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Abstract

Group X (GX) and group V (GV) secretory phospholipase A2 (sPLA2) potently release 

arachidonic acid (AA) from the plasma membrane of intact cells. We previously demonstrated that 

GX sPLA2 negatively regulates glucose-stimulated insulin secretion (GSIS) by a prostaglandin E2 

(PGE2)-dependent mechanism. In this study we investigated whether GV sPLA2 similarly 

regulates GSIS. GSIS was significantly decreased in islets isolated from GV sPLA2-deficient (GV 

KO) mice compared to wild-type (WT) mice. Similarly, GSIS was significantly decreased in 

MIN6 cells, a murine pancreatic beta cell line with siRNA-mediated GV sPLA2 suppression. 

MIN6 cells overexpressing GV sPLA2 (MIN6-GV) showed a significant increase in GSIS 

compared to control cells. The amount of AA released into the media by MIN6-GV cells was 

significantly higher compared to control cells. However, MIN6-GV cells did not exhibit enhanced 

PGE2 production or decreased cAMP content compared to control MIN6 cells. Surprisingly, GV 

KO mice exhibited a significant increase in plasma insulin levels following i.p. injection of 

glucose compared to WT mice. This increase in GSIS in GV KO mice was associated with a 

significant increase in pancreatic islet size and number of proliferating cells in β-islets compared 

to WT mice. Thus, deficiency of GV sPLA2 results in diminished GSIS in isolated pancreatic 

beta-cells. However, the reduced GSIS in islets lacking GV sPLA2 appears to be compensated by 

increased islet mass in GV KO mice.
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Introduction

Type 2 diabetes (T2D) is increasing at an alarming rate worldwide, largely due to an 

epidemic of obesity and reduced physical activity. T2D results from chronic insulin 

resistance that ultimately leads to a progressive decline in pancreatic β-cell function. 

Although insulin resistance precedes the development of hyperglycemia in subjects that 

eventually develop T2D, the disease manifests itself in insulin-resistant subjects only with 

the onset of β-cell dysfunction and reduced β-islet mass [1].

Accumulating evidence indicates that arachidonic acid (AA) and its metabolites play key 

roles in regulating β-cell function. AA constitutes >30% of the glycerolipid fatty acid mass 

in rodent islets [2], and stimulation of β-cells with glucose is accompanied by release of free 

AA. Inhibition of AA release impairs glucose-stimulated insulin secretion (GSIS) [3]. The 

exact mechanisms linking AA and insulin secretion are not clearly understood. While AA is 

in general considered to be an activator of GSIS, a major metabolite of AA, prostaglandin 

E2 (PGE2), is a known inhibitor of GSIS [4-9]. It is believed that PGE2 exerts its effect by 

interacting with its receptor, EP3, thus decreasing adenylyl cyclase activity with a 

subsequent reduction in cAMP, a known activator of GSIS [10, 11]. Apart from their effects 

on GSIS, AA and its metabolites have also been implicated in the regulation of β-cell mass. 

For example, transgenic overexpression of cyclooxygenase-2 (COX-2), a rate-limiting 

enzyme for prostanoid biosynthesis including PGE2, resulted in significantly decreased 

pancreatic β-cell number in mice, leading to a significant increase in blood glucose levels. 

The reduction in β-cell mass in COX-2 transgenic mice was shown to be due to inhibited β-

cell proliferation [12].

The phospholipase A2 (PLA2) family comprises a group of intracellular and secreted 

enzymes that hydrolyze phospholipids to yield free fatty acids and lysophosholipids. This 

reaction is considered to be the initial, rate-limiting step of AA metabolism leading to the 

production of bioactive lipids including prostaglandins and leukotrienes. Calcium-

independent PLA2 (iPLA2) enzymes have been implicated in glucose-stimulated AA release. 

Moreover, inhibition of iPLA2β using a pharmacological inhibitor, bromoenol lactone 

suicide substrate, inhibited AA release and GSIS in vitro [3, 13]. Similarly, knockdown of 

iPLA2β expression in INS1 cells decreased insulin secretion [14]. Transgenic 

overexpression of iPLA2β in islet β-cells resulted in enhanced GSIS; consistently, islets 

from male iPLA2β -null mice exhibited blunted insulin secretion. The role of cytosolic 

phospholipase A2 (cPLA2) in insulin secretion has also been investigated. Overexpression of 

cPLA2 enhances exocytosis of insulin from β-cells [15]. However, sustained expression of 

cPLA2 has been reported to upregulate uncoupling protein-2 (UCP-2) and consequent 

mitochondrial uncoupling, which drastically reduces the capacity of β-cells to respond to 

nutrients [16]. Consistently, another study documented that overexpression of cPLA2 has no 

effect on insulin content or the basal rate of insulin secretion, yet negatively effects GSIS, 

probably due to the prolonged exposure of β-cells to AA [17].

Among the secretory PLA2 (sPLA2) family members, group IB sPLA2 is reportedly 

expressed in pancreatic islets of rodents and localized within insulin granules. Stimulation 

with glucose results in the co-secretion of insulin and group IB sPLA2 [18]. However, the 
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role of the enzyme in GSIS or pancreatic β-cell function is not known. Recently, we reported 

that another member of the sPLA2 family, group X sPLA2 (GX sPLA2) is expressed in 

insulin-producing cells of mouse pancreatic islets and negatively regulates GSIS by 

enhancing the production of PGE2. Moreover, C57BL/6 mice deficient in GX sPLA2 had 

increased plasma insulin levels following glucose challenge compared to wild-type mice 

[19].

Thus, based on available evidence, it appears that during glucose-stimulation, the liberation 

of AA positively modulates insulin secretion, whereas the generation of AA metabolites 

such as PGE2 negatively modulates insulin secretion. Therefore, the regulatory effect of 

individual PLA2's likely depends on the potency and kinetics of AA/PGE2 production. In 

this study, we investigated the role of yet another member of the sPLA2 family, group V 

sPLA2 (GV sPLA2) in pancreatic β-cell function. In vitro studies using artificial 

phospholipid substrates indicate that GV and GX sPLA2s are the most potent in hydrolyzing 

phosphatidylcholine [20], the major phospholipid on mammalian cell membranes. However, 

it is not clear whether these two closely related sPLA2 family members perform redundant 

physiological functions in vivo.

Materials and Methods

Biochemical Reagents and Assays

Assays for Insulin (Crystal Chem Inc), PGE2 metabolites (Cayman) and cAMP (ENZO Life 

Sciences) were performed according to the manufacturers' instructions. Phospholipase 

activity in conditioned media was measured using a colorimetric assay as we previously 

described [21] with 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG; Matreya LLC) as a 

substrate. Briefly, mixed micelles were prepared by warming 7 mg of POPG to 37°C in a 0.2 

mL mixture of 4.0% (wt/vol) Nonidet-40 and 2.0% sodium deoxycholate, and then adding 

1.8 mL warm assay buffer (0.12 mol/L Tris-HCl pH 8, 12 mmol/L CaCl2, 0.1 mmol/L 

EDTA). For enzyme assays, 10 μL of conditioned media was added to 40 μL of substrate 

solution. After incubating for 20 minutes at 37°C, the amount of free fatty acids (FFA) 

released was quantified using a NEFA-C kit (Wako Chemicals); phospholipase activity was 

calculated as the nmol of FFA released in 20 minutes per mg cell protein.

Animals

GV sPLA2-deficient (GV KO) mice, backcrossed >10 times with C57BL/6 mice, were 

originally provided by Dr. Jonathan Arm [22]. Mice were maintained on a 10-h light/14-h 

dark cycle and received standard mouse chow and water ad libitum. Male mice were used 

throughout the study. All procedures were in accordance with the guidelines of the 

University of Kentucky Institutional Animal Care and Use Committees.

Islet isolation

Mouse islets were isolated via intraductal collagenase (Sigma) digestion and ficoll gradient 

centrifugation as described earlier [19]. A detailed method will be provided on request. 

Following isolation, similar-sized islets were selected and hand-picked and maintained in 

RPMI containing 5 mM glucose, 10% (v/v) FBS and penicillin and streptomycin.
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Immunohistochemistry

Pancreata from WT and GV KO mice were embedded in paraffin and 5 μm-thick sections 

were mounted on glass slides; processing of the tissues on glass slides was done as described 

earlier [19]. The sections were immunostained using rabbit anti-mouse GV sPLA2 (gift from 

Dr. M. Gelb, University of Washington) and goat anti-mouse insulin (Santa Cruz 

Biotechnology), at a dilution of 1:100 for anti-GV sPLA2 and 1:500 for anti-insulin. For 

fluorescent images, Alexa Fluor-conjugated secondary antibodies were used (Invitrogen). 

For Ki67 staining, the sections were immunostained using rabbit anti-Ki67 (Abcam,1:150).

β-cell mass, average islet size, and β-cell proliferation

β-cell mass and average islet size were determined as described earlier [23]. Entire pancreata 

were removed from 4 GV KO and 4 WT mice (16 weeks old), adhering fat tissues as well as 

other nonpancreatic tissues were removed, and the organ was then weighed and fixed as 

described above and cut into 5 μm-thick sections. Every 30th section (a total of 7-8 sections 

per pancreas) was immunostained for insulin, and then imaged under X10 magnification 

using NIS elements software (Nikon Instruments, Inc.). β-cell mass was calculated by first 

obtaining the fraction of the total cross-sectional area of the pancreatic tissue 

immunopositive for insulin and then multiplying the pancreatic weight by this fraction. 

Average islet size was calculated by dividing the total islet area by the total number of islets 

analyzed.

The number of nuclei positive for Ki67 within insulin-positive cells was counted to 

determine β-cell proliferation. Approximately 40 islets from 2 sections per mouse were 

analyzed in the proliferation assay (n= 3 mice per group).

In vivo GSIS, glucose tolerance and insulin tolerance tests

In vivo GSIS was performed as described earlier [19]. Mice were fasted for 16 h, and then 

plasma samples were collected from the retro-orbital sinus before and 15 min after i.p. 
glucose injection (3g/kg). For glucose tolerance tests, mice were fasted for 6 h. Blood 

glucose concentrations were quantified using a glucometer (Contour; Bayer Laboratories) 

immediately before and 15, 30, 60, 90, and 120 min following intraperitoneal (i.p) 

administration of glucose (1.5 g/kg body wt). Insulin tolerance was assessed following a 4-h 

fast by quantifying blood glucose concentrations at 0, 30, 60, 90 and 120 min after 

administration of human insulin (0.5 U/kg body wt i.p; Novolin, Novo Nordisk).

Cell culture and transfections

MIN6 cells were cultured in complete media (DMEM supplemented with 15% heat-

inactivated fetal bovine serum, 2 mmol/l L-glutamine, 45 mmol/l β-mercaptoethanol, 100 

units/ml pencillin and 100 μg/ml streptomycin). C-terminal Flag-tagged cDNA for GV 

sPLA2 was constructed by PCR using forward (F) and reverse (R) primers containing Hind 

III and EcoRI restriction sites respectively: 5′- 

TACCCAAGCTTATGAAGGGTCTCCTCACA-3′(F) and 5′- 

GCGGAATTCTTACTTGTCATCGTCGTCCTTGTAGTCGCAGAGGAAGTTGGG-3′ (R) 

and mouse GV sPLA2 cDNA as a template. The PCR product was inserted into the 

mammalian expression vector pcDNA 3.0 (Invitrogen, Carlsbad, CA) to yield a coding 
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sequence that expressed GV sPLA2 with a C-terminal FLAG epitope tag. DNA sequencing 

was performed to confirm the integrity of the expression construct. The plasmids were 

transfected into MIN6 cells using Nucleofector Kit following the manufacturer's instructions 

and the program T-016 (Nucleofector Kit V; Lonza).

Arachidonic acid (AA) release assay

MIN6 cells transiently transfected with either the “empty” pcDNA 3.0 plasmid (MIN6-C) or 

the pcDNA3.0 GV sPLA2 expression construct (MIN6-GV) were assayed 24 h after 

transfection. The transfected cells (∼5×105cells/well pf 12-well plate) were incubated in 1 

ml of complete medium (DMEM medium supplemented with 10% heat-inactivated fetal 

bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin) containing 0.1 μCi 

[3H]arachidonate (200 Ci/mmol; American Radiochemicals Inc, Saint Louis, MO) for 12-16 

h. The cells were then washed three times with complete medium followed by 6 h incubation 

in the same medium. The amount of tritium associated with cells and released into the 

medium was determined by scintillation counting.

Gene silencing with Small Interfering RNA (siRNA)

A set of pre-designed synthetic oligonucleotides directed to mouse GV sPLA2 (Thermo 

Scientific, On-TARGETplus SMARTpool siRNA; L-042189-01-0010; mouse PLA2G5 

18784) was used. The oligonucleotides were transfected into MIN6 cells using Nucleofector 

Kit (Nucleofector Kit V; Lonza) and the program T-016. Scrambled siRNA (Thermo 

Scientific; Non-targeting siRNA#1; D-001810-20) was used as control. The siRNAs were 

transfected at a final concentration of 2 μg of siRNA pool or non-targeting siRNA per 2 × 

106 MIN6 cells. Cells were collected 24 h after transfection for RNA preparation to confirm 

gene silencing by real-time RT-PCR and used for GSIS assay 48 h after transfection.

Real time RT-PCR

Total RNA was prepared from MIN6 cells using the RNeasy Mini kit (Promega). 

Quantification was performed in duplicate using the standard curve method and normalized 

to 18S RNA. The primer sequences used for GV sPLA2 mRNA detection were 5′-AGG 

GGG CTT GCT AGA ACT CA -3′ (F) and 5′-CAA TCA GTG CCA TCC TTG G -3′ (R).

In vitro insulin secretion assays

In vitro GSIS assays were carried out as described earlier [19]. Briefly, after isolation and 

handpicking, islets from WT and GV KO mice were cultured overnight in RPMI media. 

Islets were then selected and transferred to culture inserts (Greiner bio-one) in 12-well plates 

(25 islets per well), washed, and equilibrated for 1 h in Buffer 1 (DMEM supplemented with 

38 mM sodium bicarbonate, 4 mM L-glutamine, 1 mM sodium pyruvate, 4.65 mM HEPES 

and 1 g/l BSA) containing 5 mM glucose, and then incubated successively for 40 min in 

Buffer 1 containing 5 mM glucose (low glucose) followed by 40 min in Buffer 1 containing 

20 mM glucose (high glucose). At the end of the incubations, insulin content in the low and 

high glucose-containing buffers was assayed and normalized to total cellular insulin content, 

which was determined after lysing islets in acid-ethanol (75% ethanol, 0.2 mol/l HCl). To 

ensure that islets from the two strains of mice were challenged sufficiently to detect 
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differences in response to glucose, we performed additional in vitro GSIS assays in which 

islets were equilibrated for 1 h in Buffer 1 containing low glucose (1 mM) and then 

incubated successively for 40 min in Buffer 1 containing physiological glucose (5 mM) 

followed by 40 min in Buffer 1 containing glucose (20 mM). The impact of GV sPLA2 on 

GSIS was not different under the two pre-equilibration conditions (data not shown). For 

GSIS in MIN6-C and MIN6-GV cells, cells (70-80% confluent) in 24-well plates were 

washed once with Kreb's Ringer buffer containing 0.2% BSA (KRB-BSA) and 5 mM 

glucose and then equilibrated in the same buffer for 1 h. The media was replaced with fresh 

KRB-BSA supplemented with either 5 mM (low) glucose or 20 mM (high) glucose for 40 

min. Insulin concentrations in conditioned media were normalized to total cell protein.

Statistics

Data are expressed as mean ± SEM. Results were analyzed by t test or by 1-way ANOVA 

followed by a Bonferroni post-test. P<0.05 was considered statistically significant. All 

statistical analyses were carried out using GraphPad Prism 4.

Results

GV sPLA2 is expressed in mouse pancreatic islets

Recently, we reported that group X secretory phospholipase A2 (GX sPLA2) is expressed in 

pancreatic β-islet cells and negatively regulates insulin secretion through a mechanism 

mediated by cyclooxygenase-2-dependent prostaglandin E2 production [19]. In this study, 

we investigated whether a closely related member of the sPLA2 family, group V sPLA2, is 

expressed and functional in mouse β-islet cells. Double immunofluorescent staining of 

pancreatic sections from C57BL/6 mice showed positive immunoreactivity for GV sPLA2 

(Fig. 1; green staining) that was most intense in regions immunopositive for insulin (red 

staining), indicating that GV sPLA2 is expressed in insulin-producing β-cells in mouse 

pancreas (Fig. 1; yellow on merged image). As expected, GV sPLA2 immunoreactivity was 

not detected in pancreatic sections from GV KO mice (Fig. 1).

GV sPLA2 augments glucose-stimulated insulin secretion (GSIS) in mouse pancreatic β-
cell line

GV sPLA2 is known to potentiate the release of arachidonic acid (AA) leading to eicosanoid 

generation, including PGE2, in several cell types [22, 24]. PGE2 is a negative regulator of 

glucose-stimulated insulin secretion (GSIS), whereas non-esterified AA is an activator of 

GSIS [6, 8, 25-28]. Therefore, to assess whether GV sPLA2 regulates GSIS, we investigated 

the impact of forced overexpression in MIN6 cells, a mouse pancreatic β-cell line that 

expresses endogenous GV sPLA2 (data not shown). Transient transfection of GV sPLA2 

cDNA resulted in a 1.8-fold increase in phospholipase activity secreted into the culture 

media of MIN6 cells (MIN6-GV) compared to media from cells transfected with control 

plasmid (MIN6-C; Fig. 2a). Insulin secretion was similar in MIN6-C and MIN6-GV cells 

incubated in low glucose (5 mM), indicating that overexpression of GV sPLA2 does not 

impact insulin secretion under basal conditions (Fig. 2b). In contrast, insulin secretion in 

cells incubated in high glucose (20 mM) was significantly increased in MIN6-GV (2.8±0.19 

μg/mg cell protein) compared to MIN6-C (1.95±0.06 μg/mg cell protein; p=0.0015). 
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Moreover, when expressed as fold-increase over basal, the magnitude of GSIS was 

significantly greater in cells overexpressing GV sPLA2 (6.4±0.43) compared to control cells 

(4.8±0.16; p=0.0052; data not shown). The effect of GV sPLA2 overexpression to enhance 

GSIS occurred in the absence of alterations in total cellular insulin content (Fig. 2c).

GV sPLA2 enhances AA release but not PGE2 production in β-cells

Given the recognized importance of AA and its metabolite, PGE2, in regulating GSIS [6, 8, 

27, 28], we next investigated the extent to which GV sPLA2 overexpression enhances AA 

and PGE2 production in β-cells. MIN6-GV cells demonstrated a modest but significant 

increase in AA release compared to MIN6-C cells, consistent with GV sPLA2's known 

ability to hydrolyze glycerophospholipids on mammalian cell membranes (Fig. 2d) [29]. 

However, increased AA release was not associated with a significant increase in PGE2 

secretion by MIN6-GV cells (Fig. 2e). Moreover, cellular cAMP was not significantly 

different in MIN6-GV compared to MIN6-C cells (Fig. 2f), as would be expected if 

enhanced GV sPLA2 activity resulted in increased PGE2 generation. Thus, in contrast to 

what we observed with GX sPLA2 [19], it appears that AA released by MIN6 cells through 
the action of GV sPLA2 is of insufficient magnitude, or is not effectively coupled to the 
prostaglandin synthetic pathway, to provide a detectable increase in PGE2 production.

Deficiency of endogenous GV sPLA2 attenuates GSIS in β-cells

To understand the role of endogenous GV sPLA2 in β -cell function, we next investigated 

the impact of siRNA-mediated silencing on GSIS in MIN6 cells. GV sPLA2 expression was 

suppressed ∼90% in MIN6 cells 24 h after transient transfection with siRNA targeting GV 

sPLA2 (GV-siRNA; Fig. 3a). While the magnitude of GSIS in GV-siRNA cells (7.03±0.18 

μg/mg cell protein) was significantly reduced compared to Scr-siRNA cells (8.8±0.35 μg/mg 

cell protein; p=0.004), basal insulin secretion was also significantly lower in GV-siRNA 

cells compared to Scr-siRNA cells (Fig. 3b). As a consequence, the fold-increase in insulin 

secretion over basal conditions was not significantly different for the two cell lines (6.5±0.16 

for GV-siRNA versus 6.1±0.24 for Scr-siRNA).

The lack of a pronounced effect of siRNA-mediated GV suppression on GSIS in MIN6 cells 

may be the result of residual GV sPLA2 activity in the silenced cells. It is also possible that 

GV sPLA2 plays a relatively small role in regulating GSIS in this immortalized cell line. 

Thus, to more definitively assess the impact of endogenous GV sPLA2 on β -cell function, 

we performed experiments with islets isolated from WT and GV KO mice. To rule out any 

potential differences in GSIS due to variations in islet size [30], similar-sized islets from WT 

and GV KO mice were used for the assay. We also confirmed that GX sPLA2 expression was 

not significantly different in pancreatic islets isolated from GV KO mice compared to WT 

mice (data not shown). There was no significant difference in basal insulin secretion (5 mM 

glucose) between islets from WT and GV KO mice (Fig. 3c). As expected, insulin secretion 

by WT islets increased significantly in response to high glucose (20 mM). Conversely, GSIS 

was almost totally abolished in islets lacking GV sPLA2 (Fig. 3c). Deficiency of GV sPLA2 

in primary islets did not significantly change total insulin content (Fig. 3d), consistent with 

findings in MIN6 cells (Fig. 2c). Taken together, our results demonstrate that GV sPLA2 
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enhances GSIS in pancreatic β-cells, in marked contrast to our previous findings with GX 

sPLA2 [19].

GV KO mice demonstrate enhanced GSIS in vivo

Our in vitro findings that GV sPLA2 augments GSIS in cultured MIN6 cells and isolated 

islets prompted us to investigate the in vivo effect of GV sPLA2 deficiency on glucose 

homeostasis in mice. 6-month-old GV KO mice showed a trend for decreased fasting 

glucose levels compared to age-matched WT mice (Fig. 4a), which was associated with a 

non-significant increase in fasting insulin levels in GV KO mice compared to WT (0 min, 

Fig. 4b). As expected, plasma insulin levels were significantly increased in both WT and GV 

KO mice 15 minutes after i.p glucose injection (3 mg/kg body weight). Surprisingly, in 

contrast to in vitro and ex vivo results, plasma insulin levels 15 min following glucose 

injection were significantly higher in GV KO mice compared to WT mice (Fig. 4b). Glucose 

disposal and insulin tolerance were not significantly different between the two strains of 

mice (Fig. 4c, d), nor was there a significant difference in body weights (data not shown).

GV KO mice have increased average islet size, β-cell mass and proliferation

Despite an apparent defect in GSIS in pancreatic islets that are deficient in GV sPLA2 (Fig. 

3c), GV KO mice demonstrated increased GSIS in vivo (Fig. 4b). This discrepancy 

motivated us to investigate potential differences in pancreatic β islets between GV KO and 

WT mice. Extensive morphometric analysis of pancreatic tissue identified a significant 1.5-

fold increase in β-islet mass (estimated by determining the portion of total pancreatic area in 

tissue sections corresponding to insulin-positive β-islets and the respective pancreatic 

weights) in GV KO compared to WT pancreas (Fig. 5a). There was no significant difference 

in pancreatic weights between the two strains (Fig. 5b). Therefore, an increase in β-islet 

mass must reflect an increase in islet number or an increase in islet size, or both. There was 

no difference in average number of islets in the pancreas of GV KO mice compared to WT 

mice (data not shown). However, average islet size was significantly larger for GV KO mice 

compared to WT mice (Fig. 5c). β-cell proliferation was assessed in pancreatic sections 

from 12-weeks old WT and GV KO (Fig. 5d shows representative images of GV KO 

pancreatic section) mice by determining the total number of insulin-positive cells (red 

staining) that were also positive for Ki67 (green staining) and DAPI nuclear stain. This 

analysis showed a significant increase in the number of proliferating cells in β-islets in GV 

KO mice compared to WT (Fig. 5e).

Discussion

There is a large body of evidence pointing to arachidonic acid (AA) and its biologically 

active metabolites as key regulators of insulin secretion by β-cells [6, 25, 26, 28, 31, 32]. 

The important role of AA in β-cells is underscored by its relatively high abundance in islets, 

representing ∼30% of the total mass of fatty acyl glycerophospholipids [33]. The liberation 

of AA from cellular membranes is dependent on the action of PLA2 enzymes, which also 

represents the initial, rate-limiting step for the production of a myriad of AA-derived 

bioactive lipid mediators, including prostaglandins and leukotrienes. Despite the central role 

of PLA2's in AA metabolism, the relative contributions of the various intracellular and 
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secreted forms of these enzymes in β-cells and their respective impact on the regulation of 

insulin secretion has not been fully defined. Thus, we have set out to investigate whether GV 

or GX sPLA2 play a role in regulating insulin secretion by β-cells. These two related 

enzymes have been shown to hydrolyze cell membrane phospholipids with much higher 

efficiency compared to other sPLA2 family members due to their high binding affinity to 

phosphatidylcholine (PC) [34, 35]. We previously reported that GX sPLA2 suppresses GSIS 

through a cyclooxygenase-2-dependent mechanism [19]. In this report, we provide evidence 

that GV sPLA2 regulates β-cell function in a manner that is distinct from GX sPLA2.

Like GX sPLA2, GV sPLA2 is expressed by insulin-producing cells in mouse pancreas and 

by MIN6 cells, a mouse pancreatic β-cell line. However, in contrast to GX sPLA2, gain and 

loss of function studies showed that GV sPLA2 enhances GSIS in MIN6 cells. Moreover, 

primary mouse islet cells deficient in GV sPLA2 exhibit significantly decreased GSIS ex 

vivo compared to pancreatic islets from wild-type mice. Taken together, our studies 

demonstrate the unexpected finding that whereas GX sPLA2 expressed by β-cells suppresses 

GSIS, the related GV sPLA2 enzyme serves to enhance GSIS. It is interesting to note we 

were unable to detect a significant increase in PGE2 production in MIN6 cells with forced 

overexpression of GV sPLA2, despite a significant 1.8-fold increase in PLA2 activity 

secreted by these cells. In comparable studies of GX sPLA2, a 2.2-fold increase in sPLA2 

activity in transfected MIN6 cells was associated with a robust 2.5-fold increase in PGE2 

generation [19]. The ability of GX sPLA2 to reduce GSIS was blocked in cells treated either 

with a cyclooxygenase-2 inhibitor or an EP3 receptor antagonist, demonstrating that the 

suppressive effect of GX sPLA2 is dependent on PGE2 synthesis and signaling through the 

EP3 receptor. The PGE2-EP3 receptor axis is thought to impact GSIS through decreased 

adenylyl cyclase activity and consequent reductions in cAMP, an established activator of 

insulin secretion [10, 11]. Our findings that overexpression of GX sPLA2 [19] but not GV 

sPLA2 (Fig. 2f), enhances intracellular cAMP concentrations in MIN6 cells is consistent 

with the conclusion that AA is coupled to increased PGE2 production only in the case of GX 

sPLA2. We speculate that increased GSIS in GV sPLA2-overexpressing MIN6 cells is a 

consequence of increased non-esterified AA in these cells, in line with previous studies 

showing that treatments that increase endogenous AA in β-cells leads to augmented insulin 

secretion [36]. The mechanisms for AA-mediated activation of GSIS are not totally 

understood. After glucose-induced depolarization of the plasma membrane and subsequent 

release of insulin, Kv2.1 channels present on the β-cell membrane serve to repolarize the 

membrane and consequently limit the duration of insulin secretion [37]. By attenuating 

Kv2.1 activity, AA prolongs the action potential, resulting in the amplification of GSIS for 

longer periods [38].

As noted above, our data indicate that AA liberated by GV sPLA2 versus GX sPLA2 has 

distinct metabolic fates in MIN6 cells, such that GX sPLA2 appears to be uniquely coupled 

to the prostaglandin synthesis pathway. Several in vitro studies point to differences in 

subcellular localization and actions for the two enzymes, which might account for our 

observations in β-cells. Though it is generally believed that GX sPLA2 hydrolyzes 

phospholipids in the outer leaflet of the plasma membrane, there is evidence that this 

enzyme may release AA prior to secretion [20]. It has also been suggested that GX sPLA2 is 

taken up by cells through its high affinity binding to the M-type receptor [39-41], whereas 
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GV sPLA2 may be internalized and trafficked to intracellular compartments by heparin 

sulphate proteoglycans [42, 43]. Unlike GV sPLA2, which is expressed as the mature 

enzyme, GX sPLA2 is originally produced as a proenzyme that must be proteolytically 

cleaved by furin-like proprotein convertases in order to exert full catalytic activity [44, 45]. 

Thus, compartmentalization of GX sPLA2 activity may be dictated by the subcellular 

location of the activating convertase. It is also important to note that local Ca2+ 

concentrations may influence the relative hydrolytic activity of the two enzymes, since in 

vitro studies indicate the requirement for Ca2+ is 10-fold higher for GV sPLA2 compared to 

GX sPLA2 [46]. Clearly, additional studies are required to determine whether spatial 

segregation of the catalytic activities of Group V and Group X sPLA2 is responsible for the 

observed functional differences of these two enzymes in β-cells.

Intriguingly, our in vivo results show that whole-body ablation of GV sPLA2 results in 

enhanced GSIS in mice (Fig. 4b), contrary to the suppressive effect of GV sPLA2 deficiency 

observed in isolated islets ex vivo (Fig. 3c). Enhanced GSIS in GV sPLA2-deficient mice 

was associated with a significant increase in islet mass as well as markers of β -cell 

proliferation, which are likely to at least partially overcome the reduction in GSIS observed 

for pancreatic islets isolated from GV sPLA2-deficient mice. Recently, Sato et al. reported 

that diet-induced obesity induces a robust increase in adipocyte expression of GV sPLA2. 

Additionally, GV sPLA2-deficient mice had significantly increased body weight and greater 

insulin resistance, mainly in white adipose tissue, compared to wild-type littermates after 

high fat diet feeding [47]. Interestingly, high fat diet-induced hyperinsulinemia was greater 

in GV sPLA2-deficient mice compared to wild-type mice, whereas glucose disposal and 

fasting blood glucose levels were similar for the two strains. The authors also showed that 

GSIS was significantly more robust in obese GV sPLA2-deficient mice compared to control, 

although the mechanism for increased GSIS was not investigated. While it is difficult to 

tease out the systemic versus local effects of GV sPLA2 in β-cell function, our studies in 

mice fed a normal rodent diet indicate that whole-body GV sPLA2 deficiency is associated 

with increased β-cell proliferation, an increase in islet mass, and overall capacity to secrete 

insulin, which may ultimately serve a protective effect in the setting of profound insulin 

resistance. The observed effects on β-cell proliferation and islet mass in the GV KO mice 
may be the consequence of GV sPLA2 deficiency in tissues other than the pancreas. 
Additional studies using tissue-specific knock-out mice are necessary to fully understand the 
biology of these intriguing PLA2's.

Conclusions

Our results demonstrate that GV sPLA2 plays multiple roles in regulating β-cell function in 

mice. Based on in vitro studies in MIN6 cells and isolated pancreatic islets, it is clear that 

GV sPLA2 acts in an autocrine and/or paracrine manner to enhance GSIS, possibly by 

mediating the release of AA from membrane glycerophospholipids. This activity is in 

marked contrast to GX sPLA2, which we previously showed suppresses GSIS by providing 

AA substrate for PGE2 generation in β-cells [19]. The opposing roles of GV and GX sPLA2 

in regulating insulin secretion underscore the fact that these two related enzymes are not 

functionally redundant. Additional in depth studies are necessary to fully understand the 

biology of these intriguing PLA2's. Despite the capacity of GV sPLA2 to enhance insulin 
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secretion by β-cells, the aggregate effect of whole-body GV sPLA2 deficiency was to 

augment GSIS in mice, an outcome that was associated with increased β-cell proliferation 

and pancreatic islet mass. These data are consistent with a previous report that GV sPLA2-

deficient mice are partially protected from impaired GSIS associated with severe obesity-

induced insulin resistance [47]. Thus, GV sPLA2 may provide a potential target for 

improving β-cell compensation in the setting of insulin resistance.
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Fig 1. 
GV sPLA2 is expressed in mouse pancreatic islet cells. Pancreatic sections from WT and 

GV KO mice were co-stained by indirect immunofluorescence for GV sPLA2 (green) and 

insulin (red) and visualized (20 × magnification) by fluorescence microscopy. A merged 

image shows expression of GV sPLA2 in insulin-producing cells of WT pancreas (yellow).
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Fig 2. 
GV sPLA2 activates glucose-stimulated insulin secretion (GSIS) and enhances AA release in 

MIN6 cells. MIN6 cells were transfected with a control expression plasmid (MIN6-C) or an 

expression plasmid encoding GV sPLA2 (MIN6-GV) as described under “Materials and 

Methods.” a, Phospholipase activity in 48 h conditioned media from MIN6-C or MIN6-GV 

cell cultures was determined and normalized to cell protein. b, GSIS was performed in 

MIN6-C and MIN6-GV cells 48 h after transfection as described in “Materials and 

Methods.” Insulin levels in the media were determined and normalized to total cell protein. 

c, Total cellular insulin content of MIN6-C and MIN6-GV cells was assessed as described in 

“Materials and Methods.” d, [3H]-AA release by MIN6-C and MIN6-GV cells was 

quantified and expressed as the percent of total cellular [3H]-AA as described in “Materials 

and Methods.” e, PGE2 levels in culture media from MIN6-C and MIN6-GV cells 48 h after 

transfection, normalized to total cell protein. f, cellular cAMP content in MIN6-C and 

MIN6-GV cells was determined 48 h after transfection and normalized to total cell protein. 

Data are from 4 independent transfections per construct and are presented as mean ± S.E; 

*p<0.05. ***, p < 0.001.
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Fig 3. 
GV sPLA2 deficiency suppresses GSIS in MIN6 cells and primary mouse pancreatic islet 

cells. MIN6 cells were transfected with a control siRNA (Scr-siRNA) or siRNA directed to 

GV sPLA2 (GV-siRNA), as described under “Materials and Methods.” a, RNAs were 

prepared from Scr-siRNA and GV-siRNA cells 24 h after transfection for quantification of 

GV sPLA2 mRNA abundance. b, GSIS was performed in Scr-siRNA cells and GV-siRNA 

cells as described in “Materials and Methods.” Insulin secreted into the media was assayed 

and normalized to total cell protein. c, GSIS assay was performed using islets (25 similar-

sized islets per mouse) isolated from 4-month-old WT and GV KO mice (n=4). Islets were 

incubated successively for 40 min in buffer containing 5 mM glucose (low glucose) and for 

40 min in buffer containing 20 mM glucose (high glucose). Insulin in the assay media was 

determined and normalized to total cellular insulin in the corresponding islets. d, Total islet 

insulin content in 25 similar-sized islets from WT and GV KO mice were estimated and 

normalized to total protein. Data are presented as mean ± S.E; ns-not significant; 

**p<0.01;***p<0.001.
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Fig 4. 
Enhanced in vivo GSIS in GV KO mice. a, Blood glucose levels after 16 h fast in WT and 

GV KO mice. b, Plasma insulin levels were determined before and 15 min after i.p. glucose 

injection (3 g/kg; n=4-5) in 6-month old WT and GV KO mice. c, 6- month old WT and GV 

KO mice were fasted for 6 h prior to i.p. injection of 1.5 mg glucose/g body weight, and 

glucose concentrations in the blood were determined at the indicated time after injection 

(n=5). d, 6- month old WT and GV KO mice were fasted for 4 h prior to i.p. glucose 

injection of human insulin (0.5 U/kg body weight), and glucose concentrations in the blood 

were determined at the indicated time after injection (n=4-5). e, body weight of WT and GV 

KO mice (n=4/strain). Data are presented as mean ± S.E; ***p<0.001.
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Fig 5. 
Increased β-islet mass, average islet size and β-cell proliferation in the pancreas of GV KO 

mice. a, Pancreatic β-islet mass of WT and GV KO mice (n=4/strain; 5-8 sections were 

analyzed from each mouse) were calculated by obtaining the fraction of the area of 

pancreatic tissue positive for insulin staining and multiplying this by the pancreatic weight 

as described in detail in the “Materials and Methods.” b, Pancreatic weight of WT and GV 

KO mice (n=4/strain). c, Average islet size of WT and GV KO pancreata (n=4/strain; 5-8 

sections/mouse) was calculated by dividing the total area of pancreatic tissue positive for 

insulin staining by the total number of islets. d, Representative immunofluorescence images 

of pancreatic islets from GV KO mice at 20X magnification showing insulin (red) and Ki67 

(indicated by arrows pointing to green staining). A merged image shows expression of Ki67 

in insulin-producing cells of GV KO pancreas, co-localized with DAPI staining. e, 

Quantification of number of β-cells with Ki67-positive nuclei per 100 islets in WT and GV 

KO mice (n=3/group; 30-50 islets from 2 sections per mouse). Data are presented as mean ± 

S.E; *p<0.05; ***p<0.01.
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