
Coming to Grips with Ambiguity: Ion Mobility-Mass 
Spectrometry for Protein Quaternary Structure Assignment

Joseph D. Eschweiler, Aaron T. Frank, and Brandon T. Ruotolo
Department of Chemistry, University of Michigan Ann Arbor, MI 48109

Abstract

Multiprotein complexes are central to our understanding of cellular biology, as they play critical 

roles in nearly every biological process. Despite many impressive advances associated with 

structural characterization techniques, large and highly-dynamic protein complexes are too often 

refractory to analyze by conventional, high-resolution approaches. To fill this gap, ion mobility-

mass spectrometry (IM-MS) methods have emerged as a promising approach for characterizing 

the structures of challenging assemblies due in large part to the ability of these methods to 

characterize the composition, connectivity, and topology of large, labile complexes. In this Critical 

Insight, we present a series of bioinformatics studies aimed at assessing the information content of 

IM-MS datasets for building models of multiprotein structure. Our computational data highlights 

the limits of current coarse-graining approaches, and compelled us to develop an improved 

workflow for multiprotein topology modeling, which we benchmark against a subset of the 

multiprotein complexes within the PDB. This improved workflow has allowed us to ascertain both 

the minimal experimental restraint sets required for generation of high-confidence multiprotein 

topologies, and quantify the ambiguity in models where insufficient IM-MS information is 

available. We conclude by projecting the future of IM-MS in the context of protein quaternary 

structure assignment, where we predict that a more complete knowledge of the ultimate 

information content and ambiguity within such models will undoubtedly lead to applications for a 

broader array of challenging biomolecular assemblies.
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Introduction

Structural characterization of the multicomponent complexes that form the functional units 

of the “interactome”, specifically protein complexes, represents a major challenge for 

structural biology.[1,2] Due to their large size, low copy numbers, and intrinsic 

heterogeneity and lability, important targets are too often refractory to analysis by traditional 

techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, 

or electron microscopy, despite impressive advances in these fields.[3,4] Alternative 

approaches for characterizing difficult multicomponent structures may result in low-

resolution or sparse datasets, such as those generated from small-angle scattering[5] or 

covalent labeling/crosslinking methodologies.[6] Circumventing the limitations of a single 

technique, integration of datasets from multiple experiments has been shown to be a potent 

approach for characterizing multiprotein complexes,[7] as often times these datasets provide 

complementary information. This workflow, commonly referred to as integrative structural 

biology, has progressed rapidly due largely to advances in computational techniques that 

have made it possible to encode different types of experimental datasets as spatial restraints 

in a single modeling workflow.[8]

Generally, an integrative modeling workflow is an iterative process described by four major 

steps: 1) the gathering of experimental data, 2) the translation of such data into spatial 

restraints, 3) the generation of an ensemble of putative structures that satisfy the 

experimentally-defined restraints, and 4) the characterization of the ensembles generated, 

where ambiguities are identified and used to refine structural hypotheses. This process may 

then be iterated as necessary in order to resolve ambiguities to the extent allowed by the 
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experimental restraints utilized.[8] MS-based methods such as chemical crosslinking,[9–11] 

native-MS,[12,13] and ion mobility-MS[14] have garnered much attention as valuable 

experiments within such integrative structural biology frameworks. Of these MS-based 

technologies, ion-mobility-mass spectrometry (IM-MS) is uniquely positioned for the 

interrogation of multiprotein structure.[15] Unlike solution-phase measurements which may 

report on the average of an ensemble of proteoforms, conformers, or oligomerization states, 

IM-MS datasets can be used to discern the relative proportions of these species within 

mixtures, and interrogate their composition, connectivity, and collision cross sections 

(CCSs) individually.[16] Due to its unique capabilities in protein structure analysis, IM-MS 

is often deployed to determine coarse-grained (CG) protein topology models for assemblies 

that have resisted previous characterization attempts, often in combination with other forms 

of biophysical data.[17,18]

Figure 1A illustrates the potential information content often derived from native MS 

datasets. While direct analysis of the masses of intact complexes can often provide 

unambiguous information about the protein composition and stoichiometry,[19] it is also 

useful to interrogate solution or gas-phase disassembly products to further elucidate 

connectivity and structural modularity. To this end, methods for solution[20,21] and gas-

phase[22–24] disruption of multiprotein complexes are actively being developed to increase 

the number of observable sub-complexes, and therefore the overall information content of 

the experiment. In addition to the composition and connectivity information garnered by 

MS, IM-MS (Figure 1B) provides 3D structural information on both monomeric and 

oligomeric protein ions in the form of CCSs.[25,26] Since multiple methods are available 

for the accurate calculation of CCS values from in silico models,[27–29] it is possible to 

assign putative structures to the signals observed in the IM-MS experiment.

Despite being used to restrain rigorous dynamics experiments for peptides [30] and small 

proteins [31] for decades, our ability to extract structural information from CCS 

measurements of large proteins and multiprotein complexes is still evolving. A recent 

comprehensive analysis of the PDB revealed that the general amount of CCS variance 

exhibited by proteins increases for high mass and stoichiometry protein complexes, 

indicating increased CCS information content is available for such assemblies.[28] These 

observations corroborate earlier experimental results showing that the oligomerization 

patterns of homomeric protein complexes can be discerned in many cases based on CCS 

trends as a function of complex stoichiometry.[32]

Methods for extracting topological information for large, heteromeric protein complexes are, 

however, less developed. Early procedures for optimizing pairwise and trimeric subunit 

interactions were based on a linear search for conformations, using spherical subunit 

representations that satisfied experimental CCS restraints.[33] Although the spherical 

representation of protein subunits possesses obvious limitations when modeling highly 

aspherical subunits such as multidomain proteins, spheres still represent the primary 

component in IM-MS based modeling due to their trivial geometric relationship to the CCS 

parameter, their ease of implementation in computational workflows, and their facile 

relationship to protein-protein interaction geometries. Subsequently described IM-MS 

workflows aimed at the generation of protein quaternary structure models (Figure 1C) 
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utilized a Monte Carlo approach for sampling orientations of spheres that satisfied excluded 

volume, symmetry, connectivity, and CCS restraints in order to yield an ensemble of 

structures that can be interrogated via hierarchical clustering methodologies.[34,35,33] Such 

IM-MS derived models have been favorably compared to structures produced using more 

mature workflows, indicating a promising level of cooperativity between CCS 

measurements and other biophysical parameters commonly used in protein complex model 

generation.[34] This general approach has been used to elucidate the topological features of 

the DNA replisome,[33,36] ribosomal initiation factor complexes,[37] and ATPases,[38] all 

providing critical structural insights as well as methodological enhancements. More recently, 

surface induced dissociation (SID) coupled to IM-MS and covalent labeling has been 

applied to build a complete model of the toyocamycin nitrile hydratase complex[39] by 

leveraging the sub-complexes produced both through controlled disruption in solution and 

SID.

Despite these promising examples, many questions remain about the ability to 

unambiguously assign protein topology using IM-MS datasets (Figure 1D). Most of these 

questions surround the potential errors introduced when high levels of coarse graining are 

applied, the interpretation of structural ensembles generated from IM-MS modeling 

approaches, and the confidence levels associated with IM-MS structures in a general sense.

[40] Additionally, questions remain regarding the extent of structural rearrangement 

apparent in some proteins and complexes in the gas-phase; a topic that has been investigated 

in detail elsewhere.[35,41] In this Critical Insight, we seek to critically evaluate the 

information content of IM-MS for protein quaternary structure assignment in cases where 

we can assume a strong memory of solution-phase structure. Based on many of the 

challenges described above, we develop a new generalized algorithm for translating IM-MS 

datasets into structural models and benchmark our new method against many known 

topologies present in the PDB. We continue by quantifying, for the first time, the ambiguity 

present in under-restrained models, and suggest approaches for mitigating such effects. We 

conclude by projecting the future of IM-MS derived models of protein quaternary structure.

Assessing Coarse-Graining Errors in Multiprotein Models Generated from 

IM-MS Data

In workflows that utilize IM-MS data to restrain models of protein quaternary structure, it is 

typically assumed that the protein components of the assembly can be accurately represented 

by spheres defined by either their measured or estimated CCS. Although many reports have 

demonstrated a strong correlation between experimental CCS measurements and CCS values 

extracted from solution-phase protein models, the strength of this correlation can depend on 

the domain structure and globularity of the protein analyte in question.[42,43] Moreover, the 

magnitude and nature of the errors incorporated into IM-MS multiprotein models through 

the coarse-graining process are currently unknown. In order to investigate such coarse-

graining errors, we extracted a non-redundant set of 191 high-resolution protein complex 

structures from the 3D complex set database,[44] and developed a method for the rapid 

generation of CG structures based on these entries where the extent of coarse graining can 

be treated as a variable. The first step in our protocol involves extracting coordinates and 
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center-of-mass values for each subunit within the protein complex. Next, the CCS values are 

calculated for each subunit using the projection approximation function within the IMPACT 

library.[28] To generate the initial CG model at subunit resolution, we placed spheres having 

radii corresponding to the projected area of the subunits at the center of mass for each 

subunit in the complex. To evaluate the model, the projected area of the high-resolution 

structure was compared to that calculated from the CG model.

Our results suggest that a significant number of the protein complexes currently available 

within the PDB contain subunits that are not accurately represented when subunit-level 

coarse-graining is applied. As shown in Figure 2A–C, subunit-level coarse-graining very 

often results in large deviations in CCS compared to the reference. We define CG error as 

the total percent of atoms found within the high-resolution structure that fit within an 

average of CG representations determined by our workflow (see Supporting Information for 

details). We used a 5% deviation in the CCS values obtained for CG models when compared 

to reference CCSs for the corresponding all-atom reference structure to define a 

“significant” error threshold in our analysis, as such defects reflect, in our view, both the 

maximum error that can be introduced into a model before losing significant topology 

information, as well as the maximum error value carried by experimental restraint 

information recovered for large protein complexes by IM-MS.[45] Specifically, over 38% of 

the protein complexes studied here contained significant errors (greater than 5%) when this 

level of coarse graining was applied. We also note that the error distribution associated with 

this level of coarse graining is highly asymmetric, containing many structures having CG 

errors greater than 10%.

A more detailed analysis of the structures within the survey reveals that proteins with 

multiple domains are most susceptible to high CG errors, especially those proteins having 

domains connected by long linker regions. Interestingly, however, we found no correlation 

between the CCS/mass ratio of individual subunits and their propensity to introduce error 

into the model, indicating that the overall packing density of the protein does not play a 

major role in the CG errors on display in Figures 2D and 2E. Based on this data we 

hypothesized that coarse-graining at the domain level should eliminate the majority of the 

errors we observed from our subunit-resolution CG modeling experiments. To investigate 

this, we implemented a k-means clustering method[46] in SciPy[47] to heuristically detect 

protein domain structure over a range of thresholds associated with protein and domain mass 

(See Supporting Information for details). The results associated with these higher-resolution 

CG structures are shown in Figures 2F and 2G, and reveal a strong relationship between the 

resolution of the CG structures and the propensity for CG error we record during our 

analysis. Figure 2G, for example, shows that the fraction of protein complexes with 

significant errors drops to ∼2% when domain-level CG is applied to the same pool of 

structures analyzed in Figure 2E. We find that error-prone structures that persist in our 

analysis are largely those containing extremely long linker regions or aspherical domains 

that remain inaccurately represented using domain-level coarse-graining.
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Benchmarking the Information Content of IM-MS Datasets for Modeling 

Known Protein Complexes

To generate ensembles of putative structures based on IM-MS-derived data, we developed a 

program for the interpretation and optimization of diverse MS and/or IM-derived restraint 

sets. This program, referred to as IMMS_modeler, was built using connectivity and distance 

restraints from the Integrated Modeling Platform (IMP)[8], some of which were 

implemented previously.[34] Novel aspects of our approach include: 1) the use of a restraint 

file for facile input of new data, 2) the ability to use new mathematical definitions within the 

scoring function, and 3) a new Monte Carlo algorithm that enables a significantly broader 

sampling restraint space. By default, IMMS_modeler generates ensembles of 1000 

structures that satisfy all of the declared restraints. We found this amount of structures to be 

a representative sample of structural space for most complexes, and have based the following 

experiments on these ensembles. All CCS calculations were performed offline using the 

projected area function in the IMPACT library (See Supporting Information for Details).

In order to thoroughly evaluate our method as a general approach for modeling multiprotein 

complexes, we set out to benchmark IM-MS modeler against known protein complex 

topologies with varying levels of restraint information. In these experiments, we generated 

CG models at the resolution of individual protein subunits for a small subset of complex 

topologies used in the previous experiment. For simplicity, we focused this stage of our 

analysis only on those protein complexes that did not show significant CG error, as 

described in the above section (Figure 2). Despite these limitations, the geometric principles 

described here are transferrable to models created at higher levels of CG resolution.

On the Positive Predictive Power of IM-MS datasets

In order to characterize the information content associated with CCS measurements of intact 

protein complexes and sub-complexes when used to define inter-protein distances and 

geometry in the context of a search of potential quaternary structures (which we define as 

“internal restraints”), we simulated IM-MS datasets for at least five non-redundant complex 

topologies for protein trimers, tetramers, pentamers, and hexamers (Figure 3). Although 

some of the complexes used to generate the analysis shown in Figure 3 contain symmetric 

elements, no symmetry restraints were implemented to avoid bias. All restraint sets 

contained detailed information regarding the connectivity of the complex, as well as the 

CCS of the intact assembly, as in our view these restraints are essential for any IM-MS based 

quaternary structure assignment. In addition to this information, restraint sets contained 

varying numbers of the “internal restraints” described above, which correspond to the pair-

wise distance restraints that are commonly obtained from native IM-MS datasets, are also 

included in our analyses. [21,32] We note that although 3D systems are completely 

restrained by a minimum of 3N-6 fixed distance restraints (where N is number of bodies), 

the restraints used in this report attempt to simulate real IM-MS data. Specifically, restraints 

mined from IM-MS data contain error, often producing predictive values that are less than 

those generated through precise distance geometries. For purposes of this analysis, the 

structures generated using our method were defined as true positives (native-like topologies) 
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if they had RMSD values of less than 5 Å relative to the reference structure; and we defined 

a positive predictive value (PPV) as the fraction of true positive structures within the 

ensemble of structures sampled using a given restraint set (see Figure S2 for examples of 

structures filtered out of these analyses using RMSD).

As expected, our results reveal a positive relationship between the number of internal CCS 

restraints available for a complex and the positive predictive value for a given modeling 

effort. For trimeric protein complexes (Figure 3A), the ensemble is enriched for true 

positives with the addition of internal distance restraints between subunits. Here, due to the 

trivial relationship between the CCS and the angle of subunits within the complex, the model 

should be fully restrained by the global CCS plus any two IM-derived distance restraints.

[33] Notably, there is one outlier structure that seemingly refutes this general conclusion; 

however, our analysis also suggests that the global CCS restraint becomes less sensitive 

when large disparities exist in the CCS of each component, allowing us to rationalize all of 

the results shown. (Figure S3) Higher stoichiometry complexes (Figure 3B–D), exhibit 

similarly strong increases in PPV in a manner correlated with the number of internal 

restraints included. We note that the number of restraints necessary to reach a PPV > 0.8, 

where 80% of the structures identified in the ensemble are within 5 Å of the “true” structure, 

increases rapidly as the number of subunits increases, further motivating the need to develop 

new methods and technologies for the comprehensive generation of native-like sub-

complexes for IM-MS analysis.[20,23,24]

Characterizing Ambiguity in the Structural Ensembles Defined by IM-MS

Although the PPV is a valuable metric for comparing the information content of multiple 

restraint sets, interpretation of PPV values for individual datasets can be challenging. This is 

due to the fact that members of a structural ensemble generated by the IMMS-modeling 

approach described here are not randomly distributed, and in many cases can be clustered 

into distinct sub-distributions, or structural families. Pairwise relationships between 

structures within an ensemble can be described by a pairwise RMSD matrix, which can in 

turn be interrogated using hierarchical clustering to determine groups of highly related 

structures. Alternatively, other similarity measures can be implemented to describe structural 

relationships between models, including the ultrafast similarity score,[48] or distance matrix 

RMSD,[49] which each may have their own advantages depending on the geometries 

present in the ensemble. For the computational data described in this Critical Insight, a 

detailed analysis of the structural ensemble produced from an IM-MS restrained search of 

protein topology space regularly reveals useful information, in addition to what is provided 

by the PPV value analysis shown in Figure 3 alone. In the sections below, we discuss the 

interpretation of hierarchical clustering datasets in the context of such IM-MS restrained 

models, focusing on our recent efforts to define and quantify the ambiguity and resolution 

within the IM-MS data.

A hierarchical clustering dendrogram (as shown in Figure 4) illustrates the relationship 

between all structures within an ensemble. The number of clusters depends on the “cut 

point” chosen during dendrogram analysis, a value that is typically a user defined parameter. 

For example, our algorithm automatically defaults to a dendrogram cut point that generates 
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clusters at linkages that exhibit greater than 70% of the maximum RMSD in the entire 

matrix analyzed. Our ensemble analysis workflow evaluates the in-cluster RMSD as it 

compares to the average RMSD of the ensemble, as well as the cross-cluster RMSD, 

revealing distinct structural families that define the identified clusters (Figure 4). It is worth 

noting that the application of IM-MS restraints often leads to the type of model ambiguity 

shown in Figure 4 for large hetero-protein targets.[34] Indeed, such ambiguity may, in some 

cases, represent the native ensemble of protein complex structures associated with function.

[50,38] Commonly, however, such uncertainty is due to incomplete structural information 

and can be resolved through the application of additional restraints [18,51] (see below for 

examples).

As mentioned above, the in-cluster RMSD can be a valuable metric for quantitatively 

expressing the ambiguity within a cluster. However, when evaluating biomolecular 

structures, qualitative and visual expression of ambiguity is often more facile to interpret. In 

order to fill this gap for IM-MS derived models, we developed a new method for visualizing 

the ambiguity within a structural family using kernel density functions.[52,47] In this 

method, the coordinates within a structural family or ensemble are aligned, and each subunit 

coordinate is uniformly populated with protein density as a sphere corresponding to its 

collision cross section. Next, the Gaussian kernel function is estimated for this volume of 

coordinates, and then visualized. For the workflow described here, we utilize the Mayavi 

Library[53] in Python to visualize the kernel densities. As illustrated in Figure 4C, this 

kernel density function approach allows for the visualization of structural ambiguity present 

within an ensemble; information that is likely vital for the detailed interpretation of 

structural ensembles defined by sparse sets of restraints.

Leveraging Symmetry and Modularity to Resolve Ambiguity within IM-MS 

Model Ensembles

To further evaluate IM-MS based quaternary structure assignments in a general sense, as 

well as the newly-developed methods described here, we chose two case studies that 

illustrate real-world examples of challenging modeling targets. As shown in Figure 3, the 

number of restraints needed to accurately recapitulate the topology of a multiprotein 

complex increases linearly, creating challenges for integrative modeling of these complexes. 

However, in the data shown below, we demonstrate that by leveraging the modularity and 

symmetry within high-stoichiometry complexes, it is possible to circumvent these 

limitations.

As an example of a symmetry restraint applied in order to resolve ambiguity within an IM-

MS restrained ensemble of protein quaternary structures, we built models of the Large T-

antigen (LTag) complex bound to p53. LTag is a hexameric ring structure that binds p53 

monomers in a stoichiometric and symmetric fashion around the ring.[54] Assuming a 

comprehensive protein-protein connectivity dataset from Native MS, we searched for a 

minimal IM-MS restraint set to recapitulate the known topology of LTag-p53 with C6 

symmetry. Our first attempt utilized only connectivity and global CCS information to 

generate a structural ensemble. (Figure 5A) For this ensemble, we observe three structural 
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families, with relatively little resolution between them. Each family is represented by a very 

broad distribution of RMSD values relative to the reference structure, indicating that both 

the accuracy and effective resolution of the structural models created in this search are low. 

The kernel density function estimated for each structural family also illustrates the poor 

resolution generated from this restraint set.

In order to resolve the above ambiguity, we add restraints associated with the CCS of the 

LTag hexamer and the overall C6 symmetry of the complex, a likely result given the 

interface structure known for this assembly.[54] The resulting IM-MS restrained ensemble is 

homogenous and gives rise exclusively to highly accurate models (Figure 5B). This 

monomodal ensemble of structures is characterized by a significantly narrower distribution 

of RMSD values when compared with the distributions observed in Figure 5A, and is 

centered at an RMSD of 6Å relative to the reference. Such RMSD values are typically 

achieved by our modeling workflow for structures where additional symmetry restraints can 

be coupled to the distances mined from IM-MS data.

For our second example, we sought to apply our method to a large, asymmetric protein 

complex that has been interrogated using MS methods previously.[55] The Actin-Related 

Protein 2/3 (ARP2/3) complex structure was recently solved by X-ray crystallography (PDB 

ID 1K8K).[56] In addition, a previous Native MS study identified two modules within the 

heptameric complex, the trimeric Actin Localization Module (ALM) and the tetrameric 

Nucleating Module (NM). Extrapolating from the data shown in Figure 3, we predict that the 

heptameric ARP2/3 requires between 16 and 19 internal CCS restraints to reach a PPV value 

of 80%. When modeling the ALM and NM individually, we find that even minimal 

simulated IM-MS restraint sets lead to highly accurate models. We generated high-

confidence models for the trimeric ALM using 2 IM-derived distance restraints and a global 

CCS restraint. In parallel, the correct structure was readily found for the NM using 4 IM-

derived distance restraints plus the global CCS restraint. These results agree well with data 

shown in Figure 3 for trimeric and tetrameric protein complexes.

Next, we attempted to find the minimal IM-MS restraint sets necessary for localization of 

ALM binding to NM, leading to a precise assignment of ALM-NM topology. We started by 

attempting to model this complex without providing any information about points of 

connectivity between ALM and NM, and filtered the resulting ensemble based on global 

CCS alone. (Figure 6A) The resulting ensemble features two structural families, a larger 

population family with an RMSD distribution centered on 15 Å from the reference structure, 

and a less populated cluster with a very broad RMSD distribution centered on 28 Å. 

Interestingly, although the resolution within both families is poor, the major family appears 

to correctly localize the general ALM binding site on the NM surface. To reduce the 

ambiguity in the models, we then added two restraints that enforced connectivity between 

the p20 subunit of the ALM and the p34 and arp3 subunits of the NM (Figure 6B). This new 

connectivity information, along with the global CCS restraint gives rise to a new ensemble 

of potential structures. The new restraint set acts to eliminate the majority of the incorrect 

structures found in Figure 6A; however, it gives rise to a new, more highly-resolved 

distribution of structures centered on 25 Å from the reference. Interestingly, we note that the 

major structural family identified for this restraint set remains essentially unchanged from 
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the one identified in Figure 6A, where the correct localization of ALM is determined, but 

having a broad RMSD distribution centered on ∼15 Å from the reference structure

Finally, we applied a new restraint set with 4 total connectivity restraints linking p20 from 

the ALM with p34, arp2, and arp3 from the NM; and linking p40 from the ALM with arp2 

from the NM. (Figure 6C) These restraints represent the full complement of protein 

connectivity information accessible through MS methods.[57] When combined with 

sufficient connectivity information, we find that the global CCS restraint can define not only 

the location of ALM on the surface of NM, but also the relative orientation of the two sub-

complexes. We observe a single, well-resolved family of structures centered around and 

RMSD value of 9 Å relative to the reference structure. Furthermore, when structures within 

this family are averaged, the resulting mean structure has an RMSD of only 2 Å from the 

reference, indicating that in this example, the mean structure is in much closer agreement 

with the reference than any individual structure in the ensemble. Although the mean 

structure in this case results in a highly accurate candidate model, we advise caution when 

averaging structural ensembles generally, as poorly defined structural families may cause the 

average structure to be distorted, or heavily biased. Combining the connectivity restraints 

used here with the distance and internal CCS restraints used to build models for each 

module, we recapitulated the correct topology using only 11 internal restraints, one third 

fewer internal restraints than that the number of restraints one would predict based on PPV 

alone (extrapolated from Figure 3).

Conclusions and Future Directions

In this report we explored several questions related to the generation of CG multi-protein 

topology models restrained using IM-MS data. We outlined a workflow based on integrative 

modeling principles that allows for facile translation of IM-MS data into ensembles of 

putative structures for hypothesis refinement or integration with high resolution docking 

tools. We explored the limits of coarse-grained modeling, and demonstrated that many 

protein topologies found in the PDB are not amenable to coarse-graining at the subunit-

level, mostly due to their intricate domain architectures. However, when sufficient data is 

available, domain-level coarse-graining results in significant errors in only 2% of cases.

We benchmarked our CG modeling workflow against protein topologies extracted from the 

PDB, exploring the ambiguity in IM-MS derived structural ensembles as a function of the 

information content contained in restraint sets. Our results indicated a predictable 

relationship between the PPV of an ensemble, and the number of internal IM-MS restraints 

used to generate it. Although the estimated PPV may be used as a benchmark to predict the 

ambiguity within a CG modeling ensemble, in many cases it underestimates the total 

possible information content of the IM-MS experiment, as such an analysis does not account 

for the structural relationships between members of an ensemble. We found that applying 

hierarchical clustering yields, in many cases, highly-resolved conformational families that 

can inform future experiments, or be reported as likely structures based on available data. 

Additionally, we undertook two case studies that showed that highly-symmetric or modular 

complexes can be modeled with high fidelity using smaller numbers of internal restraints 

than those predicted by a PPV analysis. In these cases, we observe that in large complexes 
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the information content of the intact CCS is maximal only when one or more substructures 

are fully defined.

Although the computational results presented in this Critical Insight are encouraging, there 

are still many challenges ahead in fully harnessing the information content available in IM-

MS datasets. Our CG error analysis (Figure 2) clearly motivates the development of domain-

level IM-MS models of protein quaternary structure, and a move away from CG at the intact 

subunit level. The development of IM-MS tools for the generation of such information on 

protein tertiary structure, such as collision induced unfolding (CIU),[58,59] as well as efforts 

to integrate IM-MS data with other sources of experimental data sensitive to local protein 

structure[60,61,51] and computational domain assignment algorithms[62] will, therefore, 

become increasingly important in future IM-MS protein topology modeling efforts. 

Similarly, our analysis of ambiguity in IM-MS models of protein quaternary structure 

strongly points to the need for improved methodologies capable of detecting protein 

complex connectivity and symmetry. As such, the development of technologies that produce 

a comprehensive population of protein sub-complexes, either in the gas-phase or in solution, 

will prove highly valuable.[23,20,24] Finally, the ability of our IMMS-Modeler algorithm to 

assess, for the first time, the ambiguity present within IM-MS restrained models of protein 

complex structure will likely lead to a greater ability to integrate such datasets with other 

forms of structural restraints, derived both from MS and other forms of data. Future 

iterations of IMMS-Modeler will incorporate the ability to build models based on custom 

shapes, interface directly with domain-prediction software, and utilize next-generation 

scoring functions that enable multi-factorial assessments of model fitness. Although not 

discussed in detail here, it is also clear that increases in CCS precision will drive 

concomitant increases in the PPV of IM-MS restraints, as decreasing the current ± 3% CCS 

error value used in the analyses described here will surely reduce the occurrence of spurious 

structural families within a filtered structural ensemble.[63–65] On the other hand, our data 

demonstrate that much can be accomplished using current IM-MS capabilities and that the 

proper application of restraints can be used to build high-confidence models of multi-protein 

complexes with both full knowledge of their precisions and informed estimates of their 

accuracies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A general workflow for IM-MS-based modeling. A) native-MS, tandem-MS, and solution-

phase disruption-MS yield increasing amounts of composition and connectivity information 

for a multiprotein complex. This information can be encoded with varying levels of 

ambiguity based on the information available. B) IM-MS data can be included to build a 3D 

topology mode. Individual subunits or domains can be encoded as spheres with radius 

derived from their measured CCS, while exact distances between subunits can be derived 

from CCS measurements of dimeric and trimeric species. C) Optimization of the 

experimentally-defined scoring function using a Monte Carlo method provides unbiased 

sampling of potential structures for high-stoichiometry complexes. These structures form an 

ensemble which is subjected to clustering analysis to mine for predominant structural 

families D) Structural families detected by clustering can be characterized in aggregate using 

kernel density functions, mean structures and standard deviations, or individual structures 

can be identified as representative of the family.
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Figure 2. 
Coarse-graining error for domain and subunit-level representations. A) An example high 

resolution reference structure PDB ID 4MXW with subunits color coded. B.) A 

coarsegrained model of 4MXW at the subunit level. C) A coarse-grained model of 4MXW at 

the domain-level. D) 191 non-redundant protein topologies were coarse grained at the 

subunit-level. The coarse-graining error distribution for this level of coarse-graining is 

shown, with bin sizes of approximately 4 Å along the X-axis. E) Subunit-level coarse 

graining introduced significant CCS errors for 28% of the complexes in our set. F) The 

coarse-graining error distribution for the same set of protein topologies coarse-grained at the 

domain level. G) When coarse-grained at the domain level, only 2% of topologies had 

significant coarse-graining errors introduced.
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Figure 3. 
Positive Predictive Values of the IM-MS restraint sets plotted as a function of the number of 

internal CCS-derived restraints. At least 5 non-redundant topologies from the PDB were 

considered for each number of subunits, A) Trimers B) Tetramers C) Pentamers and D) 

Hexamers. Each restraint set was manually curated to ensure the data reflected data that 

could be reasonably generated through existing IM-MS technologies.
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Figure 4. 
Parsing Structural Ensembles Generated with Ambiguous Restraint Sets. A) A restraint set 

was generated for 2AFH, a nitrogenase heterotetramer (purple and grey) bound to the 

dimeric nucleotide switch protein (green). The binding location and pose for the nucleotide 

switch protein is not defined in the restraint set and a CCS-filtered structural ensemble 

contains many putative structures. B) Hierarchical clustering of the ensemble reveals three 

distinct structural families within the ensemble, greatly simplifying the analysis. C) Plotting 

the kernel density function of each structural family reveals high resolution within all 

families.
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Figure 5. 
Modeling the topology of hexameric LTag bound to p53 using the symmetry restraint. Two 

restraint sets (left panels, A and B) were used to generate structural ensembles that were 

evaluated using hierarchical clustering, kernel density functions, and RMSD distributions. 

(Right panels).
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Figure 6. 
Docking modules within the ARP2/3 complex using connectivity restraints. After encoding 

the structures of the nucleating module (NM) and the actin localization module (ALM), we 

tested the global CCS in conjunction with various sets of connectivity restraints (left panels, 

A, B, and C) for their ability to restraint the docking location and pose of NM on ALM. 

Structural ensembles were evaluated by hierarchical clustering and the structural families, 

kernel density functions, and RMSD distributions from the reference are provided.
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