sedation in place of natural sleep [7]). Oth-

erwise, motion inside the scanner would make it extremely challenging to acquire interpret-

able images.

The fact that rs-fMRI in infants is acquired during sleep introduces a potential interpreta-

tional confound when comparing these data to rs-fMRI collected from awake adults. For

example, it has been reported that the infant default mode network (DMN) exhibits weaker

functional connectivity than in adults [8], but it has also been shown by a number of indepen-

dent groups that sleep itself reduces functional connectivity in the adult DMN [9–13]. These

findings raise the question of whether reduced DMN functional connectivity in infants is

attributable to development, sleep, or a combination of both. More broadly, it is not under-

stood whether the functional organization of rs-fMRI in sleeping infants more closely resem-

bles that of awake adults or sleeping adults.

Ideally, the separate effects of sleep vs. wake, and even sleep stage, on infant rs-fMRI analy-

ses could be parsed out by imaging babies using combined EEG/fMRI during sleep and wake-

fulness. Unfortunately, to the best of our knowledge, the technical challenges inherent both to

imaging awake babies and to acquiring combined EEG/fMRI in babies have not been solved.

Lacking combined EEG/fMRI data in awake and asleep children, we can instead indirectly

infer the effects of sleep on early childhood rs-fMRI analyses by comparing rs-fMRI in sleeping

children to combined EEG/fMRI in young, healthy adults obtained in wakefulness and non-

rapid eye moment (NREM) sleep. Specifically, investigating whether the organization of rs-

fMRI in sleeping infants and toddlers more closely resembles awake or asleep adults informs

the question of whether some effects previously attributable to development may instead more

likely result from wake vs. sleep effects.

To address this question, we compare the functional organization of rs-fMRI in sleeping 6,

12, and 24 month children vs. rs-fMRI acquired in young, healthy adults during both wakeful-

ness and non-rapid eye moment (NREM) sleep. Thus, our study is explicitly developmental in

design. Analytically, we examine two features of the functional organization of the resting-

state brain using fMRI BOLD imaging: functional connectivity (zero-lag covariance) and

propagation (temporal lag structure) of the BOLD signal ([14, 15]; reviewed in [16]). Func-

tional connectivity (FC) is a common analysis strategy for identifying spatially distinct topog-

raphies of correlated activity in the brain [17]. Whereas FC identifies spatially segregated

networks (also called resting state networks), we have recently shown that temporal lags in the

BOLD signal reveal propagation of activity within and across networks, a signature of infra-

slow neural communication [16]. Importantly, the propagation of spontaneous BOLD signals

is markedly altered across adult wake vs. sleep [10, 18], providing an analytic tool for differen-

tiating the organization of rs-fMRI in wake vs. sleep.

Methods

Subjects

There are two cohorts of subjects in this study, young adults and children (ages 6, 12, and 24

months), data from both of which have been previously published. For the young adults, writ-

ten informed consent was obtained from all subjects whose data was analyzed in this study,
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and data collection for this study was approved by the Goethe University ethics committee.

Childhood data was acquired from an NIH-funded Autism Centers of Excellence (ACE) net-

work study, referred to as the ‘Infant Brain Imaging Study’ (IBIS). The network includes four

clinical data collection sites (University of North Carolina at Chapel Hill, University of Wash-

ington, Children’s Hospital of Philadelphia, Washington University in St. Louis), a Data Coor-

dinating Center at the Montreal Neurological Institute (McGill University), and two image

processing sites (University of Utah and UNC). Data collection sites had study protocols

approval from their Institutional Review Boards (IRB), and all enrolled subjects had informed

consent provided by parent/guardian. Written informed consent was also obtained from all

adult subjects whose data was analyzed in this study, and data collection for this study was

approved by the Goethe University ethics committee.

Adult subjects

63 non-sleep-deprived young adult subjects were scanned in the evening (starting at *8:00

PM). Subjects were instructed to keep their eyes closed during wakefulness and were allowed

to sleep. Hypnograms were inspected to identify epochs of contiguous sleep stages lasting at

least 5 min (150 volumes). These criteria yielded 39 subjects contributing to the present analy-

ses. Included are 70 epochs of wakefulness, 52 epochs of N1 sleep, 47 epochs of N2 sleep, and

38 epochs of N3 sleep (SWS). Detailed sleep architectures and demographic details of each par-

ticipant have been previously published [19], and are summarized in Table 1.

Pediatric subjects

In a broader study of autism spectrum disorders (ASD), high-familial-risk-for-ASD and low-

familial-risk-for-ASD infant cohorts (where risk was defined by an older sibling who either

was or was not diagnosed with ASD) were recruited as part of a National Institutes of Health-

funded, multi-site, Autism Centers of Excellence (ACE) Network study: the Infant Brain Imag-

ing Study (IBIS). Subjects were excluded for comorbid medical or neurological diagnoses

influencing growth, development, or cognition; prior genetic conditions; premature birth or

low birth weight; maternal substance abuse during pregnancy; contraindication for MRI; or

familial history of psychosis, schizophrenia, or bipolar disorder [3, 20]. Only low-risk infants

were included in the present analysis. Low-risk was defined as having at least one typically

developing older sibling and no first- or second-degree family members with ASD or intellec-

tual disability. This paper includes data only from low-familial risk infants who, at 24 months

of age, did not meet criteria for ASD according to clinical best estimate using DSM-IV-TR

criteria applied to all available information. This evaluation was based on a comprehensive

Table 1. fMRI acquisition/registration parameters in pediatric and adult data.

Pediatric subjects Adult subjects

Citation Pruett et al., 2015 Tagliazucchi et al., 2012

Age (yr) 0.53 ± 0.04, 1.04 ± 0.04, 2.06 ± 0.04 24 ± 5

Scanner 3T Siemens TIM Trio 3T Siemens TIM Trio

Acquisition resolution (mm) 4 × 4 × 4 3 × 3 × 4

Repetition time (sec), TE (msec) 2.5, 27 2.08, 30

Frames × fMRI runs 200 × 2 (minimum) 1505 × 1

EPI atlas registration scheme EPI!T2W!T2W-atlas EPI!T1W!T1W-atlas

Mean, standard deviation DVARS 5.0 ± 0.96, 4.96 ± 0.99, 4.99 ± 1.01 5.02 ± 1.03

https://doi.org/10.1371/journal.pone.0188122.t001
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battery of behavioral assessments including the Autism Diagnostic Observation Schedule

(ADOS: [21]). ADOS and all other testing and interview data were independently reviewed by

expert clinicians for DSM-IV-TR criteria for autistic disorder or pervasive developmental dis-

order not otherwise specified.

Children were scanned at ages 6, 12, and 24 months. Three groups were defined: 6 month

olds (17 subjects), 12 month olds (17 subjects), and 24 month olds (11 subjects). Thus, the total

number of pediatric subjects was 45. These data sets represent the highest quality subset, as

determined using the DVARS measure [22, 23], of 46 data sets collected at 6 months, 51 data

sets collected at 12 months, and 44 data sets collected at 24 months (see S1 Fig for details). Not

all child participants were scanned at all ages, and longitudinally studied individuals did not

always yield high-quality data at all ages. Consequently, this analysis is purely cross-sectional

(no participant appears in multiple age categories). Additional administrative details have

been previously published [3] and are summarized in Table 1.

Adult EEG–fMRI acquisition and sleep stage determination

Acquisition parameters and details for these data have been previously published [19]. fMRI

was acquired using a 3 T scanner (Siemens Trio) with optimized polysomnographic settings

(1,505 volumes of T2�-weighted echo planar images, repetition time/echo time = 2,080 ms/30

ms, matrix = 64 × 64, voxel size = 3 × 3 × 2 mm3, distance factor = 50%; field of view = 192

mm2). 30 EEG channels were simultaneously recorded using a modified cap (EASYCAP) with

FCz as reference (sampling rate = 5 kHz, low pass filter = 250 Hz, high pass filter = 0.016 Hz).

MRI and pulse artifact correction were performed based on the average artifact subtraction

method [24] as implemented in Vision Analyzer2 (Brain Products) followed by ICA-based

rejection of residual artifact components (CBC parameters; Vision Analyzer). EEG sleep stag-

ing (N0 = wakefulness, N1-N3 = NREM sleep) was done by an expert according to the Ameri-

can Academy of Sleep Medicine (AASM) criteria [25], as previously published [19].

Infant fMRI acquisition

All scans were acquired at the Infant Brain Imaging Study (IBIS) Network clinical sites using

identical 3-T Siemens TIM Trio scanners (Siemens Medical Solutions, Malvern, PA) equipped

with standard 12-channel head coils. All imaging was performed while subjects were naturally

sleeping. Techniques that enhance the success of this approach include (1) scanning at a time

of day that coincides with the infant’s usual sleep schedule; (2) pre-conditioning at home for

several days by exposure to pre-recoded scanner noise during natural sleep (3) swaddling; (4)

placing sound attenuating ear muffs on the infant during scanning; (5) stationing a parent

beside the infant in the magnet room. The IBIS imaging protocol includes T1-weighted (T1W)

and T2W anatomical imaging, 25-direction DTI and 65-direction HARDI DWI diffusion

sequences, and resting state fMRI. This study made use of the 3-D sagittal T2W sequence

(TE = 497 ms, TR = 3200 ms, matrix 256 × 256 × 160, 1 mm3 voxels). Functional images were

collected as a gradient-echo echo planar image (EPI) (TE = 27 ms, TR = 2500 ms, voxel size 4

mm × 4 mm × 4 mm, flip angle 90˚, field of view 256 mm, matrix 64 × 64, bandwidth 1906

Hz). All presently analyzed infants provided at least two fMRI runs with a minimum of 200

total frames of data (8.3 min), including at least 4 continuous (uncensored) 60-second blocks.

Preprocessing of adult fMRI data

The presently used adult fMRI preprocessing procedures have been extensively described [10,

15]. Initial preprocessing included compensation for slice-dependent time shifts, elimination

of systematic odd-even slice intensity differences due to interleaved acquisition, and rigid

Resting-state fMRI in infants and adults across wake and sleep
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body correction of head movement within and across runs [26]. The fMRI data were intensity

scaled (one multiplicative constant over all voxels and frames) to obtain a whole brain mode

value of 1000 [27]. Such scaling facilitates the computation of variance measures for purposes

of quality assessment but does not alter computed correlations. Atlas registration was com-

puted by registration of individual T1-weighted (T1W) images to a 711-2B space template

image [26]. The 711-2B template represents Talairach space much as does the MNI152 tem-

plate but it is about 5% smaller in linear dimensions. Atlas transformation was achieved by

composition of affine transforms connecting the fMRI volumes with the structural images

(fMRI average volume!T2W!T1W!template). The volumetric timeseries were resampled

in (3mm)3 atlas space including head movement correction and atlas transformation in a sin-

gle resampling step.

Additional preprocessing in preparation for functional connectivity and latency analyses

included spatial smoothing (6 mm full width at half maximum (FWHM) Gaussian blur in each

direction), voxel-wise removal of linear trends over each fMRI run and temporal low-pass filter-

ing retaining frequencies below 0.1 Hz. Spurious variance was reduced by regression of nuisance

waveforms derived from 6 retrospective head motion parameters (3 translation + 3 rotation, no

derivatives) and timeseries extracted from regions (of “non-interest”) in white matter and ventri-

cles defined in atlas space. Motion regressors were filtered identically to the fMRI data to prevent

introduction of artifact generated by spectral mismatch [28]. The global signal (fMRI timeseries

averaged over the brain) and its first derivative were included as nuisance regressors [29, 30]. Fol-

lowing nuisance regression, frames (volumes) prominently affected by head motion were identi-

fied using the DVARS (differentiated rms variance) measure [22, 23]. The censoring criterion

applied to the adult data was> 0.5% frame-to-frame rms signal change. Censored frames were

subsequently excluded from all resting state functional connectivity and lag analyses. Frame-cen-

soring statistics are reported in Table 1.

Preprocessing of pediatric fMRI data

Preprocessing of the pediatric fMRI data followed previously described procedures [3, 23]. As

these procedures are largely parallel to the above-described adult case, only pertinent differences

are detailed here. T1-weighted gray/white contrast is poorly developed in infants. Hence, atlas

registration was computed via T2-weighted structural images. Age specific (6-, 12-, 24-month)

T2-weighted atlas-representative templates representing 711-2B space were created based on

the atlases generated by Fonov and colleagues [31]. Infant fMRI is much more distorted by mag-

netization inhomogeneities than is adult fMRI. Accordingly, distortion correction was com-

puted using the prelude module in fsl [32]. Magnetization inhomogeneity field maps were

either measured (data acquired mostly after 2012) or, when this measurement was not available

(data acquired mostly before 2012), approximated using the method of Gholipour [33]. Atlas

transformation of the fMRI data was computed by transform composition (fMRI average volu-

me!T2W!template). The volumetric time series then were resampled in atlas space ((3mm) 3

voxels) including correction for head movement and EPI distortions in a single resampling

step. Additional preprocessing in preparation for functional connectivity and latency analyses

was largely as in the adult case except that the frame censoring criterion was 0.9% frame-to-

frame rms intensity change evaluated in spatially smoothed data (10mm FWHM blur internal

to the DVARS module). Frame censoring statistics are reported in Table 1.

ROI definition

All present analyses were conducted by extracting preprocessed, fMRI time series from 6526

ROIs defined as (6mm)3 cubes restricted to gray matter in 711-2B atlas space. For details of the

Resting-state fMRI in infants and adults across wake and sleep
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gray mask definition, please see [10, 15]. In the following text, we refer to the (6mm)3 cubes

simply as voxels.

Functional connectivity

We use the standard covariance formula for computing functional connectivity between pairs

of time series. Thus, for a pair of time series, xi and xj, zero-lag functional connectivity is com-

puted as a sum over frames,

Cxixj
¼

1

m
P

kxi;k � xj;k; ½E1�

where i and j index ROI, k indexes frame (volume) and m is total number of frames in an

fMRI run (excluding censored frames). Thus, Cxixj is a matrix. We display functional connec-

tivity matrices with voxels sorted into networks as defined in [34] and include only voxels with

a 95% likelihood of single network affiliation. This selective display is for illustrative purposes

only; all analyses are computed over all voxels in gray matter.

Computation of lag between BOLD time series

Our method for computing lags between time series has been previously published [15]. In

brief, we generalize the assumption of exact temporal synchrony and compute lagged cross-

covariance functions. Thus,

Cxixj
Dð Þ ¼

1

n
P

kxi;k � xj;kþD; ½E2a�

where Δ is a temporal displacement in units of frames. Thus, Cxixj(0) is conventional, zero-lag

FC. N.B.: Since all time series are made zero mean during preprocessing, the factors in [E2a]

are relative to zero. Using parabolic interpolation, the temporal displacement at which Cxixj is

maximal can be determined at a temporal resolution much finer than the frame TR [15].

Accordingly, for purposes of lag estimation, we can express Cxixj(Δ) as the integral,

Cxixj
ðtÞ ¼

1

T
R

xiðt þ tÞ � xjðtÞdt; ½E2b�

where τ is the lag in units of time (generally a fraction of TR) and T is total length of data

included in the integral. The value of τ at which Cxixj(τ) exhibits an extremum defines the tem-

poral lag (equivalently, delay) between signals xi and xj. Additional discussion of parabolic

interpolation is given in the supplemental material of [18].

Given a set of n time series, {x1(t),x2(t),. . .,xn(t)}, finding all τi,j corresponding to the

extrema of Cxixj(τ) yields the anti-symmetric, time delay matrix,

TD ¼

t1;1 � � � t1;n

..

. . .
. ..

.

� t1;n � � � tn;n

2

6
6
6
4

3

7
7
7
5
: ½E3�

The diagonal entries of TD are necessarily zero, as any time series has zero lag with itself.

Moreover, τi,j = −τj,I, since time series xi(t) preceding xj(t) implies that xj(t) follows xi(t) by

the same interval. Here, the timeseries are extracted from (6mm)3 cubic voxels evenly distrib-

uted throughout gray matter in the whole brain [15]. Seed-based lag maps are computed as

described above, but with reference to an average timecourse derived from a region of interest.
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We project the multivariate data represented in the TD matrix onto one-dimensional maps

using the technique described by Nikolic and colleagues [35, 36]. We refer to these one-dimen-

sional maps as lag projections. Operationally, the projection is done by taking the mean across

the columns of TD [E3], that is,

Tp ¼ ½
Pn

j¼1
t1;j . . .

Pn
j¼1

tn;j�: ½E4�

The column-wise average (lag projection) reflects the extent to which a given voxel is early

or late with respect to all the other voxels in the brain [15]. We refer to displays of these values

as lag projection maps.

Group level covariance matrices and lag projections were obtained in each state/group

(adult N0-N3, infants 6, 12, and 24 months) by computing each quantity at the individual sub-

ject level (averaging across temporally contiguous epochs) and then averaging.

Principal components analysis (PCA)

Principal components analysis (PCA) decomposes FC matrices into spatio-temporal compo-

nents. Each component represents a particular topography (the eigenvector) that accounts for

a particular fraction of total variance. Thus, PCA generates a rank-ordered description of FC

patterns. Here, we use PCA descriptively to compare the rank orders of the first few PCs across

groups, e.g., adult N0 (wake) FC vs. 6 month-old FC.

Statistical analyses

We also use PCA to assess statistical significance in group comparisons, e.g., 6-month old vs.

adult N0 functional connectivity. PCA is applied to the group difference FC matrix and the

resulting eigenvalues compared to thresholds derived by simulation of the null hypothesis (H0:

no difference between groups) using permutation resampling. Thus, subjects pooled over both

groups (e.g., 6-month old infants and N0 adults), are randomly assigned to surrogate groups

(preserving true group sizes), PCA is computed, and the distribution of greatest eigenvalues is

compiled over 1000 realizations of H0. Statistical significance then is assessed as the fraction of

surrogate eigenvalues greater than the eigenvalue corresponding to the true group difference

principal component.

Results

Functional connectivity

We first examined functional connectivity in sleeping children and in adult wake/sleep. Fig 1

displays cortical functional connectivity matrices in adult wake (adult N0), adult non-REM

sleep stages (adult N1-N3), as well as in childhood (6 months, 12 months, and 24 months).

The matrices have dimensions voxels × voxels, where the voxels ((6mm)3 cubes) are sorted by

resting state network affiliation (as in [10]); although various alternative network definitions

could be applied, the specific choice of parcellation in Fig 1 is obviated by forthcoming whole-

brain analyses. Visually comparing the adult vs. child FC matrices, it appears that the child

matrices more closely resemble adult N2/N3 sleep as compared to adult N0 (wakefulness). To

quantify this impression in a side-by-side comparison, we computed the correlation between

all unique (matrix upper triangle) whole-brain FC values between children and adult N0-N3;

the results are shown in Fig 1C. Statistical significance of the difference in 6–24 month old FC

and adult N0 vs. N1-N3 FC was assessed using permutation resampling on adult wake sleep

stages (e.g., 6 months:N0 vs. 6 months:N1, etc.) with Bonferroni correction for multiple com-

parisons. Functional connectivity in the asleep 6-, 12-, and 24-month old children is least like

Resting-state fMRI in infants and adults across wake and sleep
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adult N0, and most like adult N3 sleep, although the difference between N2 and N3 is not sta-

tistically significant. These results (Fig 1C) demonstrate that sleeping childhood functional

connectivity at all ages (6–24 months) is least correlated with adult wakefulness (N0) and most

correlated with adult slow wave sleep (N3). Thus, the FC structure of sleeping children more

closely resembles adult sleep than adult wakefulness.

To further understand the features which differentiate adult/childhood sleep from adult

wakefulness, we analyzed the principal component structure of the functional connectivity in

each condition. Principal components analysis (PCA) provides a rank-ordered description of

variance in FC patterns. Applying PCA to adult N0 (wake) data, we find that the first PC,

which accounts for the most variance in the data, corresponds qualitatively to a default mode

network (DMN) topography (Fig 2A). The second and third PCs in adult wakefulness (N0)

Fig 1. Zero-lag functional connectivity (covariance) matrices, sorted into cortical networks. (A) Functional connectivity in adults, in wake (N0)

and in non-REM sleep (N1-N3). (B) Functional connectivity in 6, 12 and 24 month old children. (C) Functional connectivity (FC) similarity between each

childhood matrix and adult wake/sleep stages (N0-N3). Similarity is computed by taking the correlation over all unique (matrix upper triangle) pairs of

covariance values over the entire brain. At all ages, infant functional connectivity is more correlated with adult sleep (N1-N3) than adult wake (N0); * =

p < 0.01 from permutation resampling on adult N0 vs. N1-N3 matrices with Bonferroni correction for multiple comparisons. Early childhood functional

connectivity is most correlated with adult N3 sleep functional connectivity at all ages, although the difference between N2 and N3 sleep is not

statistically significant.

https://doi.org/10.1371/journal.pone.0188122.g001
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correspond qualitatively to visual (VIS) and somatosensory (SMN) topographies, respectively.

To verify the qualitative assignment of network topography labels, we further compared the

presently derived PCA topographies to a priori defined templates of DMN, VIS, and SMN

topographies using spatial correlations and arrived at the same assignments. Thus, the most

variance in adult waking rs-fMRI functional connectivity is driven by the default mode net-

work topography, followed by visual and somatosensory topographies, respectively. These

results are in line with recently published results in awake, young adults [37].

In contrast, Fig 2A shows that the first PC in adult slow wave sleep (N3) corresponds to a

visual topography, followed by a somatosensory topography (PC2) and then a default mode net-

work topography. Hence, in terms of variance accounted for, the relative contributions of these

three networks have been reordered. Visual and somatomotor areas drive the most variance dur-

ing adult slow wave sleep, as opposed to the default mode network topography, which drives the

most variance in adult wakefulness. This finding recapitulates many prior results demonstrating

Fig 2. Principal component structure of adult N3 (slow wave) sleep best matches early childhood data. (A) First 3 principal components (PCs) in

adult N0 (wake), adult N3 (slow wave sleep), and 24 month olds, ordered by variance explained. The topographies of the first 3 PCs in N0 (wake) adults

reflect the default mode network (DMN), visual network (VIS), and somatomotor network (SMN), respectively. In contrast, it is visually evident that the

component order in adult N3 (slow wave sleep) and 24 months old is visual network, somatosensory network, and default mode network, respectively.

(B) Quantitative analysis of spatial correlations between the first 3 PCs in adult N3 vs. the first three components in adult N0 (labeled DMN, VIS, and

SMN) demonstrates that the first adult N3 component most closely matches the N0 visual topography, the second adult N3 component most closely

matches the N0 somatomotor topography, and the third adult N3 component most closely matches the N0 default mode network topography. (C)

Quantitative analysis of spatial correlations between the first 3 PCs in data collected at 24, 12, and 6 months of age vs. adult N0 shows the same pattern

of component re-ordering as in the adult N3 vs. adult N0 comparison.

https://doi.org/10.1371/journal.pone.0188122.g002
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lowered DMN functional connectivity in adult sleep vs. wakeful state [9, 12]. Critically, the prin-

cipal component ordering in 24 month olds (Fig 2A) resembles adult sleep: PC1 is a visual topog-

raphy, followed by the somatosensory network and then the default mode network.

We quantitatively assessed re-ordering of the rs-fMRI component structure by computing

spatial correlations between PC’s derived across conditions. Fig 2B shows spatial correlations

between PCs 1–3 in adult slow wave sleep (N3) and PCs 1–3 in adult wake (N0), where the

adult N0 components are labeled DMN, VIS, and SMN, respectively. Note that PC1 in N3

sleep is most correlated with the visual component from wakefulness (N0 PC2). PC2 in N3

sleep is most related to the SMN component from wakefulness (N0 PC3), and PC3 in N3 sleep

is most related to the DMN in adult wakefulness (N0 PC1). Hence, Fig 2B quantitatively con-

firms the impression of factor re-ordering evident in Fig 2A.

Fig 2C shows the spatial correlations between PC topographies in sleeping children and the

DMN, VIS, SMN components from adult wakefulness. Note that in each case, PC1 in the chil-

dren most closely matches the adult visual component, PC2 most closely matches the adult

SMN component, and PC3 most closely matches the adult DMN component. These results

demonstrate that the factor structure of the childhood data resembles that in adult slow wave

sleep, and suggest that the observation of reduced functional connectivity in the early-age

DMN compared to awake adults may be at least in part attributable to a wake vs. sleep effect.

Eigenspectra for the PC topographies analyzed in Fig 2 are shown in S2 Fig, and demonstrate

that the ordering of the first three principal components is well-separated in our rs-fMRI data.

Propagation

We have recently demonstrated the existence of multiple, reproducible propagation patterns

in the rs-fMRI BOLD signal [14, 15]. Moreover, we have found that, in healthy young adults,

infra-slow propagation sequences are strongly altered as a function of wake vs. sleep [10, 18].

These results raise the question of whether the propagation structure of rs-fMRI in children

more closely resembles adult wakefulness or adult sleep.

Fig 3 illustrates lag projection maps (see Methods; [15]) in adult wake/sleep, as well as in

children. Notice that the pink circles in adult N0 vs. adult N3 demonstrate that the visual cor-

tex is much earlier (more “blue”) during sleep than wake, a fact which we have previously

reported [10]. The pink circles in the pediatric lag projection maps qualitatively highlight that

visual cortex earliness is also present at all ages but is closest to adult N3 at 24 months. There

are also aspects of the childhood sleep lag projections that more closely match adult N0 than

adult N3, for example, in medial motor areas illustrated in the 2nd row of Fig 3.

We quantitatively examined similarity in lag projections between sleeping children and adult

wake/sleep by computing spatial correlations. The results, shown in Fig 4A, demonstrate that at

each age, infants’ propagation patterns are more correlated with adult slow wave (N3) sleep

than adult wakefulness. Part of the basis of this similarity is illustrated in Fig 4B. The pink circles

highlight the thalamus and striatum; note that both of these structures are early (or blue) in

adult N0 wake, but late (yellow/orange) in adult N3 sleep, as previously reported [10]. Although

Fig 4A shows that in general childhood sleep propagation patterns resemble N3 sleep more

than N0 wake in adults, note that the thalamus is early (blue), and hence adult wake-like in 6

month old infants (Fig 4B). Interestingly, the degree of earliness in the thalamus decreases

across 6–24 months of age (Fig 4B), moving in the direction of the adult N3 sleep structure.

We examined the qualitative findings shown in Fig 4B by computing thalamus-seeded lag

maps, which simply depict the temporal delay between each voxel and the average timecourse

derived from the whole thalamus (Fig 5A). As previously reported, thalamic lag structure is

markedly altered across adult wake (N0) and slow wave sleep (N3) [10]. Specifically, most of
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the cortex is red or “late” with respect to thalamus during adult wakefulness, whereas most of

the cortex is blue or “early” with respect to thalamus during adult N3 sleep (Fig 5B). Thala-

mus-seeded lag maps computed in sleeping 6-, 12-, and 24-months reveal a clear progression

(Fig 5C) such that the 6-month old thalamic lag map more closely resembles adult wake than

adult sleep (more red than blue in cortex), whereas the 24-month old thalamic lag map more

closely resembles adult sleep than adult wake (more blue than red in cortex). These results are

quantified in Fig 5D, where the 6-, 12-, and 24-month thalamic lag maps are spatially corre-

lated with adult wake/sleep thalamic lag maps.

Discussion

Summary of principal findings

To date, all resting state fMRI in infants and toddlers has been acquired during sleep, which

gives rise to the interpretive problem of distinguishing between the effects of arousal state

Fig 3. Propagation analysis of the resting-state fMRI BOLD signal in adult sleep and early childhood. Columns show temporal lag projection maps

in adult wake/sleep stages as well as in children aged 6–24 months. Blue colors indicate regions where spontaneous BOLD signal activity tends to be

early with respect to the rest of the brain; red colors indicate regions which tend to be late with respect to the rest of the brain. Pink circles contrast visual

earliness in adult N3 sleep and infants against adult N0 wake.

https://doi.org/10.1371/journal.pone.0188122.g003
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versus development. To investigate this question, we compared rs-fMRI acquired in 6-, 12-,

and 24-month old children to adult data acquired during well-characterized states of arousal

(N0, N1, N2, N3). Our primary result is that functional connectivity (i.e., zero-lag correlation)

more closely resembles adult slow wave sleep (N3) than adult wake (N0) (Figs 1 and 2). More-

over, this result is most robust in 24-month toddlers as opposed to 6-month old infants. These

findings caution against concluding that differences between sleeping infants and awake adults

Fig 4. Propagation patterns in early childhood vs. adult wake/sleep. (A) Temporal lag projection maps at all ages (6–24 months) most closely match

adult N3 sleep; * = p < 0.01 from permutation resampling on adult N0 vs. N3 lag projections with Bonferroni correction for multiple comparisons. (B)

Despite the overall spatial correlation between early childhood lag projections and adult N3 sleep lag projections, there are critical differences in the

thalamus (highlighted in pink circles). Thalamus is generally late with respect to the rest of the brain in adult N3 sleep. In contrast, in 6 month olds, the

thalamus is early with respect to the rest of the brain, more akin to adult N0 wake. Note that this earliness fades with aging (e.g., the thalamus becomes

less blue), indicating a possible development toward adult-like sleep features.

https://doi.org/10.1371/journal.pone.0188122.g004

Resting-state fMRI in infants and adults across wake and sleep

PLOS ONE | https://doi.org/10.1371/journal.pone.0188122 November 17, 2017 12 / 19

https://doi.org/10.1371/journal.pone.0188122.g004
https://doi.org/10.1371/journal.pone.0188122


are solely attributable to development. In particular, we find that decreased functional connec-

tivity in the default mode network, compared to visual and somatomotor networks, is a feature

of both infant sleep and adult slow wave sleep. However, in contrast to the functional connec-

tivity results, propagation patterns in 6 month old infants are more closely related to adult

wake than adult N1/N2 sleep (p< 0.01 by permutation resampling). Thus, the effects of devel-

opment on intrinsic brain activity partially dissociate depending on whether the measure is

conventional functional connectivity (i.e., zero-lag correlation; Figs 1 and 2) vs. lag analysis

(Figs 3–5). Implications of these observations are considered below.

RS-fMRI correlates of the ontogeny of sleep

In infants, quiet sleep is distinguished from wake (stage N0) and active sleep (stage REM or

N4) by the presence of slower electroencephalographic (EEG) activity [38]. However,

Fig 5. Thalamic lag structure in early childhood vs. adult wake/sleep. (A) Whole thalamus seed-region. (B) Thalamus-seeded lag maps in adult

wake (N0) and slow wave sleep (N3). As previously published, cortex is generally late (red) with respect to thalamus during wake, but generally early

(blue) with respect to thalamus during N3 sleep. (C) Thalamus-seeded lag maps in early childhood. The 6-month old lag map shows most of cortex is

late with respect to thalamus, akin to adult wake. In contrast, the 24-month old lag map shows most of cortex is early with respect to thalamus, akin to

adult N3 sleep. (D) Thalamic lag map in sleeping 6-month olds is significantly more correlated with adult wake than adult sleep, whereas the opposite is

true for sleeping 24-month olds; * = p < 0.01 from permutation resampling on adult N0 vs. N3 lag projections with Bonferroni correction for multiple

comparisons. No statistically significant difference was found at 24-months.

https://doi.org/10.1371/journal.pone.0188122.g005
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sustained, slow (< 4 Hz) delta, i.e., the hallmark of the deepest stages of SWS in adults, does

not appear until somewhat later, i.e., around 2–3 year of age [39]. By EEG features, REM

resembles wakefulness at all ages, but this resemblance is especially pronounced in infants [40,

41]. Thus, the EEG features of wakefulness, REM, and SWS become progressively more differ-

entiated as development proceeds.

We find a resting state fMRI correlate of this principle in the temporal lag results. Specifi-

cally, the temporal lag features of 6-month old sleeping infants are more adult wake-like than

adult sleep-like (Figs 3–5). This effect fades with development such that the lag structure in

24-month old toddlers approaches that of N3 (SWS) in adults. However, even in the 24-month

group, thalamic lag values are near zero (Fig 3), that is, no longer clearly early (~-0.6 sec in the

6-month old group) but neither is it clearly late (~+0.6 sec in awake adults). Active sleep

accounts for about 50% of all sleep time in newborn infants but this fraction decreases by

approximately 20% over ages 6–24 months [40]. Accordingly, it is very likely that the propor-

tion of REM sleep in the 6-month old data is greater than in the 24-month old data. Thus, the

wake-like thalamic propagation feature found in infant sleep (Fig 4B; Fig 5), especially in the 6

month-old group, could very well reflect REM-sleep, which is known to resemble wakefulness

on EEG [41]. Moreover, PET studies in adults have shown that cerebral blood flow in the thal-

amus during REM sleep is comparable to wakefulness, but is sharply reduced in SWS. This

observation provides a possible explanation for similarity of thalamic lag features of 6 month-

old infants vs. awake adults [42]. Unfortunately, acquiring motion-free fMRI during REM

sleep in adults is technically very difficult. Hence, direct comparisons between early childhood

and adult REM sleep remains a challenge.

Correspondence of FC with the broader developmental literature

In early brain maturation, primary cortices (e.g., sensorimotor, visual) develop before "higher

order" areas in prefrontal and parietal regions. This developmental sequence is reflected in

multiple disparate measures: metabolic activity [43], myelination of white matter [44], and

imaging indices of gray matter maturation [45]. Thus, on the basis of this evidence, there is no

question that human brain development follows a topographic sequence.

However, with respect to the resting state fMRI literature, the question is to what extent the

aforementioned developmental changes are responsible for differences observed between

sleeping children and awake adults. As several features of resting state functional connectivity

follow the primary to higher order sequence, hypothesizing a link to developmental processes

is entirely reasonable [7, 8, 46–48]. For example, in healthy term babies, functional connectiv-

ity within primary sensorimotor and visual RSNs is much better developed in comparison to

higher-order RSNs, e.g., [2]. Moreover, functional connectivity within non-primary RSNs,

e.g., the default mode and dorsal attention networks, becomes much better defined over the

first two years of life, e.g., [1, 49].

Yet, our present data demonstrates that many of the same resting state functional connec-

tivity effects along the primary/higher-order axis are found within adult populations contrast-

ing wakefulness and slow wave sleep. This demonstrates that development is not required as

an explanation for some sleeping child vs. awake adult differences. We therefore suggest that

sleep itself, along with developmental processes, may be responsible for previously reported

resting state functional connectivity differences between sleeping children and waking adults.

Caveats and limitations

Limitations in of the present analysis include: (1) Cross-sectional imaging across ages, which

provides an average view of changes with development, and (2) the present analysis compares
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adult vs. pediatric infant data acquired using different sequence parameters and slightly differ-

ent preprocessing strategies. These technical factors likely contribute to some early childhood

vs. adult differences in rs-fMRI, but the overall similarity between infant sleep and adult sleep

argues that the major conclusions are unlikely attributable to these factors.

Supporting information

S1 Fig. Quality control metrics on infant data. Prior work has demonstrated that DVARS is

an effective measure of frame-by-frame artifact in resting state fMRI which relates both to

head motion artifact and other sources of spurious variance, such as respiration [50, 51].

Lower mean and standard deviation of DVARS values in an imaging run indicate greater

immunity from artifact. Thus, to examine the quality of the infant data, all 483 imaging ses-

sions (including scans at all ages and all diagnosis and familial risk categories) available in the

IBIS database were plotted on the basis of mean DVARS vs. standard deviation (SD) of

DVARS. The result demonstrates wide variability in DVARS measures (indicating the pres-

ence of artifact) in the infant resting state data. In the present study, we considered only data

sets within one standard deviation (in mean DVARS and DVARS SD) of the lowest-artifact

scans in the database (corresponding to the dots in the lower left of the image). This consider-

ation led us to exclude scans with a mean DVARS > 7.5, or a DVARS SD > 5, leaving 337 out

of the original 483 data sets. These 337 data sets were then restricted to only those correspond-

ing to low risk negative subjects (not diagnosed with autism spectrum disorder (ASD) and did

not have a sibling with diagnosed ASD), leaving 82 data sets. Finally, we considered only data

sets with a minimum of 200 frames and at least 4 contiguous 60 second censoring-free epochs,

as lags analysis is best applied to continuous stretches of fMRI data. This final consideration

leads to the 45 data sets analyzed in this study.

(TIFF)

S2 Fig. Eigenspectra for the principal components analysis in main text Fig 2. (A) Each cor-

relation matrix principal component, analyzed in main text Fig 2, corresponds to an amount

of variance accounted for in the data. These variance measures comprise an eigenspectrum,

and the plot illustrates the eigenspectrum for each group analyzed in the present study, color-

coded as described in the legend. We present separate plots for the adult and pediatric data

simply for ease of viewing; the axes on both plots are identical. Visual inspection of the adult

wake (blue) and adult sleep (pink) eigenspectra reveals that the amount of variance explained

by the first three components in each condition is roughly equivalent. Thus, the change in the

ranking of variances in the top three components, highlighted in main text Fig 2, is not accom-

panied by a dramatic change in the amount of variance explained by each component number.

In other words, in the case of adult sleep, although the first component of the data has a default

mode network topography during wakefulness, and a visual topography during slow wave

(N3) sleep, the first component still accounts for ~20% of the variance in both conditions. A

similar equivalence is found in the pediatric data. (B) For reference, the first three component

topographies of adult N0, adult N3, and 24 month olds corresponding to the first three ele-

ments of the respective eigenspectra are reproduced from main text Fig 2.

(TIF)
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