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Abstract

Purpose of Review—The purpose of this review is to provide an overview of dietary 

phosphorus, its sources, recommended intakes, and its absorption and metabolism in health and in 

chronic kidney disease, and to discuss recent findings in this area with a focus on the effects of 

inorganic phosphate additives in bone health.

Recent Findings—Recent findings show that increasing dietary phosphorus through inorganic 

phosphate additives has detrimental effects on bone and mineral metabolism in humans and 

animals. There is new data supporting an educational intervention to limit phosphate additives in 

patients with chronic kidney disease to control serum phosphate.

Summary—The average intake of phosphorus in the US well-above the recommended dietary 

allowance. Inorganic phosphate additives, which are absorbed at a high rate, account for a 

substantial and likely underestimated portion of this excessive intake. These additives have 

negative effects on bone metabolism, and present a prime opportunity to lower total phosphorus 

intake in the U.S. Further evidence is needed to confirm whether lowering dietary phosphorus 

intake would have beneficial effects to improve fracture risk.
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Introduction

Phosphorus is an important nutrient for bone health, but intakes in the U.S. usually well-

exceed requirements. This is problematic because excessive dietary phosphorus has been 

associated with adverse effects on bone and mineral metabolism. New literature in this area 

highlights the effects of a high dietary phosphorus burden from prevalent use of phosphate-

based food additives in the U.S. This review provides an overview of the role of phosphorus 

in bone health, adverse effects of excess intake, and findings from recent studies focused on 

effects of phosphate additives on bone and mineral metabolism in health, and in the special 

case of chronic kidney disease-mineral bone disorder.

Phosphorus as an Essential Nutrient

Phosphorus is an essential nutrient in human health and has a variety of physiological roles. 

These include structural roles, as phosphorous is a major component of cell membranes (i.e. 

phospholipid bilayer), the sugar-phosphate backbone of nucleic acids, and hydroxyapatite 

(Ca10(PO4)6(OH)2) in bones and teeth. Additionally, phosphorus plays important roles in 

energy metabolism (e.g. in ATP, GTP, ADP, GDP), in acid/base balance, and in intracellular 

cell signaling (1). The vast majority of the body’s phosphorus is found in bone mineral 

(approximately 85%), and the remaining 15% is distributed in soft tissues with about 1% in 

extracellular fluid (2). Phosphorus deficiency results in rickets and stunted growth in 

children and osteomalcia in adults. However, dietary phosphorus deficiency is very rare in 

humans, due to the natural ubiquity of phosphorus in a large array of foods and our high 

capacity to absorb it. Only in special circumstances, such as starvation, refeeding syndrome, 

or poorly managed parenteral nutrition is hypophosphatemia observed in otherwise healthy 

individuals (1). Thus, most cases of phosphorus deficiency result from a defect in renal 

reabsorption of phosphate. There are a variety of renal hypophosphatemias that are 

characterized by a low plasma phosphate and a low tubular maximum reabsorption rate of 

phosphate (TmP). These include genetic disorders that cause either highly increased levels 

of the phosphaturic hormones, fibroblast growth factor-23 (FGF23) or parathyroid hormone 

(PTH), or cause defects in the renal tubular sodium phosphate co-transporters that are 

responsible for phosphate reabsorption (3). Oral phosphate supplements are needed as part 

of treatment for these patients. Outside of these specific patient groups, humans are usually 

able to easily consume adequate phosphorus from a variety of foods.

Dietary Phosphorus Intake and Sources

The most recent Dietary Reference Intakes (DRIs) for phosphorus in the United States were 

established by the Institute of Medicine in 1997 (1). These include the estimated average 

requirement (EAR), the intake level estimated to meet the needs of 50% of healthy 

individuals in a group (age/sex/life stage), and the recommended dietary allowance (RDA), 

the intake level estimated to meet the requirements of 97.5% of healthy individuals in a 

group. Phosphorus is present in foods in naturally-occurring forms in meats, nuts, seeds, 

legumes, dairy foods, and grains, as well as in inorganic phosphate additives that are used 

for a variety of purposes in food processing. Because phosphorus is so widespread in the 

food supply both naturally and from additives, most people do not have difficulty meeting 
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intake requirements and dietary phosphorus deficiency is extremely rare. Instead, usual 

dietary intakes generally well-exceed recommended intakes. Data from the National Health 

and Nutrition Examination Survey (NHANES) 2005–2006 show that this is true for males 

and females across all age groups, except for adolescent women ages 9–18 years old, whose 

average intake is similar to the EAR (4). In healthy adults, the phosphorus EAR is 580 mg/d 

and the RDA is 700 mg/d (1). However, the average phosphorus intake of U.S. adults over 

the age of 20 is 1399 mg/d – approximately 2.5 times the EAR and twice the RDA. McClure 

et al. (5) recently described the trends in dietary phosphorus intake in U.S. adults between 

2001–2014 from NHANES data, as well as the percent contributions of various categories of 

foods to total phosphorus consumption. Although total phosphorus consumption has risen 

over the recent decades (6), intakes were relatively stable between 2001 and 2014 (5). Grains 

were the largest contributor to total dietary phosphorus intake, accounting for 29.3% of 

intake. Other major contributors were milk and milk products (21% of intake) and meat, 

poultry, fish and mixtures (25% of intake). Despite being considered somewhat of a villain 

in the phosphorus world, soft drinks contributed only 3.3% to total phosphorus intakes. 

However, unlike foods like grains, dairy and meats, soft drinks usually provide minimal to 

no additional nutrients aside from calories and sugar (7). Further, consumption of cola, in 

particular, is associated with altered bone metabolism, low bone density and fracture in 

human and animal studies (8–14).

Bioavailability of phosphorus also varies depending on source. Plant protein sources 

generally have the lowest bioavailability, followed by animal protein sources, then inorganic 

phosphate additives with the highest bioavailability. Inorganic phosphates have been 

considered to be nearly 100% bioavailable. However, this might be better described as 

nearly 100% bioaccessible (i.e. what is available for absorption), rather than bioavailable 
(i.e. what is absorbed and available to the tissues) (15). Scanni et al. (16) showed in healthy 

adults that only 73% of inorganic phosphate infused by nasoduodenal feeding tube was 

recovered in the urine, compared with 100% of i.v.-infused phosphate. This suggests only 

73% of the inorganic phosphate infused into the duodenum was absorbed, despite that the 

bioaccessibility of sodium phosphate is ~100%. St-Jules et al. (17) further demonstrate the 

case for less than 100% bioavailability of inorganic phosphate by highlighting the 

discrepancy between the proportion of phosphorus excreted in the urine versus the amount 

of phosphate given in multiple human feeding studies.

Regulation of Phosphorus Homeostasis

Phosphorus homeostasis is maintained via a multi-tissue axis involving the kidneys, 

parathyroid glands, intestine, and bone. The three main hormones responsible for 

phosphorus homeostasis are PTH, FGF23, and 1,25-dihydroxyvitamin D (1,25D) (18). The 

normal range of serum phosphate is 2.5–4.5 mg/dL. Transient elevations in serum phosphate 

cause increased PTH production and secretion, which increases the conversion of 25-

hydroxyvitamin D to 1,25D via the renal CYP27B1 (1α-hydroxylase) enzyme. Both PTH 

and 1,25D stimulate FGF23 production from osteocytes. PTH and FGF23 increase urinary 

phosphate excretion by inhibiting the renal sodium-phosphate co-transporters (NaPi-2a and 

NaPi-2c) which results in decreased renal phosphate reabsorption. PTH and 1,25D stimulate 

bone resorption to release calcium and phosphorus, and 1,25D increases the active 
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absorption of both calcium and phosphorus from the intestine. Homeostasis is further 

maintained by negative feedback loops involving these three hormones: FGF23 provides 

negative feedback on PTH and 1,25D, and 1,25D provides negative feedback on itself and 

PTH.

Intestinal absorption of dietary phosphorus occurs by both transcellular active transport that 

is sodium dependent, and paracellular passive transport that is sodium-independent. The 

major known phosphate transporter in the intestine brush border membrane is sodium-

phosphate co-transporter 2b (NaPi-2b), which is a type II sodium-phosphate transporter that 

shares homology with NaPi-2a and NaPi-2c in the kidney (19, 20). In addition to high levels 

of phosphorus present in our foods, humans also have generally high phosphorus absorption 

efficiency, around 60–70 % from a typical mixed diet (21). The major known modulators of 

phosphorus absorption efficiency are dietary phosphorus, 1,25D, and FGF23. Low 

phosphorus diets and 1,25D directly increase phosphorus absorption efficiency, while 

FGF23 decreases phosphorus absorption efficiency indirectly through its inhibition of 1,25D 

(21, 22). It had been presumed that the effect of low phosphorus diets on increased intestinal 

phosphorus absorption was mediated by an increase in 1,25D (21, 23). However, low 

phosphorus diets cause increased intestinal phosphorus absorption even in VDR and 

CYP27B1 knockout mice (24, 25). This suggests that the effects of low phosphorus diets on 

increased phosphorus absorption are vitamin D-independent and through mechanisms not 

yet fully known. Low phosphorus diets and 1,25D both increase NaPi-2b abundance in the 

brush border membrane. But, low phosphorus diets appear to affect NaPi-2b through both 

transcription and post-transcriptional mechanisms, whereas the effects of 1,25D appear to be 

post-transcriptionally mediated (21).

Despite the role of the intestine in absorbing phosphorus, thus making it bioavailable for its 

many physiological functions, the kidney is the main point of regulation of serum phosphate 

(26, 27). Scanni et al. (16) recently demonstrated in healthy adults the kidneys’ ability to 

fully compensate for increased absorbed phosphorus load, and that the intestine did not play 

a noticeable role in this response. However, even if renal phosphate excretion is able to 

maintain phosphate balance and serum phosphate within normal range, adverse effects of 

high dietary phosphorus on bone and mineral metabolism are still present.

High Dietary Phosphorus Intake Effects on Bone Health

Early studies in animals show that high dietary phosphorus, particularly with low dietary 

calcium, reduces bone mass, and that this is mediated by secondary hyperparathyroidism 

(28–31). Draper et al. (30) demonstrated that parathyroidectomy prevented increased bone 

resorption in response to a high phosphorus diet in adult rats. More recently, the bone matrix 

protein osteopontin (OPN) has been identified as another factor that mediates the increased 

bone resorption response to a to high phosphorus diet. Koyama et al. (32) fed 4-month old 

OPN deficient and wild-type adult mice a diet of 0.5% calcium with either 0.16% or 0.6% 

phosphorus for four weeks. OPN deficiency prevented a reduction in bone mineral density 

and mass, changes in trabecular bone patterns, and cortical bone appearance and area, cross-

section, periosteal circumference, and thickness. Bone formation was not affected by OPN 

deficiency, but the bone resorption response to a high phosphorus diet was prevented. Thus, 

Vorland et al. Page 4

Curr Osteoporos Rep. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the impact of a high phosphorus diet appears to be mediated in part by both OPN and PTH 

to increase bone resorption.

High dietary phosphorus also adversely affects bone mass accrual during growth. Huttunen 

et al. (33) fed 1-month-old rats diets of 0.6% calcium and either 0.6%, 1.2%, or 1.8% 

phosphorus for 8 weeks. The highest phosphorus diets (1.2% and 1.8%) reduced body 

weight, bone mineral content, and areal bone mineral density. Femur length and PTH were 

lowered at 1.8% P, and dose dependent decreases of trabecular area, width, and perimeter, 

and increases of osteoblast perimeter, osteoclast number, and mineral apposition rate were 

observed. pQCT in the distal metaphysis and midshaft showed a reduced BMC and total 

cross-sectional area, and tibia material properties were reduced on a high phosphorus diet.

Table 1 summarizes human clinical intervention studies on the impact of high dietary 

phosphorus intake and bone and mineral metabolism. Most studies show that high dietary 

phosphorus increases PTH (34–46), and exceptions tend to be studies where dietary calcium 

intake also increased with higher dietary phosphorus intake (41, 47, 48). The effects on bone 

turnover markers is more mixed, but when effects are seen they are generally in the direction 

of increased bone resorption and/or decreased bone formation with higher dietary 

phosphorus. Observational studies exploring the relationship between high dietary 

phosphorus and bone endpoints have similarly found mixed results. In large population 

surveys of the U.S. (49) and South Korea (50), generally no relationships between dietary 

phosphorus and BMD, BMC, or osteoporosis were observed. Similarly, in perimenopausal 

women there tended to be no relationship between dietary phosphorus intake and BMD and 

BMC (but higher dietary calcium and calcium:phosphorus (Ca:P) ratio was positively related 

to BMD and BMC) (51). In contrast, in a Brazilian cohort with low average calcium intake 

(~400 mg/d), for each increase of 100 mg/d in dietary phosphorus there was a 9% increase 

in fracture risk (52). Recently, a combined analysis of the relationship between serum 

phosphate and fracture risk in the Rotterdam Study and MrOS prospective cohorts was 

reported by Campos-Obando et al. (53). Serum phosphate was positively related to fracture 

risk, where there was a 47% increased risk of fracture with each 1 mg/dL increase in serum 

phosphate after adjusting for multiple covariates. Dietary phosphorus intake was available 

for a subset of subjects from MrOS, assessed by food frequency questionnaire. In these 

subjects, fasting serum phosphate did not relate to dietary phosphorus intake, nor did 

adjustment for dietary phosphorus intake affect the association between serum phosphate 

and fracture risk. However, as the authors also note, fasting serum phosphate is less sensitive 

to dietary phosphorus compared to postprandial serum phosphate measures. Additionally, 

accurate assessment of dietary phosphorus intake from food frequency questionnaires is 

limited by participant errors as well as incomplete and inaccurate nutrient database content 

(15). Campos-Obando et al. (53) also note that the increased fracture risk associated with 

serum phosphate was observed within the normal range for serum phosphate, which may 

suggest that usual intakes are too high. However, whether dietary phosphorus intake affects 

serum phosphate levels within the normal range remains unclear.

Recently, Katsumata et al. (54) investigated the effects of high dietary phosphorus bone and 

mineral metabolism-related gene expression in younger (12-week-old) and older (80-week-

old) mice. Mice were fed a diet of either 0.3% or 1.2 % phosphorus, with adequate calcium 
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(0.5%) for four weeks. Serum PTH increased in both young and old mice in response to the 

high phosphorus diet, but to a greater extent in the old mice. Femur RANKL mRNA was 

increased with high dietary phosphorus in both younger and older mice, but the 

RANKL:OPG mRNA ratio was only increased in the old mice, suggesting that the effects of 

high dietary phosphorus on bone resorption are more pronounced with aging. In a second 

study, Katsumata et al. (55) further investigated the effects and interaction between high 

dietary calcium and phosphorus on bone outcomes in rats. Rats were fed either adequate 

calcium (0.5%) or high calcium (1.0%) and either adequate phosphorus (0.3%) or high 

phosphorus (1.5%) in a 2×2 factorial design. High phosphorus diets caused increases in 

PTH, CTX, osteocalcin, and femur RANKL mRNA, and decreases in femur, tibial, and 

lumbar BMD and BMC. High calcium with high phosphorus blunted the effects of the high 

phosphorus diet on PTH, CTX, BMD and BMC measures, and prevented the rise in 

osteocalcin. The Ca:P intake ratio and its relevance in bone health is discussed below.

Dietary Calcium-to-Phosphorus Ratio

Intake of phosphorus relative to calcium is of interest, as these mineral interact in the 

gastrointestinal tract to limit absorption of the other, are intimately related in tissue (e.g. 

hydroxyapatite) and in their hormonal regulation. A 1:1 molar ratio of Ca:P (or ~1.3:1 mass 

ratio Ca mg:P mg) has been recommended to optimize calcium and phosphorus nutrition for 

bone health, yet the vast majority (~90%) of U.S. Americans fall below this ratio due to the 

combination of prevalent low calcium intakes and excessive phosphorus intakes (4). 

However, the current IOM DRI report for phosphorus, published in 1997 (1), made the case 

that the dietary Ca:P ratio was not physiologically relevant in human health within the range 

of dietary phosphorus intakes typically consumed in the U.S. Studies that show associations 

or effects of low Ca:P ratio on bone metabolism are confounded by low calcium intake 

coinciding with the low Ca:P ratio. Additionally, classic balance studies in adults have 

shown that high phosphorus intake does not influence calcium balance or absorption 

compared with low phosphorus intake, and the level of calcium intake does not modulate 

this effect (56–58). And a cross-sectional analysis of 215 young women found no evidence 

for an ideal Ca:P ratio to optimize bone mass (59). However, 20 years since the IOM report, 

the importance of dietary Ca:P ratio for bone health in humans is still unclear and somewhat 

controversial (60, 61). Minimally, it appears that dietary Ca:P ratio has to be taken in context 

of the absolute levels of each mineral in the diet as well (7). However, it is also possible that 

the ratio is irrelevant, but that low dietary calcium and excess dietary phosphorus can each 

be independently harmful to bone. Further, the interaction between low dietary calcium and 

excess dietary phosphorus doesn’t necessarily support the existence of a meaningful ratio 

independent of the absolute values of each nutrient. Nonetheless, high dietary phosphorus 

has consistently shown adverse effects on bone-related outcomes in animal studies, and there 

is human data that also supports an independent effect of high phosphorus intake on adverse 

bone-related outcomes, although less consistently. In recent years, there has been mounting 

evidence that shows adverse effects on bone metabolism with increased phosphorus intake 

from inorganic phosphate additives, which are absorbed rapidly at a high rate.
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Phosphate Additives Effects on Bone Metabolism

Inorganic phosphate additives are highly bioaccessible, as discussed above, and have been 

shown to contribute a substantial amount of phosphorus to total intake in the U.S. (62, 63). 

Cola is a unique source of additive inorganic phosphate that has been studied over the years 

in its effect on bone health. Cola delivers a load of phosphoric acid that is absorbed readily 

and rapidly and is often consumed between meals. A 20 fl. oz. bottle of cola, for example, 

provides 55 mg of phosphorus, whereas non-cola sodas are phosphate-free. In addition, cola 

may displace milk in the diet, so it can contribute to lower calcium intake concurrent along 

with greater inorganic phosphosphates intake (12). This has been investigated in early and 

later life stages. Wyshak (13, 14) observed that higher cola consumption has been associated 

with greater fracture risk in adolescent boys and girls. Tucker et al. (8) found an association 

between greater cola intake and low bone mineral density in older women in the 

Framingham Osteoporosis Study, but no association with non-cola carbonated beverages. 

This supported prior studies in rats that showed impaired bone mineralization and 

hyperparathyroidism when rats were given cola in place of water (9, 10). However, human 

observational studies have not consistently shown these associations between cola intake and 

bone outcomes. There was no association between any type of carbonated beverage 

consumption and bone mineral density in older women who participated in the Rancho 

Bernardo Study (11), nor in the men in the Framingham Osteoporosis Study (8), and 

McGartland et al. (64) found an inverse relationship between non-cola and total carbonated 

beverage consumption in Irish adolescent girls, but no relationship with cola consumption. It 

seems likely that any potential negative effects of cola on bone when it substitutes for milk 

in the diet would be driven by decreased calcium intake and other bone health nutrients (e.g. 

protein, vitamin D) in milk, rather than the difference in phosphorus load. This is because 

milk has about ten times the phosphorus content of cola by volume, so even if we assume 

most liberally that 100% of inorganic phosphate from cola is absorbed and only 40–70% of 

organic phosphorus from milk, this would still result in ~4–7 times more phosphorus 

absorbed from the same volume of milk as cola. However, it may be that the additional 

inorganic phosphate from cola may provide an additional insult to the replacement of 

nutrient-rich milk in the diet.

A recent study by Gutiérrez et al. (65) further evaluated the impact of dietary inorganic 

phosphate additives on bone in complementary studies in humans and mice. Participants in 

the human study were given a “low additive” diet for one week (~1000 mg/d phosphorus), 

followed by an “additive enhanced” diet for one week (~1600 mg/d phosphorus), with ~700 

mg/d of calcium throughout the two week study. After one week on the additive enhanced 

diet, participants had higher FGF23, osteopontin, and osteocalcin, and lower sclerostin and 

P1NP. Similarly, mice fed low (0.2%) and high (1.8%) dietary phosphorus higher FGF23, 

osteopontin, and osteocalcin, lower sclerostin and also lower BMD and unfavorable changes 

in cortical and cancellous bone geometry by μCT. This study is notable as it shows that diets 

high in foods containing inorganic phosphate additives at levels typical in the U.S. can 

adversely alter bone and mineral metabolism.
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Special Considerations for Dietary Phosphorus in CKD-MBD

Dietary phosphorus intake is of particular importance in patients with chronic kidney disease 

(CKD), who develop the co-morbid condition of mineral bone disorder (CKD-MBD). CKD-

MBD is characterized by biochemical abnormalities related to bone and mineral 

metabolism, including elevated serum FGF23, PTH, phosphate, and decreased serum 1,25D 

and calcium; renal osteodystrophy presenting with a range of abnormalities in bone 

mineralization, volume, and/or turnover; and increased vascular calcifications. Patients with 

CKD-MBD have elevated risk for bone fragility fractures, cardiovascular events, and death 

(71, 72). Patients are often prescribed low phosphorus diets as a component of treatment to 

slow or prevent CKD-MBD, hyperparathyroidism, or hyperphosphatemia. But, low 

phosphorus diets are extremely difficult for patients to follow, due to the widespread 

presence of phosphorus in the food supply, other concurrent nutrient and fluid restrictions, 

and while attempting to consume adequately high energy and protein. Thus, there has been 

growing interest in diet liberalization to improve patients’ nutrition and quality of life (73). 

A potential way to limit phosphorus intake in CKD patients without sacrificing overall 

nutrition and quality of life is to focus interventions at limiting non-nutritive or low-nutritive 

phosphate sources. Phosphates coming from medications and from inorganic phosphate 

additives are prime targets for this. Patients with CKD have a high pill burden. Up until 

recently, the phosphate burden from these patients’ medications was unquantified. Nelson et 

al. (74) evaluated the phosphate content of medications prescribed in hemodialysis patients 

with advanced CKD. 11% of drug formulations prescribed in the 101 hemodialysis patients 

in the study contained phosphate, and 30% of patients were taking at least one of these 

medications. The average phosphate burden from prescription medications in this study was 

111 mg/d. This shows that in the context of an 800–1000 mg/d dietary phosphorus 

restriction (75), on average over 10% of recommended intake could be coming from 

medications alone. This knowledge could potentially lead to changes in prescribing practices 

or formulations to reduce phosphate content, but the impact will need to be further 

evaluated.

In 2009, Sullivan et al. (76) published results from a randomized controlled trial aimed at 

reducing intake of phosphate additives. Two-hundred seventy-nine patients at 14 

hemodialysis centers who had serum phosphate ≥ 5.5 mg/dL were randomized by shift to 

receive either usual care plus diet education on how to avoid phosphate additives while 

grocery shopping or at fast food restaurants or usual care alone. At the end of the three 

month intervention, patients in the diet intervention group had significantly greater decline 

(by 0.6 mg/dL) in serum phosphate compared with the usual care control group. There is 

now an additional study (77) newly published in 2017 that supports the conclusions of 

Sullivan. de Fornasari et al. (77) conducted a similar study in 134 hemodialysis patients at a 

single dialysis center who had serum phosphate ≥ 5.5 mg/dL were randomized to receive a 

similar educational intervention to avoid phosphate additives for three months, or usual care. 

Results showed that a significantly greater proportion of the intervention group achieved 

serum phosphate ≤ 5.5 mg/dL (69.7% of patients) compared with only 18.5% of control 

patients at the end of the three month study. The average reduction in serum phosphate was 

1.8 mg/dL greater in the intervention group compared with the control group. Furthermore, 
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this reduction in serum phosphate with the intervention occurred while indices of nutritional 

status including serum albumin, normalized protein nitrogen appearance, body mass index, 

tricep skin fold thickness, and arm muscle area remained unchanged and no different 

between intervention and control at the end of the study. The results of these studies are 

encouraging, and should be followed with longer term studies to evaluate the effects of 

limiting phosphate additives, alone or in combination therapy, on improvement of CKD-

MBD outcomes including fractures, cardiovascular disease, and mortality.

Conclusions

Phosphorus is widespread in our food supply as both natural organic forms and in added 

inorganic forms, and humans have a high efficiency for dietary phosphorus absorption. 

Therefore, phosphorus deficiencies are rare and most people easily meet the RDAs of 700 

mg/d for most adults and 1250 mg/d during adolescent growth. Instead, excess dietary 

phosphorus intake is observed in nearly all age groups in the U.S. Adverse effects of high 

dietary phosphorus on bone health have been observed in bone animal and human studies, 

mediated through elevated PTH and increased OPN. The impact of high dietary phosphorus 

intakes on bone health appears to be compounded by prevalent low calcium intakes in the 

U.S. However, the case for an optimal Ca:P ratio independent of the absolute values of each 

nutrient is relatively weak. Further research is needed on the effectiveness of lowering 

dietary phosphorus intake on fracture risk. However, based on current evidence, a prudent 

approach would be to limit intake of phosphate additives. Phosphorus from plant based 

sources remain less bioavailable than animal sources and animal sources less bioavailable 

compared to inorganic phosphate additives. Additionally, phosphate additives are unrelated 

to foods’ protein content, unlike most naturally-occurring phosphorus in food. So, limiting 

consumption of inorganic phosphate additives is a strategic way to decrease phosphorus 

intake without affecting protein intake (77), which is particularly important for patients with 

CKD on dialysis. At minimum, inclusion of phosphorus content on food labels, and the 

quantification of phosphorus from inorganic phosphate food additives would be helpful for 

those seeking to limit their phosphorus intake (4, 7, 15, 17, 63, 78–80).
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