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Abstract

NADPH oxidases are a family of enzymes capable of transferring electrons from NADPH to 

molecular oxygen. A major function of NADPH oxidases is the activation of molecular oxygen 

into reactive oxygen species. Increased activity of NADPH oxidases has been implicated in 

various pathologies, including cardiovascular disease, neurological dysfunction, and cancer. Thus, 

NADPH oxidases have been identified as a viable target for the development of novel therapeutics 

exhibiting inhibitory effects on NADPH oxidases. Here, we describe the development of new 

assays for measuring the activity of NADPH oxidases enabling the high-throughput screening for 

NADPH oxidase inhibitors.
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Introduction

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox1-5, Duox1-2) are a 

family of enzymes capable of transferring electrons from the reduced form of NADPH to 

molecular oxygen (Fig. 1) (1–4). One-electron reduction of molecular oxygen leads to the 

formation of the superoxide radical anion (O2
•−), which undergoes dismutation to hydrogen 

peroxide (H2O2).

O2
•− and H2O2 may initiate a cascade of various reactive oxygen and nitrogen species (Fig. 

2), capable of irreversible modification of cellular biomolecules (e.g., DNA, proteins, lipids) 

(5). Thus, NADPH oxidases have been proposed as a promising target for drug development 

in a range of pathologies, including cardiovascular diseases, neurodegeneration, and cancer 

(6–12). Development of new inhibitors of NADPH oxidases has been an active area of 
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research over the last decade, but with only limited success, as reviewed elsewhere (13–19). 

New and preferably isoform-specific inhibitors are still needed both for basic research and 

potential therapeutic applications (13–15, 19–24).

One of the major limitations of the research on NADPH oxidases and in the development of 

new inhibitors was the lack of the rigorous and reliable assays and probes for use in cell-free 

systems and intact cells (25). Despite many artifacts, lucigenin and luminol were the most 

frequently used probes for measuring Nox activity. However, the situation recently changed, 

due to a better understanding of the chemistry of the probes, including the reaction 

mechanism, stoichiometry and kinetics, and the development of new probes and assays (26–

29). These rigorous approaches have also enabled the establishment of the protocol for high-

throughput screening (HTS) assays for faster development of new inhibitors of NADPH 

oxidases. In this review, we discuss the major limitations of the chemiluminescent probes for 

O2
•− and H2O2, and describe in detail the recent developments in the rigorous, high-

throughput assays of NADPH oxidases.

Spectrophotometric probes for O2
•−

The spectrophotometric probes for O2
•− are mostly based on the reducing potential of O2

•−, 

and include ferricytochrome c (cyt c3+) and nitroblue tetrazolium (NBT) (30–33). 

Monitoring of the superoxide dismutase (SOD)-inhibitable reduction of cyt c3+ is widely 

used to rigorously determine the superoxide flux in cell-free assays, but may be not optimal 

in systems capable of significant reduction of cyt c3+ via superoxide-independent pathways 

(e.g., diaphorase-like activity, reduction by thiols, etc.) (34–37). Nitroblue tetrazolium has 

been used to detect O2
•− both in cell-free and cellular systems (32, 38–40). Upon reduction, 

the blue, water-insoluble formazan product is formed via two one-electron reduction 

processes, with the NBT radical cation as an intermediate. Similar to cyt c3+, NBT is a 

substrate for diaphorases, indicating the lack of specificity of the probe for O2
•− (41, 42). 

The confounding aspect of the use of NBT for O2
•− detection is the ability of the NBT 

radical cation to transfer an electron to molecular oxygen, leading to redox cycling and 

generation of O2
•− by the probe (43, 44).

Chemiluminescent probes for O2
•−

Chemiluminescent and bioluminescent probes have been widely used in biological systems, 

thanks to high sensitivity and the possibility for real-time monitoring of cellular events. 

Several chemiluminescent probes for superoxide have been developed, but two of them, 

lucigenin and luminol-based probes, gained the most popularity.

Lucigenin is a dication, which upon one-electron reduction forms a lucigenin radical cation, 

with a subsequent reaction with superoxide leading to chemiluminescence. However, 

lucigenin is a substrate for diaphorase activity, and the one-electron reduction product, the 

lucigenin radical cation, has been demonstrated to rapidly reduce oxygen, leading to redox 

cycling and generation of superoxide and bringing into question the applicability of 

lucigenin for O2
•− detection (45–49). Recently, it was demonstrated that lucigenin produces 

a chemiluminescence signal even in tissues from transgenic animals lacking the NADPH 
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oxidase enzymes, and cytochrome P450 enzymes were shown to be responsible for 

lucigenin-derived chemiluminescence (50, 51). Clearly, the data obtained with lucigenin as a 

probe used to measure NADPH oxidase activity require reevaluation.

The other chemiluminescent probe widely used to monitor NADPH oxidase-derived O2
•– is 

luminol and its analog, L-012 (52–55). In the presence of superoxide, luminol undergoes 

oxidative transformation, involving the formation of luminol radical, which upon further 

reaction with O2
•− leads to a luminescence signal (56). A similar mechanism was proposed 

for the L-012 probe. Similar to lucigenin, the major limitation of luminol and L-012 probes 

is the capability of the probe-derived radical to reduce oxygen to superoxide and the 

formation of the luminol radical in superoxide-independent pathways (45, 57). It was 

demonstrated that peroxidases in the presence of H2O2 oxidize L-012 to produce a 

chemiluminescence signal, inhibitable by superoxide dismutase (57). This suggests that 

luminol and L-012, while useful to monitor oxidative burst in neutrophils, should be used 

with caution, as they may report the peroxidatic activity (e.g., myeloperoxidase [MPO]) in 

addition to NADPH oxidase-derived superoxide (58). This should be always kept in mind 

because NADPH-oxidase-enriched membrane preparations from neutrophils typically 

contain large amounts of MPO (58).

Fluorescent probes for O2
•–

Hydroethidine (HE, also known as dihydroethidium, Fig. 3) remains the most widely used 

probe for the detection of O2
•−. The initial work on the application of the HE probe involved 

measurement of superoxide from activated neutrophils (59). Although it was initially 

assumed that ethidium (E+) is the product of HE reaction with O2
•−, it has been 

demonstrated that the actual product is 2-hydroxyethidium (2-OH-E+) (60). Importantly, this 

product is not formed by other biologically relevant oxidants, indicating its value as a 

specific marker for O2
•− (61, 62). The mechanism of transformation of HE into 2-OH-E+ by 

superoxide involves one-electron oxidation of HE into the HE radical cation (HE•+), which 

upon reaction with O2
•− leads to formation of 2-OH-E+ (63, 64). In contrast to the luminol-

derived radical, to the best of our knowledge, HE•+ does not react with oxygen; thus, no 

artifactual generation of superoxide was reported for this probe. The major limitation of the 

probe is that, though it forms an O2•− -specific product, the probe by itself is not selective 

for O2
•−. Both one- and two-electron oxidants can react with the probe, forming several 

additional products, including E+ and diethidium (E+-E+, Fig. 4) (62, 65). Detection of E+-

E+ may be applied to monitor the peroxidatic activity in the investigated systems. Recently, 

an additional hypochlorous acid (HOCl)-specific product from HE was reported and 

proposed for use as a specific marker of MPO activity in vitro and in vivo (66, 67). The 

chemical reactivity of HE toward various cellular oxidizing, nitrating, and chlorinating 

species, while enabling simultaneous monitoring of different species, requires 

chromatographic techniques for selective detection and quantification of 2-OH-E+, when 

used for measurements of NADPH oxidase activity (62, 68–71). High-performance liquid 

chromatography (HPLC)-based analyses of HE and its oxidation products is important, as 

probe availability is one of the factors controlling the yield of the oxidation products, similar 

to other reactive oxygen species probes. Because conversion of HE into 2-OH-E+ is a 

multistep process involving HE•+, the steady-state concentration of this short-lived 
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intermediate will also affect the yield of 2-OH-E+. Thus, the presence of one-electron 

oxidants capable of oxidation of HE to HE•+ may increase the yield of 2-OH-E+ at a steady 

flux of superoxide, as recently demonstrated (61). Here, the HPLC-based profiling of the 

oxidation products enables proper interpretation of the data, as one-electron oxidants will 

also produce dimeric products (e.g., E+-E+). Thus, in case of the increased production of 2-

OH-E+ without an increased level of E+-E+, one can conclude the increased production of 

O2
•−. When the levels of both 2-OH-E+ and E+-E+ are increased, the formation of one-

electron oxidants can be concluded, but the data may not allow for the assessment of 

superoxide production.

To minimize nonspecific oxidation of HE by intracellular components and to selectively 

detect extracellular superoxide (derived from NADPH oxidase), a cell-membrane-

impermeable analog of HE was designed, synthesized, and chemically characterized (72). 

Upon two-electron reduction of propidium iodide, a dye typically used to stain necrotic 

cells, hydropropidine (HPr+, Fig. 5) is formed, which is structurally similar to HE but bears 

quaternary ammonium cationic moiety, which significantly suppresses its cellular uptake. In 

fact, upon incubation with RAW 264.7 macrophages, more than 99% of the probe was 

detected in the extracellular space, while a significant portion of the HE probe was taken up 

by cells (Fig. 5).

Analysis of the chemical reactivity of HPr+ toward biologically relevant oxidants indicates 

that it behaves very similarly to HE, and in the presence of O2
•− forms a specific 

hydroxylated product, 2-hydroxypropidium (2-OH-Pr2+). It was demonstrated that HPr+ 

selectively detects extracellular superoxide produced by RAW 264.7 macrophages activated 

to produce O2
•− by treatment with the phorbol 12-myristate 13-acetate ester (PMA) or 

menadione (72). Similar to 2-OH-E+, 2-OH-Pr2+ can bind to DNA leading to a more than 

10-fold increase in the fluorescence yield. Thus, plate-reader-based assays using HPr+ 

should include DNA for improved sensitivity. Although DNA intercalators may affect 2-OH-

Pr2+ binding, leading to a decrease in the fluorescence signal, this limitation can be 

overcome by increasing the concentration of DNA.

EPR spin trapping of superoxide radical anion

Electron paramagnetic resonance (EPR) is a spectroscopic technique that selectively detects 

species carrying unpaired electron(s) and, thus, is regarded as the most rigorous method to 

detect free radicals. While most biologically relevant free radicals are short-lived and do not 

accumulate sufficiently to meet the detection limit of the EPR technique, the use of spin 

traps enables detection of spin adducts, which are characterized by a significantly longer 

lifetime that leads to their accumulation during incubation (73–75). Compared to most 

luminescent probes, EPR spin trapping is advantageous in that the product is formed in a 

single step, limiting the possibility of interference by other components during the detection 

process. The most widely used spin traps for O2
•− are cyclic nitrones, including DMPO (5,5-

dimethyl-1-pyrroline-N-oxide), BMPO (5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-

oxide), DEPMPO (5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide), and DIPPMPO 

(5-(diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide), which upon reaction with 

superoxide form the corresponding spin adducts (Fig. 6) with characteristic EPR spectrum. 
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Although early spin trapping studies of neutrophil-generated oxidants employed a DMPO 

spin trap, the short lifetime of the superoxide spin adduct and its conversion into the 

hydroxyl radical adduct were confusing factors in the analyses of the identities of the 

radicals trapped (76–78). A DEPMPO spin trap was used to detect O2
•− produced by 

NADPH oxidase in intact HL60 cells differentiated into neutrophil-like cells (dHL60) and 

stimulated with PMA (Fig. 7) (79). The EPR signal was inhibited by SOD but not by 

catalase, indicating that superoxide was responsible for the adduct formed, consistent with 

the spectral features observed, which are characteristic of a superoxide spin adduct.

To prevent degradation of the superoxide spin adduct within cells and extend its lifetime, the 

DIPPMPO spin trap has been recently covalently linked to cyclodextrin (CD) (80, 81). The 

CD-conjugated DIPPMPO was demonstrated to detect O2
•− generated by macrophages 

stimulated with PMA. In the same work, the EPR spin trapping was also extended to 

undetached cells, opening the possibility of studying superoxide generation by NADPH 

oxidases present in adherent cells in their natural (surface-attached) state (74, 80).

Although EPR spin trapping is a highly valuable tool in the characterization of the radical 

species produced by NADPH oxidase enzymes, its use in the high-throughput screening 

assays is currently limited to confirmatory assays, due to significantly lower throughput as 

compared to luminescence-based assays.

Amplex Red-based assays for H2O2

10-Acetyl-3,7-dihydroxyphenoxazine (Amplex Red) is a fluorogenic probe that, upon one-

electron oxidation, undergoes conversion to red-fluorescent resorufin (Fig. 8) (82). Although 

Amplex Red does not react directly with H2O2, in the presence of horseradish peroxidase 

(HRP), it can quantitatively detect H2O2 with a high sensitivity. Because the oxidation 

requires HRP, the assay is limited to cell-free assays or measurement of extracellular H2O2. 

Although Amplex Red-based assays may be useful in monitoring NADPH oxidase activity, 

their application may be limited in cell-free systems, because NADPH and reduced 

glutathione (GSH) interfere with the assay, complicating interpretation of the results (83). 

Both NAD(P)H and GSH are substrates for HRP used in the assay (84, 85). In addition, 

quantification of H2O2 by Amplex Red may be affected by exposure of samples to visible 

light, or the presence of peroxynitrite (ONOO–) (86–89). Thus, the results of real-time 

monitoring of H2O2 formation should be validated by end-point measurements, and catalase 

should be always used to confirm the identity of the oxidant.

Boronate-based assays for H2O2

Over the last decade, a new generation of probes for H2O2 have been developed based on 

oxidative transformation of aromatic boronic acids and esters into phenolic products (Fig. 9) 

(90, 91). A wide spectrum of probes has been reported with detection modalities ranging 

from spectrophotometry through fluorimetry to bioluminescence and PET imaging. 

Boronates can be oxidized not only by H2O2 but also by other biologically relevant oxidants, 

including ONOO–, HOCl, and selected protein hydroperoxides (Fig. 9) (91–97). It was 

shown that in the presence of ONOO– or excess of HOCl, additional, oxidant-specific 
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products are formed (92, 94). Thus, by profiling the products formed, in addition to the use 

of specific inhibitors and scavengers, the identity of the oxidant(s) can be determined (98–

100). In specific instances, where the involvement of other oxidants can be excluded, 

boronate-based probes can be used to selectively monitor the activity of NADPH oxidases 

(24, 79, 91, 101). Several boronate-based fluorogenic probes have been applied to monitor 

the activity of NADPH oxidases, including coumarin boronic acid (CBA), which upon 

reaction with H2O2 undergoes oxidation to 7-hydroxycoumarin (COH, also known as 

umbelliferone) (79, 102, 103). The major limitation of boronic probes is their relatively low 

reactivity toward H2O2, reducing the possibility of quantitative analyses of H2O2 but, on the 

other hand, allowing the bioorthogonal mode of detection (90).

Simultaneous detection of O2
•− and H2O2

Progress in HPLC column technology over the last decade enables a significant reduction in 

the time needed to perform chromatographic analyses, from 30–60 min to 60 s or less per 

sample. For example, the HPLC-based analysis of HE and its oxidation products initially 

took 60–75 min per sample, was later shortened to 10 min, and most recently has been 

shortened to less than 90 s per sample (69, 79, 95). With such rapid assays, multiple probes 

and their products can be separated and detected simultaneously, providing an opportunity 

for real-time, simultaneous monitoring of NADPH-oxidase-derived O2
•− and H2O2. While 

HE conversion to 2-OH-E+ is used to monitor O2
•− formation, the extent of oxidation of the 

CBA probe to COH reflects the production of H2O2 (Fig. 10) (24, 79).

Using both probes, simultaneous monitoring of O2
•− and H2O2 is possible, both in a cell-

free xanthine/xanthine oxidase system and in cellular models of different isoforms of 

NADPH oxidases (Fig. 11) (79). Simultaneous monitoring of O2
•− and H2O2 generated by 

different isoforms of NADPH oxidases enables direct comparison of the identity of the 

species released from the enzyme. In the case of NADPH oxidase-2 (Nox2) and NADPH 

oxidase-5 (Nox5), the products of both O2
•− and H2O2 were detected, whereas in case of 

NADPH oxidase-4 (Nox4), only the H2O2 product level was increased when compared with 

the cell line without an overexpression of Nox4. This is consistent with previous reports and 

indicates that O2
•− undergoes rapid dismutation to H2O2 within the active center of the 

enzyme (104–106).

Monitoring of oxygen and NADPH consumption

In addition to monitoring the formation of O2
•− and H2O2, the activity of NADPH oxidase 

can be measured by monitoring the rate of oxygen consumption. When the mitochondrial 

respiration does not change and/or is relatively small, the rates of oxygen consumption may 

reflect the activity of NADPH oxidase, which provides the basis for probe-free assays. Due 

to the recent developments in monitoring oxygen consumption by cells in a multi-well plate 

format, these measurements can be conveniently carried out in 24-well and 96-well plates, 

providing a medium-throughput capability. Using the Seahorse XF96 extracellular flux 

analyzer, oxygen consumption rates (OCR) can be monitored in real time and up to four 

different compounds can be injected during the analysis, providing the opportunity to 

interrogate the effects of different compounds on basal and mitochondrial respiration and on 
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the activity of NADPH oxidase (Fig. 12). Using dHL60 neutrophil-like cells, it was 

demonstrated that activation of NADPH oxidase by treatment with PMA leads to several-

fold increase in oxygen consumption rates (Fig. 12A), which was impeded by commercially 

available inhibitors of NADPH oxidase activity (e.g., diphenyleneiodonium (DPI, Fig. 12C), 

but not by inhibitors of mitochondrial respiration, rotenone + antimycin A (Fig. 12B). 

Analysis of the effect of the commercial, nonspecific inhibitor of NADPH oxidases and 

other flavoproteins, DPI indicates that while the compound can inhibit both the basal 

respiration (mitochondrial function) and response to PMA (the activity of NADPH oxidase, 

Fig. 12C), the concentration dependence of these two effects is different, with relatively 

selective inhibition of NADPH oxidase activity at submicromolar DPI concentrations (Fig. 

12D) (24).

Due to the constant production of NADPH in cells and multiple pathways of its 

consumption, the monitoring of its consumption rates for measurement of the activity of 

NADPH oxidases in intact cells is impractical. However, in cell-free assays, when NADPH 

is added as a bolus, monitoring the rates of consumption of NADPH provides another probe-

free mode of measurement of the activity of NADPH oxidases. Spectrophotometric (λ = 340 

nm) monitoring of NADPH consumption was recently applied in the confirmatory assays for 

inhibitors of NADPH oxidases (22).

Development of the workflow for HTS of inhibitors of NADPH oxidase 

activity in intact cells

With the recent developments discussed above, it is now possible to establish rapid, yet 

rigorous assays for NADPH oxidases, that could be used in the HTS campaign, focused on 

the discovery of new inhibitors. Although several reports on HTS campaigns have been 

reported, with possible isoform-specific inhibitors of NADPH oxidases identified, in many 

cases the subsequent studies using more-rigorous assays revealed the lack of inhibition and 

interference of the positive hits with the assays used (22, 23, 107). Based on the progress 

that has been made in understanding the chemistry of HE and its analogs as the probes for 

O2
•−, and of boronates as the probes for H2O2, a new workflow to screen the potential 

inhibitors of NADPH oxidases in intact cells was proposed (Fig. 13). The workflow and 

choice of probes were optimized for the Nox2 isoform, which produces significant fluxes of 

O2
•− and H2O2 in extracellular space. For other Nox isoforms, this workflow may need to be 

modified, depending on the identity (O2
•− and H2O2) and location (intra- vs. extracellular 

space) of the species to be detected. For the primary assays of O2
•− and H2O2, HPr+ and 

CBA-based assays were used, respectively. It was shown that stimulation of dHL60 cells 

with PMA leads to oxidation of the HPr+ and CBA probes, accompanied by an increase in 

the fluorescence intensity (Fig. 14). While the HPr+-derived signal was inhibitable by SOD 

but not by CAT (Fig. 14A), the CBA-derived fluorescence signal was inhibited by CAT but 

not by SOD (Fig. 14B). The fluorescence intensity was decreased in case of both probes 

when commercially available inhibitors, DPI and VAS2870, were applied. All these data 

confirm that the HPr+ and CBA probes measure the activity of NADPH oxidase, by 

reporting O2
•− and H2O2 production, respectively. These assays were performed in 384-well 

plates, demonstrating the HTS compatibility.
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For the secondary assays, the HE probe coupled with rapid HPLC-based detection of 2-OH-

E+ was proposed for monitoring NADPH oxidase-derived O2
•−. For the detection of H2O2, 

the Amplex Red-based assay was used. As shown in Figure 15, the stimulation of the dHL60 

cells with PMA led to the appearance of the HPLC peak of 2-OH-E+ and time-dependent 

increase in Amplex Red-derived fluorescence. The HPLC peak of 2-OH-E+ was inhibited by 

SOD but not by CAT (Fig. 15A), while the Amplex Red-derived fluorescence signal was 

inhibited by CAT but not by SOD (Fig. 15B). Again, both secondary assays described could 

be carried out in a 384-well plate format, demonstrating their applicability in the HTS 

campaign. Using these four primary and secondary assays for O2
•− and H2O2, a small, 

focused library of potential inhibitors of NADPH oxidase-2 was screened, resulting in 

identification of several positive hits, which decrease the rates of probe oxidation by more 

than 50% when used at 10 μM concentration (79). Interestingly, the same hits were 

identified in all four assays. One of the positive hits identified, called compound 43 (Fig. 

16A), was further tested in confirmatory assays, as described below. At a 10 μM 

concentration, this compound did not interfere with the assays (when tested using 

hypoxanthine and xanthine oxidase as a source of O2
•− and H2O2) nor did it induce cell 

death (as measured by monitoring cellular ATP levels) (79).

Multi-well plate-based oximetry on the Seahorse XF96 extracellular flux analyzer was used 

for probe-free monitoring of the effects of compound 43 on NADPH oxidase-dependent 

oxygen consumption. As shown in Figure 16B, in contrast to DPI (Fig. 12) compound 43 did 

not significantly affect the basal (mitochondrial) respiration, but it prevented the PMA-

induced burst in oxygen consumption, indicating selective inhibition of NADPH oxidase 

activity. Furthermore, treatment of dHL60 cells with compound 43, similar to treatment with 

DPI, prevented the PMA-stimulated formation of the superoxide spin adduct to DEPMPO, 

as tested using the EPR spin trapping technique (Fig. 16C). Finally, the dose dependence of 

the effects of compound 43 on PMA-stimulated activity of NADPH oxidase in dHL60 cells 

was studied using rapid HPLC-based simultaneous detection of O2
•− and H2O2. Both the 

formation of 2-OH-E+ (product of the reaction between HE and O2
•−) and of COH (product 

of the reaction between CBA and H2O2) were inhibited with similar IC50 value (2.3 μM) 

(Fig. 16D).

The experiments described above established a set of assays suitable for potential use in an 

HTS campaign for discovery of new inhibitors of NADPH oxidases. In the follow-up study, 

the proposed workflow was used to screen a library of more than 2,000 bioactive compounds 

at the Broad Institute (24). All three plate-reader-based assays (using HPr+, CBA, and 

Amplex Red probes) were compatible with HTS and showed good plate-to- plate 

reproducibility. The correlation of the results from the assays performed led to identification 

of 49 (2.4%) compounds showing inhibitory effects in all three assays (Fig. 17). The 

selected positive hits identified were further tested in confirmatory assays and showed 

inhibitory activity on NADPH oxidase activity in other cellular models of NADPH oxidase, 

RAW 264.7 macrophages, stimulated with PMA. Furthermore, the compounds capable of 

inhibiting NADPH oxidase activity were demonstrated to be able to mitigate peroxynitrite 

formation by activated macrophages, as measured using a novel LC-MS (liquid 

chromatography-mass spectrometry)-based, peroxynitrite-specific assay (24).
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Whether the identified positive hits directly bind to NADPH oxidase subunits, or affect the 

upstream events leading to NADPH oxidase activation, remains to be established by the 

follow-up studies (Fig. 13C, post-screening studies) including cell-free assays of NADPH 

oxidase activity and analysis of the effects of the identified inhibitors on the phosphorylation 

status and assembly of NADPH oxidase subunits. Interestingly, some of the identified 

positive hits included promazines, a class of compounds identified as NADPH oxidase-2 

inhibitors in an independent study, which showed the inhibitory activity also in cell-free 

assays (23). This opens up the possibility of repurposing compounds already in use in the 

clinic for treatment of pathologies associated with increased activity of the members of the 

family of NADPH oxidases.

Conclusions and perspectives

Although many probes widely used to measure NADPH oxidase activity suffer from serious 

limitations and their use needs to be discontinued, currently several reliable assays for O2
•− 

and H2O2 can be adapted to monitor the activity of NADPH oxidases in a high-throughput 

manner. Using the appropriate models of isoforms of NADPH oxidase, these assays can be 

used in HTS campaigns using large chemical libraries, with the aim of discovering new, 

isoform-specific inhibitors of NADPH oxidases. Further medicinal, chemistry-based work 

on positive hits may improve their potency while minimizing toxicity, providing a large 

therapeutic window for potential clinical trials.

The other, complementary approach includes the screening of smaller libraries of FDA-

approved drugs and agents, which could lead to rapid translation of the positive hits “from 

bench to bedside” via a drug repurposing strategy. In fact, the promazine-based inhibitors 

identified independently by different groups using the HTS assays were demonstrated to 

inhibit superoxide levels in mouse brains in vivo, demonstrating the high potential of such a 

strategy (23).
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Abbreviations

2-OH-E+ 2-hydroxyethidium

2-OH-Pr2+ 2-hydroxypropidium

BMPO 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide

CAT catalase

CBA coumarin-7-boronic acod

CD cyclodextrin

COH 7-hydroxycoumarin
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cyt c3+ ferricytochrome c

DEPMPO 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide

DIPPMPO 5-(diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide

DMPO 5,5-dimethyl-1-pyrroline-N-oxide

DPI diphenyleneiodonium

E+ ethidium

E+-E+ diethidium

EPR electron paramagnetic resonance

GSH glutathione

HE hydroethidine (or dihydroethidium)

HE•+ HE radical cation

HOCl hypochlorous acid

HPLC high-performance liquid chromatography

HPr+ hydropropidine

HRP horseradish peroxidase

HTS high-throughput screening

L-012 8-amino-5-chloro-2,3-dihydro-7-phenyl-pyrido[3,4-d]pyridazine

MPO myeloperoxidase

NADPH nicotinamide adenine dinucleotide phosphate, reduced form

NBT nitroblue tetrazolium

Nox2 NADPH oxidase-2

Nox4 NADPH oxidase-4

Nox5 NADPH oxidase-5

OCR oxygen consumption rate

PMA phorbol 12-myristate 13-acetate

SOD superoxide dismutase

VAS2870 1,3-benzoxazol-2-yl-3-benzyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-yl 

sulfide
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Figure 1. 
The enzymatic function of NADPH oxidases.
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Figure 2. 
Cascade of reactive oxygen and nitrogen species initiated by one- or two-electron reduction 

of molecular oxygen, leading to oxidation of biomolecules.
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Figure 3. 
Involvement of HE•+ intermediate in the conversion of HE to 2-OH-E+.
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Figure 4. 
Dependence of the products of HE oxidation on the identity of the oxidant.
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Figure 5. 
Hydropropidine as a cell membrane-impermeable probe for superoxide. (A) Chemical 

structures of HPr+ and the superoxide-specific oxidation product, 2-OH-Pr2+. (B) 

Comparison of the cell-medium distribution of HE and HPr+ probes upon incubation with 

RAW 264.7 cells. (Reprinted from Free Radic. Biol. Med., vol. 54, Michalski, R., Zielonka, 

J., Hardy, M., Joseph, J., & Kalyanaraman, B., Hydropropidine: a novel, cell-impermeant 

fluorogenic probe for detecting extracellular superoxide, 135–147. Copyright 2013, with 

permission from Elsevier.) (72)
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Figure 6. 
Spin trapping of O2

•− by selected cyclic nitrones.
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Figure 7. 
EPR spin trapping of superoxide generated by NADPH oxidase. DEPMPO spin trap was 

incubated with dHL60 cells in the absence (control) or presence of PMA. Where indicated, 

SOD or catalase was also present. (This research was originally published in Journal of 

Biological Chemistry. Zielonka, J., Cheng, G., Zielonka, M., Ganesh, T., Sun, A., Joseph, J., 

Michalski, R., O’Brien, W. J., Lambeth, J. D., & Kalyanaraman, B. High-throughput assays 

for superoxide and hydrogen peroxide: design of a screening workflow to identify inhibitors 

of NADPH oxidases. J. Biol. Chem. 2014; 289: 16176–16189. © the American Society for 

Biochemistry and Molecular Biology.) (79)
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Figure 8. 
Involvement of Amplex Red-derived radical in the oxidative conversion of Amplex Red into 

resorufin.
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Figure 9. 
Oxidation of aromatic boronic acids into phenolic products.
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Figure 10. 
Principles of simultaneous detection of NADPH oxidase-derived O2

•− and H2O2 by a 

mixture of HE and CBA probes.
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Figure 11. 
Simultaneous monitoring of superoxide and H2O2 generated by different isoforms of 

NADPH oxidase. Cells were stimulated, where necessary, as indicated and incubated with 

HE and CBA probes. During the incubation the media were probed repeatedly at different 

time points, and analyzed by rapid HPLC for the formation of 2-OH-E+ and COH. (A) Nox2 

model: dHL60 cells stimulated with PMA; (B) Nox4 model: HEK 293 cells with stably 

overexpressed Nox4; (C) Nox5 model: HEK 293 cells with stably overexpressed Nox5 and 

stimulated with ionomycin. (This research was originally published in Journal of Biological 

Chemistry. Zielonka, J., Cheng, G., Zielonka, M., Ganesh, T., Sun, A., Joseph, J., Michalski, 

R., O’Brien, W. J., Lambeth, J. D., & Kalyanaraman, B. High-throughput assays for 

superoxide and hydrogen peroxide: design of a screening workflow to identify inhibitors of 
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NADPH oxidases. J. Biol. Chem. 2014; 289: 16176–16189. © the American Society for 

Biochemistry and Molecular Biology.) (79)
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Figure 12. 
Measurement of NADPH oxidase activity by monitoring the rates of OCR. (A) Comparison 

of nondifferentiated and differentiated HL60 cells in their response to PMA stimulation. (B) 

Effect of mitochondrial inhibitors (1 μM rotenone, ROT, and 1 μM antimycin A, ANT) on 

basal and PMA-stimulated oxygen consumption by dHL60 cells. (C,D) Effect of 

diphenyleneiodonium (DPI, 10 μM) on basal (ΔOCRBasal) and PMA-stimulated 

(ΔOCRPMA) oxygen consumption by dHL60 cells. (This research was originally published 

in Journal of Biological Chemistry. Zielonka, J., Cheng, G., Zielonka, M., Ganesh, T., Sun, 

A., Joseph, J., Michalski, R., O’Brien, W. J., Lambeth, J. D., & Kalyanaraman, B. High-

throughput assays for superoxide and hydrogen peroxide: design of a screening workflow to 

identify inhibitors of NADPH oxidases. J. Biol. Chem. 2014; 289:16176–16189, and 
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Zielonka, J., Zielonka, M., VerPlank, L., Cheng, G., Hardy, M., Ouari, O., Ayhan, M. M., 

Podsiadly, R., Sikora, A., Lambeth, J. D., & Kalyanaraman, B. Mitigation of NADPH 

Oxidase 2 Activity as a Strategy to Inhibit Peroxynitrite Formation. J. Biol. Chem. 2016; 

291:7029–7044. © the American Society for Biochemistry and Molecular Biology) (24, 79)
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Figure 13. 
Probe chemistry and assay design. (A) Probes and products formed in primary assays. (B) 

Probes and products formed in orthogonal assays. (C) The workflow scheme for screening 

of Nox inhibitors. (This research was originally published in Journal of Biological 

Chemistry. Zielonka, J., Cheng, G., Zielonka, M., Ganesh, T., Sun, A., Joseph, J., Michalski, 

R., O’Brien, W. J., Lambeth, J. D., & Kalyanaraman, B. High-throughput assays for 

superoxide and hydrogen peroxide: design of a screening workflow to identify inhibitors of 

NADPH oxidases. J. Biol. Chem. 2014; 289: 16176–16189. © the American Society for 

Biochemistry and Molecular Biology.) (79)
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Figure 14. 
Monitoring NADPH oxidase-2 activity in dHL60 cells using primary assays. (A) Effect of 

SOD, catalase, DPI and VAS2870 on the time-dependent increase in fluorescence intensity 

due to oxidation of HPr+ probe, induced by PMA. (B) Same as in (A), but CBA probe was 

used. (This research was originally published in Journal of Biological Chemistry. Zielonka, 

J., Cheng, G., Zielonka, M., Ganesh, T., Sun, A., Joseph, J., Michalski, R., O’Brien, W. J., 

Lambeth, J. D., & Kalyanaraman, B. High-throughput assays for superoxide and hydrogen 

peroxide: design of a screening workflow to identify inhibitors of NADPH oxidases. J. Biol. 
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Chem. 2014; 289: 16176–16189. © the American Society for Biochemistry and Molecular 

Biology.) (79)
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Figure 15. 
Monitoring NADPH oxidase-2 activity in dHL60 cells using secondary assays. (A) Effect of 

SOD, catalase, DPI, and VAS2870 on the yield of 2-OH-E+ formed from HE probe by 

dHL60 cells stimulated with PMA, as measured by rapid HPLC analyses. (B) Effect of 

SOD, CAT, DPI, and VAS2870 on the time-dependent increase in fluorescence intensity due 

to oxidation of Amplex Red probe, induced by PMA. (This research was originally 

published in Journal of Biological Chemistry. Zielonka, J., Cheng, G., Zielonka, M., Ganesh, 

T., Sun, A., Joseph, J., Michalski, R., O’Brien, W. J., Lambeth, J. D., & Kalyanaraman, B. 
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High-throughput assays for superoxide and hydrogen peroxide: design of a screening 

workflow to identify inhibitors of NADPH oxidases. J. Biol. Chem. 2014; 289: 16176–

16189. © the American Society for Biochemistry and Molecular Biology.) (79)
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Figure 16. 
Confirmatory assays used for further characterization of the positive hits from HTS 

campaign. (A) Structure of the identified hit (compound 43 from ref. (79)). (B-C) Effect of 

the identified hit on the PMA-stimulated oxygen consumption rates (B) and formation of 

DEPMPO superoxide spin adduct (C). (D) Concentration dependence of the compound 43 

on PMA-stimulated probe oxidation by dHL60 cells in the HPLC-based assays for 

simultaneous monitoring of O2
•− and H2O2. (This research was originally published in 

Journal of Biological Chemistry. Zielonka, J., Cheng, G., Zielonka, M., Ganesh, T., Sun, A., 
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Joseph, J., Michalski, R., O’Brien, W. J., Lambeth, J. D., & Kalyanaraman, B. High-

throughput assays for superoxide and hydrogen peroxide: design of a screening workflow to 

identify inhibitors of NADPH oxidases. J. Biol. Chem. 2014; 289: 16176–16189. © the 

American Society for Biochemistry and Molecular Biology.) (79)
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Figure 17. 
Results of screening of a library of bioactive compounds (~ 2,000) using three probes: HPr+ 

in the presence of DNA as a probe for O2
•−, and CBA or Amplex Red in the presence of 

HRP as probes for H2O2. (A) Correlation of the results of the three assays for Nox2 activity. 

(B) Results of screening as a percentage of positive hits in one, two or all three assays. (This 

research was originally published in Journal of Biological Chemistry. Zielonka, J., Zielonka, 

M., VerPlank, L., Cheng, G., Hardy, M., Ouari, O., Ayhan, M. M., Podsiadly, R., Sikora, A., 

Lambeth, J. D., & Kalyanaraman, B. Mitigation of NADPH Oxidase 2 Activity as a Strategy 

Zielonka et al. Page 38

Cell Biochem Biophys. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to Inhibit Peroxynitrite Formation. J. Biol. Chem. 2016; 291:7029–7044. © the American 

Society for Biochemistry and Molecular Biology) (24)
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